2,015
Views
9
CrossRef citations to date
0
Altmetric
Review

Optimizing testing regimes for the detection of COVID-19 in children and older adults

, &
Pages 999-1016 | Received 22 Feb 2021, Accepted 28 Jul 2021, Published online: 17 Aug 2021

References

  • Afzal A. Molecular diagnostic technologies for COVID-19: limitations and challenges. J Adv Res. 2020;26:149–159.
  • Chauhan N, Soni S, Gupta A, et al. Interpretative immune targets and contemporary position for vaccine development against SARS‐CoV‐2: a systematic review. J Med Virol. 2020;
  • Usman M, Ali Y, Riaz A, et al. Economic perspective of coronavirus (COVID‐19). J Public Aff. 2020;20:e2252.
  • Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–269.
  • Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273.
  • Cevik M, Kuppalli K, Kindrachuk J, et al. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ 2020;371:m3862.
  • Rabi FA, Al Zoubi MS, Kasasbeh GA, et al. SARS-CoV-2 and Coronavirus Disease 2019: what We Know So Far. Pathogens. 2020;9(3):231.
  • Du L, He Y, Zhou Y, et al. The spike protein of SARS-CoV- a target for vaccine and therapeutic development. Nat Rev Microbiol. 2009;7(3):226–236.
  • Kim D, Lee J-Y, Yang J-S, et al. The architecture of SARS-CoV-2 Transcriptome. Cell. 2020;181(4):914–921.e10.
  • Shi Y, Wang Y, Shao C, et al., COVID-19 infection: the perspectives on immune responses. Cell Death Differ. 27(5): 1451–1454. 2020. .
  • Alharthy A, Faqihi F, Memish ZA, et al. Lung Injury in COVID-19—An emerging hypothesis. ACS Chem Neurosci. 2020;11(15):2156–2158.
  • Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N Engl J Med. 2020;382(13):1199–1207.
  • Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. 2020;395(10225):689–697.
  • Tosif S, Neeland MR, Sutton P, et al. Immune responses to SARS-CoV-2 in three children of parents with symptomatic COVID-19. Nat Commun. 2020;11(1):5703.
  • Steinman JB, Lum FM, Ho PP-K, et al. Reduced development of COVID-19 in children reveals molecular checkpoints gating pathogenesis illuminating potential therapeutics. Proc Natl Acad Sci. 2020;117(40):24620–24626.
  • Henry BM, Lippi G, Plebani M. Laboratory abnormalities in children with novel coronavirus disease 2019. Clin Chem Lab Med. 2020;58(7):1135–1138.
  • Ludvigsson JF. Systematic review of COVID‐19 in children shows milder cases and a better prognosis than adults. Acta Paediatr. 2020;109(6):1088–1095.
  • Wei M, Yuan J, Liu Y, et al. Novel Coronavirus Infection in Hospitalized Infants Under 1 Year of Age in China. JAMA. 2020;323(13):1313.
  • Adeyinka A, Bailey K, Pierre L, et al. COVID 19 infection: pediatric perspectives. J Am Coll Emerg Physicians Open. 2021;2(1):e12375.
  • Wu Z, McGoogan JM. Characteristics of and important lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China. JAMA. 2020;323(13):1239.
  • Lee P-I, Hu Y-L, Chen P-Y, et al. Are children less susceptible to COVID-19? J Microbiol Immunol Infect. 2020;53(3):371–372.
  • Felsenstein S, Hedrich CM. COVID-19 in children and young people. Lancet Rheumatol. 2020;2(9):e514–e516.
  • Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 receptor ACE2 Is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016–1035.e19.
  • Carsetti R, Quintarelli C, Quinti I, et al. The immune system of children: the key to understanding SARS-CoV-2 susceptibility? Lancet Child Adolesc Heal. 2020;4(6):414–416.
  • Zimmermann P, Curtis N. Why is COVID-19 less severe in children? A review of the proposed mechanisms underlying the age-related difference in severity of SARS-CoV-2 infections. Arch Dis Child. 2021;106:429-439.
  • Chang T-H, Wu J-L, Chang L-Y. Clinical characteristics and diagnostic challenges of pediatric COVID-19: a systematic review and meta-analysis. J Formos Med Assoc. 2020;119(5):982–989.
  • Dong Y, Mo X, Hu Y, et al. Epidemiology of COVID-19 among children in China. Pediatrics. 2020;145(6):e20200702.
  • Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–1263.
  • Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc R Soc B Biol Sci. 2015;282(1821):20143085.
  • Huang I, Pranata R, Lim MA, et al. C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: a meta-analysis. Ther Adv Respir Dis. 2020;14:175346662093717.
  • Hu R, Han C, Pei S, et al. Procalcitonin levels in COVID-19 patients. Int J Antimicrob Agents. 2020;56(2):106051.
  • Brookman S, Cook J, Zucherman M, et al. Effect of the new SARS-CoV-2 variant B.1.1.7 on children and young people. Lancet Child Adolesc Heal. 2021;5(4):e9–e10.
  • Mwenda M, Saasa N, Sinyange N, et al. Detection of B.1.351 SARS-CoV-2 variant strain-Zambia, December 2020. 2021. [Cited 2021 Jul 18]. Available from: https://stacks.cdc.gov/view/cdc/102801
  • Ratmann O, Bhatt S, Flaxman S. Implications of a highly transmissible variant of SARS-CoV-2 for children. Arch Dis Child. 2021;0:1.
  • Yonker LM, Boucau J, Regan J. et al. Virologic features of SARS-CoV-2 infection in children. medRxiv Prepr Serv Heal Sci. 2021:30.21258086.
  • Nikolich-Zugich J, Knox KS, Rios CT, et al., SARS-CoV-2 and COVID-19 in older adults: what we may expect regarding pathogenesis, immune responses, and outcomes. GeroScience. 2020';42(2): 505–514.
  • Davies NG, Klepac P, Liu Y, et al. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat Med. 2020;26(8):1205–1211.
  • Dhochak N, Singhal T, Kabra SK, et al. Pathophysiology of COVID-19: why children fare better than adults? Indian J Pediatr. 2020;87(7):537–546.
  • Saletti G, Gerlach T, Jansen JM, et al. Older adults lack SARS CoV-2 cross-reactive T lymphocytes directed to human coronaviruses OC43 and NL63. Sci Rep. 2020;10(1):21447.
  • Koff WC, Williams MA. Covid-19 and immunity in aging populations — a new research agenda. N Engl J Med. 2020;383(9):804–805.
  • Westmeier J, Paniskaki K, Karaköse Z, et al. Impaired cytotoxic CD8 + T cell response in elderly COVID-19 patients. MBio. 2020;11(5):e02243–20.
  • Chatterjee B, Thakur SS. ACE2 as a potential therapeutic target for pandemic COVID-19. RSC Adv. 2020;10(65):39808–39813.
  • Tavares C, de AM, Avelino-Silva TJ, et al. ACE2 expression and risk factors for COVID-19 severity in patients with advanced age. Arq Bras Cardiol. 2020;115(4):701–707.
  • Lian J, Jin X, Hao S, et al. Analysis of epidemiological and clinical features in older patients with Coronavirus disease 2019 (COVID-19) outside Wuhan. Clin Infect Dis. 2020;71(15):740–747.
  • Sahoo JP, Mishra AP, Pradhan P, et al. Misfortune never comes alone - the new “Black Fungus” accompanying COVID-19 wave. Biot Res Today. 2021;3(5):318–320.
  • Sahoo JP, Panda B, Mishra AP, et al. The unseen “Fungal Infections” – an extra thrust aggravating COVID second wave in India. Biot Res Today. 2021;3:354–356.
  • Gambhir RS, Aggarwal A, Bhardwaj A, et al. COVID-19 and mucormycosis (black fungus): an epidemic within the pandemic. Rocz Panstw Zakl Hig. 2021;72(3):1–6.
  • Truong TT, Ryutov A, Pandey U, et al. Increased viral variants in children and young adults with impaired humoral immunity and persistent SARS-CoV-2 infection: a consecutive case series. EBioMedicine. 2021;67:103355.
  • Radia T, Williams N, Agrawal P, et al. Multi-system inflammatory syndrome in children & adolescents (MIS-C): a systematic review of clinical features and presentation. Paediatr Respir Rev. 2021;38:51–57.
  • Jain S, Sen S, Lakshmivenkateshiah S, et al. Multisystem Inflammatory syndrome in children with COVID-19 in Mumbai, India. Indian Pediatr. 2020;57(11):1015–1019.
  • Hoste L, Van Paemel R, Haerynck F. Multisystem inflammatory syndrome in children related to COVID-19: a systematic review. Eur J Pediatr. 2021;180(7):2019–2034.
  • Upham B. COVID-19 and black fungus: 10 things you need to know. Everyday Heal. 2021 Jun; [cited 13 Jul 2021]. Available from: https://www.everydayhealth.com/coronavirus/covid-19-and-black-fungus-things-you-need-to-know/
  • Centers for Disease Control and Prevention. Overview of testing for SARS-CoV-2. [cited 2021 Jun 18]. Available from: https://www.cdc.gov/coronavirus/2019-nCoV/hcp/clinical-criteria.html
  • Xu M, Wang D, Wang H, et al. COVID‐19 diagnostic testing: technology perspective. Clin Transl Med. 2020;10(4):e158.
  • Cheng MP, Papenburg J, Desjardins M, et al. Diagnostic testing for severe acute respiratory syndrome–related Coronavirus 2: A narrative review. Ann Intern Med. 2020;172(11):726–734.
  • SARS-CoV-2 diagnostic pipeline [Internet]. [cited 2021 Jul 22]. Available from: https://www.finddx.org/covid-19/pipeline/?section=show-all#diag_tab
  • Chauhan N, Soni S, Gupta A, et al. New and developing diagnostic platforms for COVID-19: a systematic review. Expert Rev Mol Diagn. 2020;20(9):971–983
  • Abdool Karim SS, de Oliveira T. New SARS-CoV-2 Variants — clinical, Public Health, and Vaccine Implications. N Engl J Med. 2021;384(19):1866–1868.
  • SARS-CoV-2 Variant Classifications and Definitions [Internet]. 2021 [cited 2021 Jul 20]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html
  • Alizon S, Haim-Boukobza S, Foulongne V, et al. Rapid spread of the SARS-CoV-2 delta variant in the area of Paris (France) in June 2021. Euro Surveill. 2021;26(28):21259052.
  • Abu-Raddad LJ, Chemaitelly H, Butt AA. Effectiveness of the BNT162b2 Covid-19 vaccine against the B.1.1.7 and B.1.351 variants. N Engl J Med. 2021;385(2):187–189.
  • Wall EC, Wu M, Harvey R, et al. Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. Lancet. 2021;397(10292):2331–2333.
  • Global Initiative on Sharing All Influenza Data (GISAID) [Internet]. [cited 2021 Jul 17]. Available from: https://www.gisaid.org
  • Mostafa HH, Carroll KC, Hicken R, et al. Multi-center Evaluation of the Cepheid Xpert® Xpress SARS-CoV-2/Flu/RSV Test. J Clin Microbiol. 2020;59:e02955–20.
  • Hur K-H, Park K, Lim Y, et al. Evaluation of Four commercial kits for SARS-CoV-2 real-time reverse-transcription polymerase chain reaction approved by emergency-use-authorization in Korea. Front Med. 2020;7:521.
  • Kralik P, Ricchi M. A basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything. Front Microbiol. 2017;8:108.
  • Arnaout R, Lee RA, Lee GR. et al. SARS-CoV2 Testing: the limit of detection matters. bioRxiv Prepr. 2020;2020(6):02.131144.
  • van Kasteren PB, van der Veer B, Van Den Brink S, et al. Comparison of seven commercial RT-PCR diagnostic kits for COVID-19. J Clin Virol. 2020;128:104412.
  • Won J, Lee S, Park M, et al. Development of a laboratory-safe and low-cost detection protocol for SARS-CoV-2 of the Coronavirus disease 2019 (COVID-19). Exp Neurobiol. 2020;29(2):107–119.
  • Park M, Won J, Choi BY, et al. Optimization of primer sets and detection protocols for SARS-CoV-2 of coronavirus disease 2019 (COVID-19) using PCR and real-time PCR. Exp Mol Med. 2020;52(6):963–977.
  • Xiaoshuai R, Yan L, Hongtao C, et al. Application and optimization of RT-PCR in diagnosis of SARS-CoV-2 infection. medRxiv. 2020;2:25.20027755.
  • Noßmann M. Optimization of a molecular diagnostic strategy to verify SARS-CoV-2 infections by RT-qPCR. Laboratoriums Medizin. 2020;44:349–356.
  • Natacha M, Geneviève P, Caroline M, et al. Optimization of SARS-CoV-2 detection by RT-QPCR without RNA extraction. bioRxiv. 2020;2020.04.06.028902.
  • Hasan MR, Mirza F, Al-Hail H, et al. Detection of SARS-CoV-2 RNA by direct RT-qPCR on nasopharyngeal specimens without extraction of viral RNA. PLoS One. 2020;15(7):e0236564.
  • Huang WE, Lim B, Hsu C, et al. RT‐LAMP for rapid diagnosis of coronavirus SARS‐CoV‐2. Microb Biotechnol. 2020;13(4):950–961.
  • Gouilh MA, Cassier R, Maille E, et al. An easy, reliable and rapid SARS-CoV2 RT-LAMP based test for point-of-care and diagnostic lab. medRxiv. 2020;2020.09.25.20200956.
  • Rödel J, Egerer R, Suleyman A, et al. Use of the variplexTM SARS-CoV-2 RT-LAMP as a rapid molecular assay to complement RT-PCR for COVID-19 diagnosis. J Clin Virol. 2020;132:104616.
  • Dudley DM, Newman CM, Weiler AM, et al. Optimizing direct RT-LAMP to detect transmissible SARS-CoV-2 from primary patient samples. medRxiv. 2020;2020(8):30.20184796.
  • Mohon AN, Oberding L, Hundt J, et al. Optimization and clinical validation of dual-target RT-LAMP for SARS-CoV-2. J Virol Methods. 2020;286:113972.
  • Mautner L, Baillie C-K, Herold HM, et al. Rapid point-of-care detection of SARS-CoV-2 using reverse transcription loop-mediated isothermal amplification (RT-LAMP). Virol J. 2020;17(1):160.
  • Li Z, Yi Y, Luo X, et al. Development and clinical application of a rapid IgM‐IgG combined antibody test for SARS‐CoV‐2 infection diagnosis. J Med Virol. 2020;92(9):1518–1524.
  • Kubina R, Dziedzic A. Molecular and serological tests for COVID-19. A comparative review of SARS-CoV-2 Coronavirus laboratory and point-of-care diagnostics. Diagnostics. 2020;10(6):434.
  • Parks JM, Smith JC, Phimister EG. How to discover antiviral drugs quickly. N Engl J Med. 2020;382(23):2261–2264.
  • Cong Y, Ulasli M, Schepers H, et al. Nucleocapsid protein recruitment to replication-transcription complexes plays a crucial role in Coronaviral life cycle. J Virol. 2020;94(4):e01925–19.
  • Ni L, Ye F, Cheng M-L, et al. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. Immunity. 2020;52(6):971–977.e3.
  • Jiang S, Hillyer C, Du L. Neutralizing antibodies against SARS-CoV-2 and other human Coronaviruses. Trends Immunol. 2020;41(5):355–359.
  • Ghaffari A, Meurant R, Ardakani A. COVID-19 serological tests: how well do they actually perform? Diagnostics. 2020;10(7):453.
  • Ladner JT, Henson SN, Boyle AS, et al. Epitope-resolved profiling of the SARS-CoV-2 antibody response identifies cross-reactivity with endemic human coronaviruses. Cell Reports Med. 2021;2(1):100189.
  • Bates TA, Weinstein JB, Farley S, et al. Cross-reactivity of SARS-CoV structural protein antibodies against SARS-CoV-2. Cell Rep. 2021;34(7):108737.
  • Gorse GJ, Donovan MM, Patel GB. Antibodies to coronaviruses are higher in older compared with younger adults and binding antibodies are more sensitive than neutralizing antibodies in identifying coronavirus‐associated illnesses. J Med Virol. 2020;92(5):512–517.
  • Xiao R, Lu L, Rong Z, et al. Portable and multiplexed lateral flow immunoassay reader based on SERS for highly sensitive point-of-care testing. Biosens Bioelectron. 2020;168:112524.
  • Wen T, Huang C, Shi F-J, et al. Development of a lateral flow immunoassay strip for rapid detection of IgG antibody against SARS-CoV-2 virus. Analyst. 2020;145(15):5345–5352.
  • Cellex Inc qSARS-CoV-2 IgG/IgM rapid test. 2020. [Internet]. [cited 2021 May 03]. Available from: https://www.fda.gov/media/136625/download
  • Liotti FM, Menchinelli G, Lalle E, et al. Performance of a novel diagnostic assay for rapid SARS-CoV-2 antigen detection in nasopharynx samples. Clin Microbiol Infect. 2020;27(3):487–488.
  • Gillot C, Douxfils J, Cadrobbi J, et al. An original ELISA-based multiplex method for the simultaneous detection of 5 SARS-CoV-2 IgG antibodies directed against different antigens. J Clin Med. 2020;9(11):3752.
  • Kasetsirikul S, Umer M, Soda N, et al. Detection of the SARS-CoV-2 humanized antibody with paper-based ELISA. Analyst. 2020;145(23):7680–7686.
  • Nagasawa M, Yamaguchi Y, Furuya M, et al. Investigation of anti-SARS-CoV-2 IgG and IgM antibodies in the patients with COVID-19 by three different ELISA test kits. SN Compr Clin Med. 2020;2(9):1323–1327.
  • Murray LP, Mace CR. Usability as a guiding principle for the design of paper-based, point-of-care devices – a review. Anal Chim Acta. 2020;1140:236–249.
  • Vashist SK. In vitro diagnostic assays for COVID-19: recent advances and emerging trends. Diagnostics. 2020;10(4):202.
  • Ravi N, Cortade DL, Ng E, et al. Diagnostics for SARS-CoV-2 detection: a comprehensive review of the FDA-EUA COVID-19 testing landscape. Biosens Bioelectron. 2020;165:112454.
  • Castro R, Luz PM, Wakimoto MD, et al. COVID-19: a meta-analysis of diagnostic test accuracy of commercial assays registered in Brazil. Brazilian J Infect Dis. 2020;24(2):180–187.
  • Hoffman T, Nissen K, Krambrich J, et al. Evaluation of a COVID-19 IgM and IgG rapid test; an efficient tool for assessment of past exposure to SARS-CoV-2. Infect Ecol Epidemiol. 2020;10:1754538.
  • Kong T. Longer incubation period of coronavirus disease 2019 (COVID‐19) in older adults. AGING Med. 2020;3(2):102–109.
  • Lauer SA, Grantz KH, Bi Q, et al. The Incubation period of Coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med. 2020;172(9):577–582.
  • Sun L, Shen L, Fan J, et al. Clinical features of patients with coronavirus disease 2019 from a designated hospital in Beijing, China. J Med Virol. 2020;92(10):2055–2066.
  • Almalki ZS, Khan MF, Almazrou S, et al. Clinical characteristics and outcomes among COVID-19 hospitalized patients with chronic conditions: a retrospective single-center study. J Multidiscip Healthc. 2020;Volume;13:1089–1097.
  • Jefferson T, Spencer EA, Brassey J, et al. Viral cultures for COVID-19 infectious potential assessment – a systematic review. Clin Infect Dis 2020 ciaa1764 https://doi.org/10.1093/cid/ciaa1764
  • Huang C-G, Lee K-M, Hsiao M-J, et al. Culture-based virus isolation to evaluate potential infectivity of clinical specimens tested for COVID-19. J Clin Microbiol. 2020;58(8):e01068–20.
  • Zhou L, Niu Z, Jiang X. et al. Systemic analysis of tissue cells potentially vulnerable to SARS-CoV-2 infection by the protein-proofed single-cell RNA profiling of ACE2, TMPRSS2 and Furin proteases. bioRxiv Prepr. 2020;04(6):028522.
  • Vankadari N, Wilce JA, Vankadari N, Wilce JA. Emerging COVID-19. coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect. 2020;9(1):601–604.
  • McAuley J, Fraser C, Paraskeva E, et al. Optimal preparation of SARS-CoV-2 viral transport medium for culture. Virol J. 2021;18(1):53.
  • Interim clinical considerations for use of COVID-19 vaccines currently authorized in the United States. [Internet]. 2020. [cited Apr 17 2021]. Available from: https://www.cdc.gov/vaccines/covid-19/info-by-product/clinical-considerations.html
  • Amit S, Beni SA, Biber A, et al. Postvaccination COVID-19 among healthcare workers, Israel. Emerg Infect Dis. 2021;27(4):1220–1222.
  • New research: risk of Covid-19 infection after vaccination is low, but not zero. Express News Serv., New Delhi, 2021. Cited Apr 12, 2021.  Available from: https://indianexpress.com/article/explained/risk-of-covid-19-infection-after-vaccination-is-low-but-not-zero-new-analysis-7249751/
  • Calderaro A, Arcangeletti MC, De Conto F, et al. SARS-CoV-2 infection diagnosed only by cell culture isolation before the local outbreak in an Italian seven-week-old suckling baby. Int J Infect Dis. 2020;96:387–389.
  • Engelmann I, Alidjinou EK, Ogiez J, et al. Preanalytical issues and cycle threshold values in SARS-CoV-2 real-time RT-PCR testing: should test results include these? ACS Omega. 2021;6(10):6528–6536.
  • Sahajpal S, Ak M, Njau A, et al. Effective optimization of SARS-CoV-2 laboratory testing variables in an era of supply chain constraints. Future Microbiol. 2020;15(15):1483–1487.
  • Okba N, Müller M, Li W, et al. SARS-CoV-2 specific antibody responses in COVID-19 patients. Emerg Infect Dis. 2020;26(7):1478–1488.
  • Opal SM, Girard TD, Ely EW. The immunopathogenesis of sepsis in elderly patients. Clin Infect Dis. 2005;41(Supplement 7):S504–S512.
  • Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062.
  • Listi F, Candore G, Modica MA, et al. A study of serum immunoglobulin levels in elderly persons that provides new insights into B Cell immunosenescence. Ann N Y Acad Sci. 2006;1089(1):487–495.
  • Kumar AA, Lee SWY, Lock C, et al. Geographical variations in host predisposition to COVID-19 related Anosmia, Ageusia, and Neurological syndromes. Front Med. 2021;8:661359.
  • Calcagnile M, Forgez P, Iannelli A, et al. ACE2 polymorphisms and individual susceptibility to SARS-CoV-2 infection: insights from in silico study. bioRxiv. 2020;2020.04.23.057042.
  • Peñarrubia L, Ruiz M, Porco R, et al. Multiple assays in a real-time RT-PCR SARS-CoV-2 panel can mitigate the risk of loss of sensitivity by new genomic variants during the COVID-19 outbreak. Int J Infect Dis. 2020;97:225–229.
  • Van Elslande J, Houben E, Depypere M, et al. Diagnostic performance of seven rapid IgG/IgM antibody tests and the Euroimmun IgA/IgG ELISA in COVID-19 patients. Clin Microbiol Infect. 2020;26(8):1082–1087.
  • Mak GC, Cheng PK, Lau SS, et al. Evaluation of rapid antigen test for detection of SARS-CoV-2 virus. J Clin Virol. 2020;129:104500.
  • Yuan X, Liangping L. The influence of major S protein mutations of SARS-CoV-2 on the potential B cell epitopes. bioRxiv Prepr. 2020;2020.8.24.264895.
  • Koyama T, Platt D, Parida L. Variant analysis of SARS-CoV-2 genomes. Bull World Health Organ. 2020;98(7):495–504.
  • Feng Z, Abudayyeh OO, Gootenberg JS A protocol for detection of COVID-19 using CRISPR diagnostics. 2020. [Cited 2021 Apr 02] Available from: https://www.broadinstitute.org/files/publications/special/COVID-19detection(updated).pdf.
  • Julia J, Alim L, Makoto S, et al. Point-of-care testing for COVID-19 using SHERLOCK diagnostics. medRxiv. 2020;2020.5.04.20091231.
  • Joung J, Ladha A, Saito M, et al., Detection of SARS-CoV-2 with SHERLOCK one-pot testing. N Engl J Med. 383(15): 1492–1494. 2020. .
  • Subhasis M, Akanksha R, Deepshikha S, et al. eCovSens ultrasensitive novel in-house built printed circuit board based electrochemical device for rapid detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2. bioRxiv Prepr. 2020;2020.4.24.059204.
  • Seo G, Lee G, Kim MJ, et al. Rapid detection of COVID-19 Causative Virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano. 2020;14(4):5135–5142.
  • Qiu G, Gai Z, Tao Y, et al. Dual-Functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome Coronavirus 2 detection. ACS Nano. 2020;14(5):5268–5277.
  • Moitra P, Alafeef M, Dighe K, et al. Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano. 2020;14(6):7617–7627.
  • Ho YII, Wong AH, Leung ECM, et al. Rapid adaptation and continuous performance evaluation of SARS‐CoV‐2 envelope gene (E‐gene) real‐time RT‐PCR assays to support the hospital surge in test demand. J Med Virol. 2021;93(3):1824–1827.
  • Yip CC-Y, Sridhar S, Cheng AK-W, et al. Evaluation of the commercially available LightMix® Modular E-gene kit using clinical and proficiency testing specimens for SARS-CoV-2 detection. J Clin Virol. 2020;129:104476.
  • Xiang J, Yan M, Li H, et al. Evaluation of enzyme-linked immunoassay and colloidal gold-immunochromatographic assay kit for detection of novel coronavirus (SARS-Cov-2) causing an outbreak of pneumonia (COVID-19). medRxiv. 2020;2020.2.27.20028787.
  • Fujigaki H, Takemura M, Osawa M, et al. Reliability of serological tests for COVID-19: comparison of three immunochromatography test kits for SARS-CoV-2 antibodies. Heliyon. 2020;6(9):e04929.
  • Mak GC, Lau SS, Wong KK, et al. Analytical sensitivity and clinical sensitivity of the three rapid antigen detection kits for detection of SARS-CoV-2 virus. J Clin Virol. 2020;133:104684.
  • Visseaux B, Le Hingrat Q, Collin G, et al. Evaluation of the RealStar® SARS-CoV-2 RT-PCR kit RUO performances and limit of detection. J Clin Virol. 2020;129:104520.
  • Zhou Y, Pei F, Ji M, et al. Sensitivity evaluation of 2019 novel coronavirus (SARS-CoV-2) RT-PCR detection kits and strategy to reduce false negative. PLoS One. 2020;15(11):e0241469.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.