503
Views
1
CrossRef citations to date
0
Altmetric
Review

Characteristics of circRNA and its approach as diagnostic tool in melanoma

ORCID Icon, & ORCID Icon
Pages 1079-1094 | Received 17 Mar 2021, Accepted 10 Aug 2021, Published online: 23 Aug 2021

References

  • DeSantis CE, Lin CC, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2014. CA. Cancer J. Clin. 2014;64(4):252–271.
  • Niezgoda A, Niezgoda P, Czajkowski R. Novel Approaches to Treatment of Advanced Melanoma: a Review on Targeted Therapy and Immunotherapy. BioMed Res Int. 2015;2015:1–16.
  • Abdel-Rahman O. Evaluation of the eighth American Joint Committee on Cancer staging system for malignant melanoma of the skin. Futur. Oncology. 2018;14(5):471–481.
  • Padrik P, Valter A, Valter E, et al. Trends in incidence and survival of cutaneous malignant melanoma in Estonia: a population-based study. Acta Oncol. (Madr). 2017;56(1):52–58.
  • Abbas O, Miller DD, Bhawan J. Cutaneous Malignant Melanoma. Am. J. Dermatopathol. 2014;36(5):363–379.
  • Belter B, Haase-Kohn C, Pietzsch J. Biomarkers in Malignant Melanoma: recent Trends and Critical Perspective. In: MD William H. Ward, MD and Jeffrey M. Farma (Eds). Cutaneous Melanoma: Ethiology and Therapy; Brisbane, Australia: Codon Publications. 2017. p. 39–56. DOI:https://doi.org/10.15586/codon.cutaneousmelanoma.2017.ch3.
  • Bosserhoff AK. Novel biomarkers in malignant melanoma. Clin Chim Acta. 2006;367(1–2):28–35.
  • Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–338.
  • Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl. Acad. Sci. 1976;73(11):3852–3856.
  • Capper D, Gaiser T, Hartmann C, et al. Stem-cell-like glioma cells are resistant to TRAIL/Apo2L and exhibit down-regulation of caspase-8 by promoter methylation. Acta Neuropathol. 2009;117(4):445–456.
  • Lagunas-Rangel FA. Circular RNAs and their participation in stemness of cancer. Med. Oncol. 2020;37(5):42.
  • Harland R, Misher L. Stability of RNA in developing Xenopus embryos and identification of a destabilizing sequence in TFIIIA messenger RNA. Development. 1988;102(4):837–852.
  • Salzman J, Chen RE, Olsen MN, et al. Correction: cell-Type Specific Features of Circular RNA Expression. PLoS Genet. 2013;9(12). DOI:https://doi.org/10.1371/annotation/f782282b-eefa-4c8d-985c-b1484e845855.
  • Liang G, Yang Y, Niu G, et al. Genome-wide profiling of Sus scrofa circular RNAs across nine organs and three developmental stages. DNA Res. 2017;24(5):523–535.
  • Glažar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. RNA. 2014;20:1666–1670.
  • Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141–157.
  • Zhang X-O, Wang H-B, Zhang Y, et al. Complementary Sequence-Mediated Exon Circularization. Cell. 2014;159(1):134–147.
  • AbouHaidar MG, Venkataraman S, Golshani A, et al. Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt. Proc. Natl. Acad. Sci. 2014;111(40):14542–14547.
  • He J, Xie Q, Xu H, et al. Circular RNAs and cancer. Cancer Lett. 2017;396:138–144.
  • Chen -L-L. The biogenesis and emerging roles of circular RNAs. Nat. Rev. Mol. Cell Biol. 2016;17(4):205–211.
  • Suzuki H. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 2006;34(8):e63–e63.
  • Park OH, Ha H, Lee Y, et al. Endoribonucleolytic Cleavage of m6A-Containing RNAs by RNase P/MRP Complex. Mol Cell. 2019;74(3):494–507.e8.
  • Hammond SM. Argonaute2, a Link Between Genetic and Biochemical Analyses of RNAi. Science. 2001;293(5532):1146–1150.
  • Hansen TB, Wiklund ED, Bramsen JB, et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 2011;30(21):4414–4422.
  • Kleaveland B, Shi CY, Stefano J, et al. A Network of Noncoding Regulatory RNAs Acts in the Mammalian Brain. Cell. 2018;174(2):350–362.e17.
  • Militello G, Weirick T, John D, et al. Screening and validation of lncRNAs and circRNAs as miRNA sponges. Brief Bioinform. 2016;bbw053. DOI:https://doi.org/10.1093/bib/bbw053
  • Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat. Biotechnol. 2014;32(5):453–461.
  • Jia R, Xiao M-S, Li Z, et al. Defining an evolutionarily conserved role of GW182 in circular RNA degradation. Cell Discov. 2019;5(1):45.
  • Lasda E, Parker R. Circular RNAs Co-Precipitate with Extracellular Vesicles: a Possible Mechanism for circRNA Clearance. PLoS One. 2016;11(2):e0148407.
  • Preußer C, Hung L-H, Schneider T, et al. Selective release of circRNAs in platelet-derived extracellular vesicles. J Extracell Vesicles. 2018;7(1):1424473.
  • Li Z, Kearse MG, Huang C. The nuclear export of circular RNAs is primarily defined by their length. RNA Biol. 2019;16(1):1–4.
  • Wan B, Liu B, Lv C. Progress of research into circular RNAs in urinary neoplasms. PeerJ. 2020;8:e8666.
  • Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–388.
  • Gardner EJ, Nizami ZF, Talbot CC, et al. Stable intronic sequence RNA (sisRNA), a new class of noncoding RNA from the oocyte nucleus of Xenopus tropicalis. Genes Dev. 2012;26:2550–2559.
  • Talhouarne GJS, Gall JG. Lariat intronic RNAs in the cytoplasm of Xenopus tropicalis oocytes. RNA. 2014;20(9):1476–1487.
  • Talhouarne GJS, Gall JG. Lariat intronic RNAs in the cytoplasm of vertebrate cells. Proc. Natl. Acad. Sci. 2018;115(34):E7970–E7977.
  • Du WW, Yang W, Liu E, et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 2016;44(6):2846–2858.
  • Zhao R, Zhou J, Dong X, et al. Circular Ribonucleic Acid Expression Alteration in Exosomes from the Brain Extracellular Space after Traumatic Brain Injury in Mice. J Neurotrauma. 2018;35(17):2056–2066.
  • Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis. Mol Cell. 2017;66(1):22–37.e9.
  • Wang Y, Wang Z. Efficient backsplicing produces translatable circular mRNAs. RNA. 2015;21(2):172–179.
  • Pamudurti NR, Bartok O, Jens M, et al. Translation of CircRNAs. Mol Cell. 2017;66(1):9–21.e7.
  • Zhang M, Zhao K, Xu X, et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat. Commun. 2018;9(1):4475.
  • Thomas LF, Sætrom P. Circular RNAs are depleted of polymorphisms at microRNA binding sites. Bioinformatics. 2014;30(16):2243–2246.
  • Zhao R, Li F-Q, Tian -L-L, et al. Comprehensive analysis of the whole coding and non-coding RNA transcriptome expression profiles and construction of the circRNA–lncRNA co-regulated ceRNA network in laryngeal squamous cell carcinoma. Funct Integr Genomics. 2019;19(1):109–121.
  • Xiong D, Dang Y, Lin P, et al. A circRNA–miRNA–mRNA network identification for exploring underlying pathogenesis and therapy strategy of hepatocellular carcinoma. J. Transl. Med. 2018;16(1):220.
  • Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505(7483):344–352.
  • Pan H, Li T, Jiang Y, et al. Overexpression of Circular RNA ciRS-7 Abrogates the Tumor Suppressive Effect of miR-7 on Gastric Cancer via PTEN/PI3K/AKT Signaling Pathway. J. Cell. Biochem. 2018;119(1):440–446.
  • Wan L, Zhang L, Fan K, et al. Circular RNA-ITCH Suppresses Lung Cancer Proliferation via Inhibiting the Wnt/ β -Catenin Pathway. BioMed Res Int. 2016;2016:1–11.
  • Qin H, Liu J, Du Z-H, et al. Circular RNA hsa_circ_0012673 facilitates lung cancer cell proliferation and invasion via miR-320a/LIMK18521 axis. Eur Rev Med Pharmacol Sci. 2020;24:1841–1852.
  • Zhong Q, Huang J, Wei J, et al. Circular RNA CDR1as sponges miR-7-5p to enhance E2F3 stability and promote the growth of nasopharyngeal carcinoma. Cancer Cell Int. 2019;19(1):252.
  • Yang W, Yang X, Wang X, et al. Silencing CDR1as enhances the sensitivity of breast cancer cells to drug resistance by acting as a miR‐7 sponge to down‐regulate REGγ. J. Cell. Mol. Med. 2019;23(8):4921–4932.
  • Yao W, Li Y, Han L, et al. CDR1as/miR-7/TGFBR2 Axis Modulates EMT in Silica-Induced Pulmonary Fibrosis. Toxicol. Sci. 2018;166(2):465–478.
  • Hsiao K-Y, Lin Y-C, Gupta SK, et al. Noncoding Effects of Circular RNA CCDC66 Promote Colon Cancer Growth and Metastasis. Cancer Res. 2017;77(9):2339–2350.
  • Zhang Y, Zhang X-O, Chen T, et al. Circular Intronic Long Noncoding RNAs. Mol Cell. 2013;51(6):792–806.
  • Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 2015;22(3):256–264.
  • Du WW, Yang W, Chen Y, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J. 2016;ehw001. DOI:https://doi.org/10.1093/eurheartj/ehw001
  • Zheng J, Liu X, Xue Y, et al. TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1β/Derlin-1 pathway. J. Hematol. Oncol. 2017;10(1):52.
  • Yang Z-G, Awan FM, Du WW, et al. The Circular RNA Interacts with STAT3, Increasing Its Nuclear Translocation and Wound Repair by Modulating Dnmt3a and miR-17 Function. Mol. Ther. 2017;25(9):2062–2074.
  • Yang Q, Du WW, Wu N, et al. A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ. 2017;24:1609–1620.
  • Du WW, Zhang C, Yang W, et al. Identifying and Characterizing circRNA-Protein Interaction. Theranostics. 2017;7(17):4183–4191.
  • Ding X, Zhang S, Li X, et al. Profiling expression of coding genes, long noncoding RNA, and circular RNA in lung adenocarcinoma by ribosomal RNA ‐depleted RNA sequencing. FEBS Open Bio. 2018;8:544–555.
  • Shao Y, Li J, Lu R, et al. Global circular RNA expression profile of human gastric cancer and its clinical significance. Cancer Med. 2017;6(6):1173–1180.
  • Liu W, Zhang J, Zou C, et al. Microarray Expression Profile and Functional Analysis of Circular RNAs in Osteosarcoma. Cell. Physiol. Biochem. 2017;43(3):969–985.
  • Fu L, Yao T, Chen Q, et al. Screening differential circular RNA expression profiles reveals hsa_circ_0004018 is associated with hepatocellular carcinoma. Oncotarget. 2017;8(35):58405–58416.
  • Lyu J, Wang Y, Zheng Q, et al. Reduction of circular RNA expression associated with human retinoblastoma. Exp Eye Res. 2019;184:278–285.
  • Ren S, Liu J, Feng Y, et al. Knockdown of circDENND4C inhibits glycolysis, migration and invasion by up-regulating miR-200b/c in breast cancer under hypoxia. J. Exp. Clin. Cancer Res. 2019;38(1):388.
  • Liu Q, Zhang W, Wu Z, et al. Construction of a circular RNA‐microRNA‐messengerRNA regulatory network in stomach adenocarcinoma. J. Cell. Biochem. 2020;121(2):1317–1331.
  • Bi J, Liu H, Dong W, et al. Circular RNA circ-ZKSCAN1 inhibits bladder cancer progression through miR-1178-3p/p21 axis and acts as a prognostic factor of recurrence. Mol Cancer. 2019;18(1):133.
  • Holdt LM, Kohlmaier A, Teupser D. Molecular roles and function of circular RNAs in eukaryotic cells. Cell Mol Life Sci. 2018;75:1071–1098.
  • Zhu L-P, He Y-J, Hou J-C, et al. The role of circRNAs in cancers. In: Biosci. Rep. 2017;37(5):BSR20170750. DOI: https://doi.org/10.1042/BSR20170750.
  • Zheng XB, Zhang M, Xu MQ. Detection and characterization of ciRS-7: a potential promoter of the development of cancer. Neoplasma. 2017;64(3):321–328.
  • Peng L, Yuan XQ, Li GC. The emerging landscape of circular RNA ciRS-7 in cancer (Review). Oncol. Rep. 2015;33(6):2669–2674.
  • Wang W, DAI LX, ZHANG S, et al. Regulation of Epidermal Growth Factor Receptor Signaling by plasmid-based MicroRNA-7 inhibits human malignant gliomas growth and metastasis in vivo. Neoplasma. 2013;60(3):274–283.
  • Webster RJ, Giles KM, Price KJ, et al. Regulation of Epidermal Growth Factor Receptor Signaling in Human Cancer Cells by MicroRNA-7. J. Biol. Chem. 2009;284(9):5731–5741.
  • Wang Y, Wang Q, Song J. Inhibition of autophagy potentiates the proliferation inhibition activity of microRNA-7 in human hepatocellular carcinoma cells. Oncol. Lett. 2017;14(3):3566–3572.
  • Li J, ZHENG Y, Sun G, et al. Restoration of miR-7 expression suppresses the growth of Lewis lung cancer cells by modulating epidermal growth factor receptor signaling. Oncol. Rep. 2014;32(6):2511–2516.
  • Glover AR, Zhao JT, Gill AJ, et al. microRNA-7 as a tumor suppressor and novel therapeutic for adrenocortical carcinoma. Oncotarget. 2015;6(34):36675–36688.
  • Yue K, Wang X, Wu Y, et al. microRNA-7 regulates cell growth, migration and invasion via direct targeting of PAK1 in thyroid cancer. Mol. Med. Rep. 2016;14(3):2127–2134.
  • ZENG C-Y, Zhan Y-S, Huang J, et al. MicroRNA-7 suppresses human colon cancer invasion and proliferation by targeting the expression of focal adhesion kinase. Mol. Med. Rep. 2016;13(2):1297–1303.
  • Sun X, Li J, Sun Y, et al. miR-7 reverses the resistance to BRAFi in melanoma by targeting EGFR/IGF-1R/CRAF and inhibiting the MAPK and PI3K/AKT signaling pathways. Oncotarget. 2016;7(33):53558–53570.
  • Zheng Q, Bao C, Guo W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun. 2016;7(1):11215.
  • Wang X, LIU Y, LIU X, et al. miR-124 inhibits cell proliferation, migration and invasion by directly targeting SOX9 in lung adenocarcinoma. Oncol. Rep. 2016;35(5):3115–3121.
  • Zhou Y, Han Y, Zhang Z, et al. MicroRNA-124 upregulation inhibits proliferation and invasion of osteosarcoma cells by targeting sphingosine kinase 1. Hum Cell. 2017;30(1):30-40. DOI: https://doi.org/10.1007/s13577-016-0148-4. PMID: 27743351.
  • Cai W-L, Huang W-D, Li B, et al. microRNA-124 inhibits bone metastasis of breast cancer by repressing Interleukin-11. Mol Cancer. 2018;17(1):9.
  • Neumann DP, Goodall GJ, Gregory PA. Regulation of splicing and circularisation of RNA in epithelial mesenchymal plasticity. Semin Cell Dev Biol. 2018;75:50–60.
  • Han Y-N, Xia S-Q, Zhang -Y-Y, et al. Circular RNAs: a novel type of biomarker and genetic tools in cancer. Oncotarget. 2017;8(38):64551–64563.
  • Li X, Yang L, Chen -L-L. The Biogenesis, Functions, and Challenges of Circular RNAs. Mol Cell. 2018;71(3):428–442.
  • Huang H, Wei L, Qin T, et al. Circular RNA ciRS-7 triggers the migration and invasion of esophageal squamous cell carcinoma via miR-7/KLF4 and NF-κB signals. Cancer Biol. Ther. 2019;20(1):73–80.
  • Chung D-J, Wang C-J, Yeh C-W, et al. Inhibition of the Proliferation and Invasion of C6 Glioma Cells by Tricin via the Upregulation of Focal-Adhesion-Kinase-Targeting MicroRNA-7. J. Agric. Food Chem. 2018;66(26):6708–6716.
  • Pan M, Li M, You C, et al. Inhibition of breast cancer growth via miR‐7 suppressing ALDH1A3 activity concomitant with decreasing breast cancer stem cell subpopulation. J. Cell. Physiol. 2020;235(2):1405–1416.
  • Ye T, Yang M, Huang D, et al. MicroRNA-7 as a potential therapeutic target for aberrant NF-κB-driven distant metastasis of gastric cancer. J. Exp. Clin. Cancer Res. 2019;38(1):55.
  • Ling Y, Cao C, Li S, et al. TRIP6, as a target of miR-7, regulates the proliferation and metastasis of colorectal cancer cells. Biochem. Biophys. Res. Commun. 2019;514(1):231–238.
  • Li Y, Zheng F, Xiao X, et al. Circ HIPK 3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep. 2017;18(9):1646–1659.
  • Xie H, Ren X, Xin S, et al. Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget. 2016;7(18):26680–26691.
  • Meng Q, Li S, Liu Y, et al. Circular RNA circSCAF11 Accelerates the Glioma Tumorigenesis through the miR-421/SP1/VEGFA Axis. Mol Ther Nucleic Acids. 2019;17:669–677.
  • Yan Y, Fu G, Ye Y, et al. Exosomes participate in the carcinogenesis and the malignant behavior of gastric cancer. Scand. J. Gastroenterol. 2017;52(5):499–504.
  • Zhou R, Wu Y, Wang W, et al. Circular RNAs (circRNAs) in cancer. Cancer Lett. 2018;425:134–142.
  • Ojha R, Nandani R, Chatterjee N, et al. Emerging Role of Circular RNAs as Potential Biomarkers for the Diagnosis of Human Diseases. 2018; pp. 141–157.
  • Hon KW, Ab-Mutalib NS, Abdullah NMA, et al. Extracellular Vesicle-derived circular RNAs confers chemoresistance in Colorectal cancer. Sci. Rep. 2019;9(1):16497.
  • Huang X-Y, Huang Z-L, Huang J, et al. Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis. J. Exp. Clin. Cancer Res. 2020;39(1):20.
  • Wang L, Long H, Zheng Q, et al. Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression. Mol Cancer. 2019;18(1):119.
  • Luo Y, Fu Y, Huang R, et al. CircRNA_101505 sensitizes hepatocellular carcinoma cells to cisplatin by sponging miR-103 and promotes oxidored-nitro domain-containing protein 1 expression. Cell Death Discov. 2019;5(1):121.
  • Klump KE, McGinnis JF The Role of Reactive Oxygen Species in Ocular Malignancy. In; 2014; pp. 655–659.
  • Cardiff RD. Epithelial to Mesenchymal Transition Tumors: fallacious or Snail’s Pace? ClinCancer Res. 2005;11(24):8534–8537.
  • Chaffer CL, San Juan BP, Lim E, et al. EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 2016;35(4):645–654.
  • Kim J, Yao F, Xiao Z, et al. MicroRNAs and metastasis: small RNAs play big roles. Cancer Metastasis Rev. 2018;37(1):5–15.
  • Fu L, Chen Q, Yao T, et al. Hsa_circ_0005986 inhibits carcinogenesis by acting as a miR-129-5p sponge and is used as a novel biomarker for hepatocellular carcinoma. Oncotarget. 2017;8(27):43878–43888.
  • Yu L, Gong X, Sun L, et al. The Circular RNA Cdr1as Act as an Oncogene in Hepatocellular Carcinoma through Targeting miR-7 Expression. PLoS One. 2016;11(7):e0158347.
  • Wan B, Hu H, Wang R, et al. Therapeutic Potential of Circular RNAs in Osteosarcoma. Front Oncol. 2020;10:370.
  • Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer. 2013;13(12):871–882.
  • Zhong Z, Huang M, Lv M, et al. Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Lett. 2017;403:305–317.
  • Seystahl K, Tritschler I, Szabo E, et al. Differential regulation of TGF-β–induced, ALK-5–mediated VEGF release by SMAD2/3 versus SMAD1/5/8 signaling in glioblastoma. Neuro. Oncol. 2015;17(2):254–265.
  • Feng J, Wang X, Zhu W, et al. MicroRNA-630 suppresses epithelial-to-mesenchymal transition by regulating FoxM1 in gastric cancer cells. Biochem. 2017;82:707–714.
  • Zhang H, Wang G, Ding C, et al. Increased circular RNA UBAP2 acts as a sponge of miR-143 to promote osteosarcoma progression. Oncotarget. 2017;8:61687–61697
  • Wang K, Sun Y, Tao W, et al. Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals. Cancer Lett. 2017;394:1–12.
  • Yao J-T, Zhao S-H, Liu Q-P, et al. Over-expression of CircRNA_100876 in non-small cell lung cancer and its prognostic value. Pathol. - Res. Pract. 2017;213(5):453–456.
  • Han D, Li J, Wang H, et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology. 2017;66(4):1151–1164.
  • Zhang H, Qi M, Li S, et al. microRNA-9 Targets Matrix Metalloproteinase 14 to Inhibit Invasion, Metastasis, and Angiogenesis of Neuroblastoma Cells. Mol. Cancer Ther. 2012;11(7):1454–1466.
  • Huang X-Y, Huang Z-L, Xu Y-H, et al. Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-100338/miR-141-3p pathway in hepatitis B-related hepatocellular carcinoma. Sci. Rep. 2017;7(1):5428.
  • Granados-Riveron JT, Aquino-Jarquin G. Does the linear Sry transcript function as a ceRNA for miR-138? The sense of antisense. F1000Res. 2014;3:90.
  • Guo JU, Agarwal V, Guo H, et al. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 2014;15(7):409.
  • Wang Q, Tang H, Yin S, et al. Downregulation of microRNA-138 enhances the proliferation, migration and invasion of cholangiocarcinoma cells through the upregulation of RhoC/p-ERK/MMP-2/MMP-9. Oncol. Rep. 2013;29(5):2046–2052.
  • Yan W, Chang Y, Liang X, et al. High-mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatology. 2012;55:1863–1875.
  • Guo H, Deng H, Cui H, et al. Nickel chloride (NiCl2)-caused inflammatory responses via activation of NF-κB pathway and reduction of anti-inflammatory mediator expression in the kidney. Oncotarget. 2015;6(30):28607–28620.
  • Man SM, Kanneganti T-D. Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat. Rev. Immunol. 2016;16(1):7–21.
  • Jin H, Jin X, Zhang H, et al. Circular RNA hsa-circ-0016347 promotes proliferation, invasion and metastasis of osteosarcoma cells. Oncotarget. 2017;8(15):25571–25581.
  • Hanahan D, Weinberg RA. Hallmarks of Cancer: the Next Generation. Cell. 2011;144(5):646–674.
  • Martinou J-C, Youle RJ. Mitochondria in Apoptosis: bcl-2 Family Members and Mitochondrial Dynamics. Dev Cell. 2011;21(1):92–101.
  • Kim M, Jung J-Y, Choi S, et al. GFRA1 promotes cisplatin-induced chemoresistance in osteosarcoma by inducing autophagy. Autophagy. 2017;13(1):149–168.
  • Tang -Y-Y, Zhao P, Zou T-N, et al. Circular RNA hsa_circ_0001982 Promotes Breast Cancer Cell Carcinogenesis Through Decreasing miR-143. DNA Cell Biol. 2017;36(11):901–908.
  • Deng N, Li L, Gao J, et al. Hsa_circ_0009910 promotes carcinogenesis by promoting the expression of miR-449a target IL6R in osteosarcoma. Biochem. Biophys. Res. Commun. 2018;495(1):189–196.
  • Kim M-H, Kim H-B, Acharya S, et al. Ape1/Ref-1 Induces Glial Cell-Derived Neurotropic Factor (GDNF) Responsiveness by Upregulating GDNF Receptor α1 Expression. Mol. Cell. Biol. 2009;29(8):2264–2277.
  • He R, Liu P, Xie X, et al. circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a. J. Exp. Clin. Cancer Res. 2017;36(1):145.
  • Zhang X, Xu L, Wang F. Hsa_circ_0020397 regulates colorectal cancer cell viability, apoptosis and invasion by promoting the expression of the miR-138 targets TERT and PD-L1. Cell Biol. Int. 2017;41(9):1056–1064.
  • Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer Genome Landscapes. Science. 2013;339(6127):1546–1558.
  • Hayward NK, Wilmott JS, Waddell N, et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175–180.
  • Shain AH, Yeh I, Kovalyshyn I, et al. The Genetic Evolution of Melanoma from Precursor Lesions. N Engl J Med. 2015;373:1926–1936.
  • Savoia P, Fava P, Casoni F, et al. Targeting the ERK Signaling Pathway in Melanoma. Int. J. Mol. Sci. 2019;20(6):1483.
  • Shay JW. New insights into melanoma development. Science. 2017;357(6358):1358–1359.
  • D’Mello S, Finlay G, Baguley B, et al. Signaling Pathways in Melanogenesis. Int. J. Mol. Sci. 2016;17(7):1144.
  • Amiri KI, Richmond A. Role of nuclear factor-κ B in melanoma. Cancer Metastasis Rev. 2005;24(2):301–313.
  • Schadendorf D, Fisher DE, Garbe C, et al. Melanoma. Nat Rev Dis Prim. 2015;1:15003.
  • Pearlman RL, Montes de Oca MK, Pal HC, et al. Potential therapeutic targets of epithelial–mesenchymal transition in melanoma. Cancer Lett. 2017;391:125–140.
  • Sha J, Gastman BR, Morris N, et al. The Response of microRNAs to Solar UVR in Skin-Resident Melanocytes Differs between Melanoma Patients and Healthy Persons. PLoS One. 2016;11(5):e0154915.
  • Micevic G, Theodosakis N, Bosenberg M. Aberrant DNA methylation in melanoma: biomarker and therapeutic opportunities. Clin Epigenetics. 2017;9(1):34.
  • Sand M, Bechara FG, Sand D, et al. Circular RNA expression in basal cell carcinoma. Epigenomics. 2016;8(5):619–632.
  • Hanniford D, Ulloa-Morales A, Karz A, et al. Epigenetic Silencing of CDR1as Drives IGF2BP3-Mediated Melanoma Invasion and Metastasis. Cancer Cell. 2020;37(1):55–70.e15.
  • Yin D, Wei G, Yang F, et al. Circular RNA has circ 0001591 promoted cell proliferation and metastasis of human melanoma via ROCK1/PI3K/AKT by targeting miR-431-5p. Hum. Exp. Toxicol. 2021;40(2):310–324.
  • Canavese M, Santo L, Raje N. Cyclin dependent kinases in cancer. Cancer Biol. Ther. 2012;13(7):451–457.
  • Peyressatre M, Prével C, Pellerano M, et al. Targeting Cyclin-Dependent Kinases in Human Cancers: from Small Molecules to Peptide Inhibitors. Cancers (Basel). 2015;7(1):179–237.
  • Bian D, Wu Y, Song G. Novel circular RNA, hsa_circ_0025039 promotes cell growth, invasion and glucose metabolism in malignant melanoma via the miR-198/CDK4 axis. Biomed Pharmacother. 2018;108:165–176.
  • Luan W, Shi Y, Zhou Z, et al. circRNA_0084043 promote malignant melanoma progression via miR-153-3p/Snail axis. Biochem. Biophys. Res. Commun. 2018;502(1):22–29.
  • Millet A, Martin AR, Ronco C, et al. Metastatic Melanoma: insights Into the Evolution of the Treatments and Future Challenges. Med. Res. Rev. 2017;37(1):98–148.
  • Shang Q, Li Y, Wang H, et al. Altered expression profile of circular RNAs in conjunctival melanoma. Epigenomics. 2019;11(7):787–804.
  • Ju H, Zhang L, Mao L, et al. Altered expression pattern of circular RNAs in metastatic oral mucosal melanoma. Am J Cancer Res. 2018;8:1788–1800.
  • Wang Q, Chen J, Wang A, et al. Differentially expressed circRNAs in melanocytes and melanoma cells and their effect on cell proliferation and invasion. Oncol Rep. 2018;39(4):1813-1824.
  • Gao M, Li C, Xiao H, et al. hsa_circ_0007841: a Novel Potential Biomarker and Drug Resistance for Multiple Myeloma. Front Oncol. 2019;9:1261. DOI:https://doi.org/10.3389/fonc.2019.01261.
  • Qi J, Li T, Bian H, et al. SNAI 1 promotes the development of HCC through the enhancement of proliferation and inhibition of apoptosis. FEBS Open Bio. 2016;6(4):326–337.
  • Luan W, Li L, Shi Y, et al. Long non-coding RNA MALAT1 acts as a competing endogenous RNA to promote malignant melanoma growth and metastasis by sponging miR-22. Oncotarget. 2016;7(39):63901–63912.
  • Jung H-Y, Fattet L, Tsai JH, et al. Apical–basal polarity inhibits epithelial–mesenchymal transition and tumour metastasis by PAR-complex-mediated SNAI1 degradation. Nat. Cell Biol. 2019;21(3):359–371.
  • Deep G, Jain AK, Ramteke A, et al. SNAI1 is critical for the aggressiveness of prostate cancer cells with low E-cadherin. Mol Cancer. 2014;13(1):37.
  • Stepniak E, Radice GL, Vasioukhin V. Adhesive and Signaling Functions of Cadherins and Catenins in Vertebrate Development. Cold Spring Harb. Perspect. Biol. 2009;1(5):a002949–a002949.
  • Zeng HF, Yan S, Wu SF. MicroRNA-153-3p suppress cell proliferation and invasion by targeting SNAI1 in melanoma. Biochem Biophys Res Commun. 2017;487(1):140–145.
  • Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat. Rev. Cancer. 2016;16(10):635–649.
  • Ferreira P, Hernández-Ortega A, Lucas F, et al. Aromatic stacking interactions govern catalysis in aryl-alcohol oxidase. FEBS J. 2015;282(16):3091–3106.
  • Deng D, Xu C, Sun P, et al. Crystal structure of the human glucose transporter GLUT1. Nature. 2014;510(7503):121–125.
  • Lin Q, Jiang H, Lin D. Circular RNA ITCH downregulates GLUT1 and suppresses glucose uptake in melanoma to inhibit cancer cell proliferation. J Dermatolog Treat. 2019;32:2:231-235. DOI: https://doi.org/10.1080/09546634.2019.1654069.
  • Zhao K, Wang Z, Hackert T, et al. Tspan8 and Tspan8/CD151 knockout mice unravel the contribution of tumor and host exosomes to tumor progression. J. Exp. Clin. Cancer Res. 2018;37(1):312.
  • Medrano M, Communal L, Brown KR, et al. Interrogation of Functional Cell-Surface Markers Identifies CD151 Dependency in High-Grade Serous Ovarian Cancer. Cell Rep. 2017;18(10):2343–2358.
  • Ke A, Shi G, Zhou J, et al. CD151 Amplifies Signaling by Integrin α6β1 to PI3K and Induces the Epithelial–Mesenchymal Transition in HCC Cells. Gastroenterology. 2011;140(5):1629–1641.e15.
  • Ke A-W, Shi G-M, Zhou J, et al. Role of overexpression of CD151 and/or c-Met in predicting prognosis of hepatocellular carcinoma. Hepatology. 2009;49(2):491–503.
  • Hong I-K, Jin Y-J, Byun H-J, et al. Homophilic Interactions of Tetraspanin CD151 Up-regulate Motility and Matrix Metalloproteinase-9 Expression of Human Melanoma Cells through Adhesion-dependent c-Jun Activation Signaling Pathways. J. Biol. Chem. 2006;281(34):24279–24292.
  • Sadej R, Grudowska A, Turczyk L, et al. CD151 in cancer progression and metastasis: a complex scenario. Lab. Investig. 2014;94(1):41–51.
  • Wei C-Y, Zhu M-X, Lu N-H, et al. Circular RNA circ_0020710 drives tumor progression and immune evasion by regulating the miR-370-3p/CXCL12 axis in melanoma. Mol Cancer. 2020;19(1):84.
  • Dai Y, Li D, Chen X, et al. Circular RNA Myosin Light Chain Kinase (MYLK) Promotes Prostate Cancer Progression through Modulating Mir-29a Expression. Med Sci Monit. 2018;24:3462–3471.
  • Cai H, Hu B, Ji L, et al. Hsa_circ_0103809 promotes cell proliferation and inhibits apoptosis in hepatocellular carcinoma by targeting miR-490-5p/SOX2 signaling pathway. Am J Transl Res. 2018;10:1690–1702.
  • Tian F, Yu CT, Ye WD, et al. Cinnamaldehyde induces cell apoptosis mediated by a novel circular RNA hsa_circ_0043256 in non-small cell lung cancer. Biochem. Biophys. Res. Commun. 2017;493(3):1260–1266.
  • Zhu Y, Wang C, Becker SA, et al. miR-145 antagonizes SNAI1-mediated stemness and radiation resistance in colorectal cancer. Mol. Ther. 2018;26(3):744–754.
  • LIU Y, Wu C, Wang Y, et al. MicroRNA-145 inhibits cell proliferation by directly targeting ADAM17 in hepatocellular carcinoma. Oncol Rep. 2014;32:1923–1930.
  • TANAKA T, ARAI M, JIANG X, et al. Downregulation of microRNA-431 by human interferon-β inhibits viability of medulloblastoma and glioblastoma cells via upregulation of SOCS6. Int. J. Oncol. 2014;44(5):1685–1690.
  • Chi Z, Li S, Sheng X, et al. Clinical presentation, histology, and prognoses of malignant melanoma in ethnic Chinese: a study of 522 consecutive cases. BMC Cancer. 2011;11(1):85.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.