125
Views
0
CrossRef citations to date
0
Altmetric
Review

Reviewing the occurrence of large genomic rearrangements in patients with inherited cancer predisposing syndromes: importance of a comprehensive molecular diagnosis

, & ORCID Icon
Pages 319-346 | Received 14 May 2021, Accepted 25 Feb 2022, Published online: 28 Mar 2022

References

  • McGee RB, Nichols KE. Introduction to cancer genetic susceptibility syndromes. Hematology Am Soc Hematol Educ Program. 2016;2016(1):293–301.
  • Nagy R, Sweet K, Eng C. Highly penetrant hereditary cancer syndromes. Oncogene. 2004;23(38):6445–6470.
  • Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68(4):820–823.
  • Fung YK, Murphree AL, T’Ang A, et al. Structural evidence for the authenticity of the human retinoblastoma gene. Science. 1987;236:1657–1661.
  • Rahman N. Realizing the promise of cancer predisposition genes. Nature. 2014;505(7483):302–308.
  • Dombernowsky SL, Weischer M, Allin KH, et al. Risk of cancer by ATM missense mutations in the general population. J Clin Oncol. 2008;26(18):3057–3062.
  • Helgason H, Rafnar T, Olafsdottir HS, et al. Loss-of-function variants in ATM confer risk of gastric cancer. Nat Genet. 2015;47(8):906–910.
  • Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79(1):181–211.
  • Tung N, Domchek SM, Stadler Z, et al. Counselling framework for moderate-penetrance cancer-susceptibility mutations. Nat Rev Clin Oncol. 2016;13(9):581–588.
  • Knudsen AL, Bisgaard ML, Bülow S. Attenuated familial adenomatous polyposis (AFAP). A review of the literature. Fam Cancer. 2003;2(1):43–55.
  • Elston DM, James WD, Rodman OG, et al. Multiple hamartoma syndrome (Cowden’s disease) associated with non-Hodgkin’s lymphoma. Arch Dermatol. 1986;122:572–575.
  • Hopkins BD, Hodakoski C, Barrows D, et al. PTEN function: the long and the short of it. Trends Biochem Sci. 2014;39(4):183–190.
  • Half E, Bercovich D, Rozen P. Familial adenomatous polyposis. Orphanet J Rare Dis. 2009;4(1):22.
  • Nieuwenhuis MH, Vasen HF. Correlations between mutation site in APC and phenotype of familial adenomatous polyposis (FAP): a review of the literature. Crit Rev Oncol Hematol. 2007;61(2):153–161.
  • Aoki K, Taketo MM. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci. 2007;120(19):3327–3335.
  • Evans DG, Howard E, Giblin C, et al. Birth incidence and prevalence of tumor-prone syndromes: estimates from a UK family genetic register service. Am J Med Genet A. 2010;152A(2):327–332.
  • Evans D, Farndon P. Nevoid Basal Cell Carcinoma Syndrome. AH AMP, Pagon RA, et al. editors GeneReviews®[Internet]. University of Washington; Seattle: 1993–2020. 2002.
  • Kast K, Rhiem K, Wappenschmidt B, et al. (GC-HBOC) GCfHBaOC. Prevalence of BRCA1/2 germline mutations in 21 401 families with breast and ovarian cancer. J Med Genet. 2016;53(7):465–471. DOI:https://doi.org/10.1136/jmedgenet-2015-103672.
  • Shiovitz S, Korde LA. Genetics of breast cancer: a topic in evolution. Ann Oncol. 2015;26(7):1291–1299.
  • Santos-Pereira JM, Aguilera A. R loops: new modulators of genome dynamics and function. Nat Rev Genet. 2015;16(10):583–597.
  • Prakash R, Zhang Y, Feng W, et al. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol. 2015;7(4):a016600.
  • Nielsen FC, van Overeem Hansen T, Sørensen CS. Hereditary breast and ovarian cancer: new genes in confined pathways. Nat Rev Cancer. 2016;16(9):599–612.
  • Samowitz WS, Curtin K, Lin HH, et al. The colon cancer burden of genetically defined hereditary nonpolyposis colon cancer. Gastroenterology. 2001;121(4):830–838.
  • Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138:2073–87.e3.
  • Vasen HF, Mecklin JP, Khan PM, et al. The international collaborative group on hereditary non-polyposis colorectal cancer (ICG-HNPCC). Dis Colon Rectum. 1991;34(5):424–425.
  • Vasen HF, Watson P, Mecklin JP, et al. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, LYNch syndrome) proposed by the international collaborative group on HNPCC. Gastroenterology. 1999;116(6):1453–1456.
  • Umar A, Boland CR, Terdiman JP, et al. Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96(4):261–268.
  • Chan CS. Prevalence and penetrance of Li-Fraumeni cancer predisposition syndrome. Curr Opin Syst Biol. 2017;1:48–53.
  • Tinat J, Bougeard G, Baert-Desurmont S, et al. version of the Chompret criteria for Li Fraumeni syndrome. J Clin Oncol. 2009;27:e108–9; author reply e10 2009;(26):. DOI:https://doi.org/10.1200/JCO.2009.22.7967.
  • Malkin D. Li-fraumeni syndrome. Genes Cancer. 2011;2(4):475–484.
  • Agarwal R, Liebe S, Turski ML, et al. Targeted therapy for hereditary cancer syndromes: hereditary breast and ovarian cancer syndrome, Lynch syndrome, familial adenomatous polyposis, and Li-Fraumeni syndrome. Discov Med. 2014;18(101):331–339.
  • de Andrade Kc, Frone MN, Wegman-Ostrosky T, et al. Variable population prevalence estimates of germline TP53 variants: a gnomAD-based analysis. Hum Mutat. 2019;40(1):97–105.
  • Eng C. Multiple endocrine neoplasia type 2. GeneReviews. 2019 [updated 2019 Aug 15].
  • Mazzei F, Viel A, Bignami M. Role of MUTYH in human cancer. Mutat Res. 2013;743-744:33–43.
  • Nielsen M, Morreau H, Vasen HF, et al. MUTYH-associated polyposis (MAP). Crit Rev Oncol Hematol. 2011;79:1–16.
  • Vogt S, Jones N, Christian D, et al. Expanded extracolonic tumor spectrum in MUTYH-associated polyposis. Gastroenterology. 2009;137(6):1976–85.e1-10.
  • Banda DM, Nuñez NN, Burnside MA, et al. Repair of 8-oxoG:A mismatches by the MUTYH glycosylase: mechanism, metals and medicine. Free Radic Biol Med. 2017;107:202–215.
  • Evans DG, Baser ME, McGaughran J, et al. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet. 2002;39(5):311–314.
  • Neurofibromatosis. Conference statement. National Institutes of Health Consensus Development Conference. Arch Neurol; Bethesda, Md, USA. 1988;45:575–578.
  • Gutmann DH, Ferner RE, Listernick RH, et al. Neurofibromatosis type 1. Nat Rev Dis Primers. 2017;3(1):17004.
  • Evans DG, Huson SM, Donnai D, et al. A genetic study of type 2 neurofibromatosis in the United Kingdom. I. prevalence, mutation rate, fitness, and confirmation of maternal transmission effect on severity. J Med Genet. 1992;29(12):841–846.
  • Trofatter JA, MacCollin MM, Rutter JL, et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell. 1993;72(5):791–800.
  • Cooper J, Giancotti FG. Molecular insights intoNF2 /Merlin tumor suppressor function. FEBS Lett. 2014;588(16):2743–2752.
  • Hemminki A, Markie D, Tomlinson I, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature. 1998;391(6663):184–187.
  • Giardiello FM, Brensinger JD, Tersmette AC, et al. Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology. 2000;119(6):1447–1453.
  • Boardman LA, Thibodeau SN, Schaid DJ, et al. Increased risk for cancer in patients with the Peutz-Jeghers syndrome. Ann Intern Med. 1998;128(11):896–899.
  • Lohmann DR, Gallie BL. Retinoblastoma: revisiting the model prototype of inherited cancer. Am J Med Genet C Semin Med Genet. 2004;129C(1):23–28.
  • Bremner R, Chen D, Pacal M, et al. The RB protein family in retinal development and retinoblastoma: new insights from new mouse models. Dev Neurosci. 2004;26(5–6):417–434.
  • MacCarthy A, Bayne AM, Brownbill PA, et al. Second and subsequent tumours among 1927 retinoblastoma patients diagnosed in Britain 1951-2004. Br J Cancer. 2013;108(12):2455–2463.
  • Northrup H, Koenig MK, Pearson DA, et al. Tuberous Sclerosis Complex. AH AMP, Pagon RA, et al. editors. GeneReviews. Seattle (WA); University of Washington: 1999.
  • Leung AK, Robson WL. Tuberous sclerosis complex: a review. J Pediatr Health Care. 2007;21(2):108–114.
  • Roach ES, Gomez MR, Northrup H. Tuberous sclerosis complex consensus conference: revised clinical diagnostic criteria. J Child Neurol; Bethesda, Md, USA. 1998;13:624–628.
  • Roach ES. Applying the lessons of Tuberous Sclerosis: the 2015 hower award lecture. Pediatr Neurol. 2016;63:6–22.
  • Northrup H, Krueger DA, Itscc G. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol; Bethesda, Md, USA. 2013;49:243–254.
  • Kaelin WG. The von Hippel-Lindau tumor suppressor protein and clear cell renal carcinoma. Clin Cancer Res. 2007;13(2):680s–4s.
  • Maxwell PH, Wiesener MS, Chang GW, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–275.
  • Landrum MJ, Lee JM, Benson M, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016;44(D1):D862–8.
  • Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med. 2015;17(5):405–424.
  • Mancini-dinardo D, Judkins T, Kidd J, et al. Detection of large rearrangements in a hereditary pan-cancer panel using next-generation sequencing. BMC Med Genomics. 2019;12(1):138.
  • Heller D, Vingron M, Birol I. SVIM: structural variant identification using mapped long reads. Bioinformatics. 2019;35(17):2907–2915.
  • Kolomietz E, Meyn MS, Pandita A, et al. The role ofAlu repeat clusters as mediators of recurrent chromosomal aberrations in tumors. Genes Chromosomes Cancer. 2002;35(2):97–112.
  • Pasmant E, Sabbagh A, Spurlock G, et al. Network motNF. NF1 microdeletions in neurofibromatosis type 1: from genotype to phenotype. Hum Mutat. 2010;31(6):E1506–18.
  • Shlien A, Baskin B, Achatz MIW, et al. A common molecular mechanism underlies two phenotypically distinct 17p13.1 microdeletion syndromes. Am J Hum Genet. 2010;87(5):631–642.
  • Smith TM, Lee MK, Szabo CI, et al. Complete genomic sequence and analysis of 117 kb of human DNA containing the gene BRCA1. Genome Res. 1996;6(11):1029–1049.
  • Smith MJ, Urquhart JE, Harkness EF, et al. The contribution of whole gene deletions and large rearrangements to the mutation spectrum in inherited tumor predisposing syndromes. Hum Mutat. 2016;37(3):250–256.
  • Fragoso-Ontiveros V, Velázquez-Aragón JA, Nuñez-Martínez PM, et al. Mexican BRCA1 founder mutation: shortening the gap in genetic assessment for hereditary breast and ovarian cancer patients. PLoS One. 2019;14(9):e0222709.
  • Francies FZ, Wainstein T, De Leeneer K, et al. BRCA1, BRCA2 and PALB2 mutations and CHEK2 c.1100delC in different South African ethnic groups diagnosed with premenopausal and/or triple negative breast cancer. BMC Cancer. 2015;15(1):912.
  • Riahi A, Chabouni-Bouhamed H, Kharrat M. Prevalence of BRCA1 and BRCA2 large genomic rearrangements in Tunisian high risk breast/ovarian cancer families: implications for genetic testing. Cancer genetics. 2017;210:22–27.
  • van der Merwe Nc, Oosthuizen J, Theron M, et al. The contribution of large genomic rearrangements in BRCA1 and BRCA2 to South African familial breast cancer. BMC Cancer. 2020;20(1):391.
  • Ziada-Bouchaar H, Sifi K, Filali T, et al. First description of mutational analysis of MLH1, MSH2 and MSH6 in Algerian families with suspected Lynch syndrome. Fam Cancer. 2017;16(1):57–66.
  • Ayari-Jeridi H, Moran K, Chebbi A, et al. Mutation spectrum of RB1 gene in unilateral retinoblastoma cases from Tunisia and correlations with clinical features. PLoS One. 2015;10(1):e0116615.
  • Khan N, Lipsa A, Arunachal G, et al. Novel mutations and phenotypic associations identified through APC, MUTYH, NTHL1, POLD1, POLE gene analysis in Indian familial adenomatous polyposis cohort. Sci Rep. 2017;7(1):2214.
  • Huang Y, Yang L, Wang J, et al. Twelve novel Atm mutations identified in Chinese ataxia telangiectasia patients. Neuromolecular Med. 2013;15(3):536–540.
  • Nakamura K, Du L, Tunuguntla R, et al. Functional characterization and targeted correction of ATM mutations identified in Japanese patients with ataxia-telangiectasia. Hum Mutat. 2012;33(1):198–208.
  • Suspitsin E, Sokolenko A, Bizin I, et al. ATM mutation spectrum in Russian children with ataxia-telangiectasia. European Journal of Medical Genetics. 2020;63(1):103630.
  • Barnes-Kedar I, Bernstein-Molho R, Ginzach N, et al. The yield of full BRCA1/2 genotyping in Israeli high-risk breast/ovarian cancer patients who do not carry the predominant mutations. Breast Cancer Res Treat. 2018;172(1):151–157.
  • Park B, Sohn JY, Yoon K-A, et al. Characteristics of BRCA1/2 mutations carriers including large genomic rearrangements in high risk breast cancer patients. Breast Cancer Res Treat. 2017;163(1):139–150.
  • Kwong A, Chen J, Shin VY, et al. The importance of analysis of long-range rearrangement of BRCA1 and BRCA2 in genetic diagnosis of familial breast cancer. Cancer genetics. 2015;208(9):448–454.
  • Kwong A, Ng EKO, Law FBF, et al. Novel BRCA1 and BRCA2 genomic rearrangements in Southern Chinese breast/ovarian cancer patients. Breast Cancer Res Treat. 2012;136(3):931–933.
  • Kang P, Mariapun S, Phuah SY, et al. Large BRCA1 and BRCA2 genomic rearrangements in Malaysian high risk breast-ovarian cancer families. Breast Cancer Res Treat. 2010;124(2):579–584.
  • El Saghir NS, Zgheib NK, Assi HA, et al. BRCA1 and BRCA2 mutations in ethnic Lebanese Arab women with high hereditary risk breast cancer. The Oncologist. 2015;20(4):357–364.
  • Yassaee VR, Ravesh Z, Soltani Z, et al. Mutation spectra of BRCA genes in Iranian women with early onset breast cancer - 15 years Experience. Asian Pac J Cancer Prev. 2016;17(sup3):149–153.
  • Seong M-W, Cho SI, Kim KH, et al. A multi-institutional study of the prevalence of BRCA1 and BRCA2 large genomic rearrangements in familial breast cancer patients. BMC Cancer. 2014;14(1):645.
  • Kim D-H, Cho C-H, Kwon SY, et al. BRCA1/2 mutations, including large genomic rearrangements, among unselected ovarian cancer patients in Korea. J Gynecol Oncol. 2018;29(6):e90.
  • Su L, Zhang J, Meng H, et al. Prevalence of BRCA1/2 large genomic rearrangements in Chinese women with sporadic triple-negative or familial breast cancer. Clin Genet. 2018;94(1):165–169.
  • Kim D-H, Chae H, Jo I, et al. Identification of large genomic rearrangement of BRCA1/2 in high risk patients in Korea. BMC medical Genetics. 2017;18(1):38.
  • Mehta A, Vasudevan S, Sharma SK, et al. Germline BRCA1 and BRCA2 deleterious mutations and variants of unknown clinical significance associated with breast/ovarian cancer: a report from North India. Cancer Manag Res. 2018;10:6505–6516.
  • Cao W-M, Zheng Y-B, Gao Y, et al. Comprehensive mutation detection of BRCA1/2 genes reveals large genomic rearrangements contribute to hereditary breast and ovarian cancer in Chinese women. BMC Cancer. 2019;19(1):551.
  • Rashid MU, Muhammad N, Amin A, et al. Contribution of BRCA1 large genomic rearrangements to early-onset and familial breast/ovarian cancer in Pakistan. Breast Cancer Res Treat. 2017;161(2):191–201.
  • Liu Y, Chew MH, Goh XW, et al. Systematic study on genetic and epimutational profile of a cohort of Amsterdam criteria-defined lynch syndrome in Singapore. PLoS One. 2014;9(4):e94170.
  • Wu-Chou Y-H, Hung T-C, Lin Y-T, et al. Genetic diagnosis of neurofibromatosis type 1: targeted next- generation sequencing with multiple ligation-dependent probe amplification analysis. J Biomed Sci. 2018;25(1):72.
  • Zhu L, Zhang Y, Tong H, et al. Clinical and molecular characterization of nf1 patients: single-center experience of 32 patients from China. Medicine (Baltimore). 2016;95(10):e3043.
  • Kang E, Kim Y-M, Seo GH, et al. Phenotype categorization of neurofibromatosis type I and correlation to NF1 mutation types. J Hum Genet. 2020;65(2):79–89.
  • Seong M-W, Yeo IK, Cho SI, et al. Molecular characterization of the NF2 gene in Korean patients with neurofibromatosis type 2: a report of four novel mutations. Ann Lab Med. 2010;30(2):190–194.
  • Morita K, Naruto T, Tanimoto K, et al. Simultaneous detection of both single nucleotide variations and copy number alterations by next-generation sequencing in Gorlin syndrome. PLoS One. 2015;10(11):e0140480.
  • Levi Z, Baris HN, Kedar I, et al. Upper and lower gastrointestinal findings in PTEN Mutation–Positive cowden syndrome patients participating in an active surveillance program. Clin Transl Gastroenterol. 2011;2(11):e5.
  • Tomar S, Sethi R, Sundar G, et al. Mutation spectrum of RB1 mutations in retinoblastoma cases from Singapore with implications for genetic management and counselling. PLoS One. 2017;12(6):e0178776.
  • Shahraki K, Ahani A, Sharma P, et al. Genetic screening in Iranian patients with retinoblastoma. Eye (Lond). 2017;31(4):620–627.
  • Ali MJ, Parsam VL, Honavar SG, et al. RB1 gene mutations in retinoblastoma and its clinical correlation. Saudi J Ophthalmol. 2010;24(4):119–123.
  • Mohd Khalid MKN, Yakob Y, Md Yasin R, et al. Spectrum of germ-line RB1 gene mutations in Malaysian patients with retinoblastoma. Mol Vis. 2015;21:1185–1190.
  • Nguyen HH, Nguyen HTT, Vu NP, et al. Mutational screening of germline RB1 gene in Vietnamese patients with retinoblastoma reveals three novel mutations. Mol Vis. 2018;24:231–238.
  • Ahani A, Akbari MT, Saliminejad K, et al. Screening for large rearrangements of the RB1 gene in Iranian patients with retinoblastoma using multiplex ligation-dependent probe amplification. Mol Vis. 2013;19:454–462.
  • Lan X, Xu W, Tang X, et al. Spectrum of RB1 germline mutations and clinical features in unrelated Chinese patients with retinoblastoma. Front Genet. 2020;11:142.
  • Kiet NC, Khuong LT, Minh DD, et al. Spectrum of mutations in the RB1 gene in Vietnamese patients with retinoblastoma. Mol Vis. 2019;25:215–221.
  • He M-Y, An Y, Gao Y-J, et al. Screening of RB1 gene mutations in Chinese patients with retinoblastoma and preliminary exploration of genotype-phenotype correlations. Mol Vis. 2014;20:545–552.
  • Rojanaporn D, Boontawon T, Chareonsirisuthigul T, et al. Spectrum of germline RB1 mutations and clinical manifestations in retinoblastoma patients from Thailand. Mol Vis. 2018;24:778–788.
  • Chen C, Zhang X, Wang D, et al. Genetic screening and analysis of LKB1 gene in Chinese patients with Peutz-Jeghers syndrome. Med Sci Monit. 2016;22:3628–3640.
  • Wu B-D, Wang Y-J, Fan L-L, et al. Clinical and genetic analyses of 38 Chinese patients with Peutz-Jeghers syndrome. Biomed Res Int. 2020;2020:9159315. 2020. DOI:https://doi.org/10.1155/2020/9159315.
  • Tan H, Mei L, Huang Y, et al. Three novel mutations of STK11 gene in Chinese patients with Peutz–Jeghers syndrome. BMC medical Genetics. 2016;17(1):77.
  • Jiangyi W, Gang G, Guohai S, et al. Germline mutation of TSC1 or TSC2 gene in Chinese patients with bilateral renal angiomyolipomas and mutation spectrum of Chinese TSC patients. Aging (Albany NY). 2020;12(1):756–766.
  • Ding Y, Wang J, Zhou S, et al. Genotype and phenotype analysis of Chinese children with tuberous sclerosis complex: a pediatric cohort study. Front Genet. 2020;11:204.
  • Ismail NFD, Rani AQ, Nik Abdul Malik N, et al. Combination of multiple ligation-dependent probe amplification and illumina miseq amplicon sequencing for TSC1/TSC2 gene analyses in patients with tuberous sclerosis complex. J Mol Diagn. 2017;19(2):265–276.
  • Wu P, Zhang N, Wang X, et al. Family history of von Hippel–Lindau disease was uncommon in Chinese patients: suggesting the higher frequency of de novo mutations in VHL gene in these patients. J Hum Genet. 2012;57(4):238–243.
  • Hong B, Ma K, Zhou J, et al. Frequent mutations of VHL gene and the clinical phenotypes in the largest Chinese cohort with von Hippel–Lindau disease. Front Genet. 2019;10:867.
  • Vikkath N, Valiyaveedan S, Nampoothiri S, et al. Genotype–phenotype analysis of von Hippel–Lindau syndrome in fifteen Indian families. Fam Cancer. 2015;14(4):585–594.
  • Tsaousis GN, Papadopoulou E, Apessos A, et al. Analysis of hereditary cancer syndromes by using a panel of genes: novel and multiple pathogenic mutations. BMC Cancer. 2019;19(1):535.
  • Louvrier C, Pasmant E, Briand-Suleau A, et al. Targeted next-generation sequencing for differential diagnosis of neurofibromatosis type 2, schwannomatosis, and meningiomatosis. Neuro Oncol. 2018;20(7):917–929.
  • Gómez-Fernández N, Castellví-Bel S, Fernández-Rozadilla C, et al. Molecular analysis of the APC and MUTYH genes in Galician and Catalonian FAP families: a different spectrum of mutations? BMC medical Genetics. 2009;10(1):57.
  • Fostira F, Thodi G, Sandaltzopoulos R, et al. Mutational spectrum of APC and genotype-phenotype correlations in Greek FAP patients. BMC Cancer. 2010;10(1):389.
  • Papp J, Kovacs ME, Matrai Z, et al. Contribution of APC and MUTYH mutations to familial adenomatous polyposis susceptibility in Hungary. Fam Cancer. 2016;15(1):85–97.
  • Podralska MJ, Stembalska A, Ślęzak R, et al. Ten newATMalterations in Polish patients with ataxia-telangiectasia. molecular Genetics & Genomic medicine. 2014;2(6):504–511.
  • Soukupova J, Pohlreich P, Seemanova E. Characterisation of ATM mutations in Slavic Ataxia telangiectasia patients. Neuromolecular Med. 2011;13(3):331–339.
  • Kuusisto KM, Bebel A, Vihinen M, et al. Screening for BRCA1, BRCA2, CHEK2, PALB2, BRIP1, RAD50, and CDH1 mutations in high-risk Finnish BRCA1/2-founder mutation-negative breast and/or ovarian cancer individuals. Breast Cancer Res. 2011;13(1):R20.
  • Rudnicka H, Debniak T, Cybulski C, et al. Large BRCA1 and BRCA2 genomic rearrangements in Polish high-risk breast and ovarian cancer families. Mol Biol Rep. 2013;40(12):6619–6623.
  • Janavičius R, Rudaitis V, Mickys U, et al. Comprehensive BRCA1 and BRCA2 mutational profile in Lithuania. Cancer genetics. 2014;207(5):195–205.
  • de Juan I, Palanca S, Domenech A, et al. BRCA1 and BRCA2 mutations in males with familial breast and ovarian cancer syndrome. Results of a Spanish multicenter study. Fam Cancer. 2015;14:505–513.
  • Meisel C, Sadowski CE, Kohlstedt D, et al. Spectrum of genetic variants of BRCA1 and BRCA2 in a German single center study. Arch Gynecol Obstet. 2017;295(5):1227–1238.
  • Ruiz de Sabando A, Urrutia Lafuente E, García-Amigot F, et al. Genetic and clinical characterization of BRCA-associated hereditary breast and ovarian cancer in Navarra (Spain). BMC Cancer. 2019;19(1):1145.
  • Apessos A, Agiannitopoulos K, Pepe G, et al. Comprehensive BRCA mutation analysis in the Greek population. Experience from a single clinical diagnostic center. Cancer genetics. 2018;220:1–12.
  • Yazıcı H, Kılıç S, Akdeniz D, et al. Frequency of rearrangements versus small indels mutations in BRCA1 and BRCA2 genes in Turkish patients with high risk breast and ovarian cancer. European Journal of Breast Health. 2018;14(2):93–99.
  • Gylling A, Ridanpää M, Vierimaa O, et al. Large genomic rearrangements and germline epimutations in Lynch syndrome. Int J Cancer. 2009;124(10):2333–2340.
  • Zavodna K, Krivulcik T, Bujalkova MG, et al. Partial loss of heterozygosity events at the mutated gene in tumors from MLH1/MSH2 large genomic rearrangement carriers. BMC Cancer. 2009;9(1):405.
  • Thodi G, Fostira F, Sandaltzopoulos R, et al. Screening of the DNA mismatch repair genes MLH1, MSH2 and MSH6in a Greek cohort of Lynch syndrome suspected families. BMC Cancer. 2010;10(1):544.
  • Pérez-Cabornero L, Infante Sanz M, Velasco Sampedro E, et al. Frequency of rearrangements in Lynch syndrome cases associated with MSH2 : characterization of a new deletion involving both EPCAM and the 5′ part of MSH2. Cancer Prev Res (Phila). 2011;4(10):1556–1562.
  • Bērziņa D, Irmejs A, Kalniete D, et al. Novel germline MLH1 and MSH2 mutations in Latvian lynch syndrome families. Exp Oncol. 2012;34(1):49–52.
  • Duraturo F, Cavallo A, Liccardo R, et al. Contribution of large genomic rearrangements in Italian Lynch syndrome patients: characterization of a novel alu-mediated deletion. Biomed Res Int. 2013;2013:219897.
  • Romero A, Garre P, Valentin O, et al. Frequency and variability of genomic rearrangements on MSH2 in Spanish Lynch Syndrome families. PLoS One. 2013;8(9):e72195.
  • Castillejo A, Vargas G, Castillejo MI, et al. Prevalence of germline MUTYH mutations among Lynch-like syndrome patients. Eur J Cancer. 2014;50(13):2241–2250.
  • Guarinos C, Juárez M, Egoavil C, et al. Prevalence and characteristics of MUTYH -Associated polyposis in patients with multiple adenomatous and serrated polyps. Clin Cancer Res. 2014;20(5):1158–1168.
  • Ricci MT, Miccoli S, Turchetti D, et al. Type and frequency of MUTYH variants in Italian patients with suspected MAP: a retrospective multicenter study. J Hum Genet. 2017;62(2):309–315.
  • Sabbagh A, Pasmant E, Imbard A, et al. NF1 molecular characterization and neurofibromatosis type I genotype-phenotype correlation: the French experience. Hum Mutat. 2013;34(11):1510–1518.
  • Bianchessi D, Morosini S, Saletti V, et al. 126 novel mutations in Italian patients with neurofibromatosis type 1. molecular Genetics & Genomic medicine. 2015;3(6):513–525.
  • Bonatti F, Adorni A, Matichecchia A, et al. Patterns of novel alleles and genotype/phenotype correlations resulting from the analysis of 108 previously undetected mutations in patients affected by neurofibromatosis type I. Int J Mol Sci. 2017;18(10):2071.
  • Stella A, Lastella P, Loconte DC, et al. Accurate Classification of NF1 Gene Variants in 84 Italian Patients with Neurofibromatosis Type 1. Genes (Basel). 2018;9(4):216.
  • Palma Milla C, Lezana Rosales JM, López Montiel J, et al. Neurofibromatosis type I: mutation spectrum of NF1 in Spanish patients. Ann Hum Genet. 2018;82(6):425–436.
  • Tsipi M, Poulou M, Fylaktou I, et al. Phenotypic expression of a spectrum of neurofibromatosis type 1 (NF1) mutations identified through NGS and MLPA. J Neurol Sci. 2018;395:95–105.
  • Corsello G, Antona V, Serra G, et al. Clinical and molecular characterization of 112 single-center patients with neurofibromatosis type 1. Italian Journal of Pediatrics. 2018;44(1):45.
  • Giugliano T, Santoro C, Torella A, et al. Clinical and genetic findings in children with neurofibromatosis type 1. Legius Syndrome, and Other Related Neurocutaneous Disorders. Genes (Basel). 2019;10(8):580.
  • Pinna P, Daniele D, Calcagni C, et al. Prevalence, type, And molecular spectrum of NF1 mutations In patients with neurofibromatosis type 1 and congenital heart disease. Genes (Basel). 2019;10(9):675.
  • Ulusal SD, Gürkan H, Atlı E, et al. Genetic analyses of the NF1 gene in Turkish neurofibromatosis type I patients and definition of three novel variants. Balkan J Med Genet. 2017;20(1):13–20.
  • Pasmant E, Louvrier C, Luscan A, et al. Neurofibromatosis type 2 French cohort analysis using a comprehensive NF2 molecular diagnostic strategy. Neurochirurgie. 2018;64(5):335–341.
  • Dommering CJ, Mol BM, Moll AC, et al. RB1 mutation spectrum in a comprehensive nationwide cohort of retinoblastoma patients. J Med Genet. 2014;51(6):366–374.
  • Grotta S, D’Elia G, Scavelli R, et al. Advantages of a next generation sequencing targeted approach for the molecular diagnosis of retinoblastoma. BMC Cancer. 2015;15(1):841.
  • Vasovcák P, Puchmajerová A, Roubalík J, et al. Mutations in STK11gene in Czech Peutz-Jeghers patients. BMC medical Genetics. 2009;10(1):69.
  • Papp J, Kovacs ME, Solyom S, et al. High prevalence of germline STK11mutations in Hungarian Peutz-Jeghers syndrome patients. BMC medical Genetics. 2010;11(1):169.
  • Bougeard G, Renaux-Petel M, Flaman J-M, et al. Revisiting Li-Fraumeni syndrome from TP53 mutation carriers. J Clin Oncol. 2015;33(21):2345–2352.
  • Llovet P, Illana FJ, Martín-Morales L, et al. A novel TP53 germline inframe deletion identified in a Spanish series of Li-fraumeni syndrome suspected families. Fam Cancer. 2017;16(4):567–575.
  • Avgeris S, Fostira F, Vagena A, et al. Mutational analysis of TSC1 and TSC2 genes in Tuberous Sclerosis Complex patients from Greece. Sci Rep. 2017;7(1):16697.
  • van den Ouweland Am, Elfferich P, Zonnenberg BA, et al. Characterisation of TSC1 promoter deletions in tuberous sclerosis complex patients. Eur J Hum Genet. 2011;19(2):157–163.
  • Overwater IE, Swenker R, van der Ende El, et al. Genotype and brain pathology phenotype in children with tuberous sclerosis complex. Eur J Hum Genet. 2016;24(12):1688–1695.
  • Gergics P, Patocs A, Toth M, et al. Germline VHL gene mutations in Hungarian families with von Hippel–Lindau disease and patients with apparently sporadic unilateral pheochromocytomas. Eur J Endocrinol. 2009;161(3):495–502.
  • Inra JA, Steyerberg EW, Grover S, et al. Racial variation in frequency and phenotypes of APC and MUTYH mutations in 6,169 individuals undergoing genetic testing. Genet Med. 2015;17(10):815–821.
  • Gianferante DM, Rotunno M, Dean M, et al. Whole-exome sequencing of nevoid basal cell carcinoma syndrome families and review of human gene mutation database PTCH1 mutation data. molecular Genetics & Genomic medicine. 2018;6(6):1168–1180.
  • Ngeow J, Mester J, Rybicki LA, et al. Incidence and clinical characteristics of thyroid cancer in prospective series of individuals with Cowden and Cowden-like syndrome characterized by germline PTEN, SDH, or KLLN alterations. J Clin Endocrinol Metab. 2011;96(12):E2063–71.
  • Tan M-H, Mester J, Peterson C, et al. A clinical scoring system for selection of patients for PTEN mutation testing is proposed on the basis of a prospective study of 3042 probands. Am J Hum Genet. 2011;88(1):42–56.
  • Tan M-H, Mester JL, Ngeow J, et al. Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res. 2012;18(2):400–407.
  • Yehia L, Seyfi M, Niestroj L-M, et al. Copy number variation and clinical outcomes in patients with germline PTEN mutations. JAMA Network Open. 2020;3(1):e1920415.
  • Rana HQ, Gelman R, LaDuca H, et al. Differences in TP53 mutation carrier phenotypes emerge from panel-based testing. J Natl Cancer Inst. 2018;110(8):863–870.
  • Farach LS, Pearson DA, Woodhouse JP, et al. Group TS. Tuberous Sclerosis Complex Genotypes and Developmental Phenotype. Pediatr Neurol. 2019;96:58–63.
  • Reyna-Fabián ME, Hernández-Martínez NL, Alcántara-Ortigoza MA, et al. First comprehensive TSC1/TSC2 mutational analysis in Mexican patients with tuberous sclerosis complex reveals numerous novel pathogenic variants. Sci Rep. 2020;10(1):6589.
  • James PA, Sawyer S, Boyle S, et al. Large genomic rearrangements in the familial breast and ovarian cancer gene BRCA1 are associated with an increased frequency of high risk features. Fam Cancer. 2015;14(2):287–295.
  • Alsop K, Fereday S, Meldrum C, et al. BRCA mutation frequency and patterns of treatment response in BRCA Mutation–positive women with ovarian cancer: a report from the Australian ovarian cancer study group. J Clin Oncol. 2012;30(21):2654–2663.
  • Sjursen W, McPhillips M, Scott RJ, et al. Lynch syndrome mutation spectrum in New South Wales, Australia, including 55 novel mutations. molecular Genetics & Genomic medicine. 2016;4(2):223–231.
  • Torrezan GT, da Silva Fc, Santos ÉMM, et al. Mutational spectrum of the APC and MUTYH genes and genotype–phenotype correlations in Brazilian FAP, AFAP, and MAP patients. Orphanet J Rare Dis. 2013;8(1):54.
  • Araujo LF, Molfetta GA, Vincenzi OC, et al. Molecular basis of familial adenomatous polyposis in the southeast of Brazil: identification of six novel mutations. Int J Biol Markers. 2019;34(1):80–89.
  • Ewald IP, Cossio SL, Palmero EI, et al. BRCA1 and BRCA2 rearrangements in Brazilian individuals with hereditary breast and ovarian cancer syndrome. Genet Mol Biol. 2016;39(2):223–231.
  • Fernandes GC, Michelli RAD, Galvão HCR, et al. Prevalence of BRCA1/BRCA2 mutations in a Brazilian population sample at-risk for hereditary breast cancer and characterization of its genetic ancestry. Oncotarget. 2016;7(49):80465–80481.
  • Torres D, Bermejo JL, Rashid MU, et al. Prevalence and penetrance of BRCA1 and BRCA2 germline mutations in colombian breast cancer patients. Sci Rep. 2017;7(1):4713.
  • Buleje J, Guevara-Fujita M, Acosta O, et al. Mutational analysis of BRCA1 and BRCA2 genes in Peruvian families with hereditary breast and ovarian cancer. molecular Genetics & Genomic medicine. 2017;5(5):481–494.
  • Cardoso FC, Goncalves S, Mele PG, et al. BRCA1 and BRCA2 mutations and clinical interpretation in 398 ovarian cancer patients: comparison with breast cancer variants in a similar population. Hum Genomics. 2018;12(1):39.
  • Dominguez-Valentin M, Nilbert M, Wernhoff P, et al. Mutation spectrum in South American Lynch syndrome families. Hered Cancer Clin Pract. 2013;11(1):18.
  • Carneiro da Silva F, Ferreira JRDO, Torrezan GT, et al. Clinical and molecular characterization of Brazilian patients suspected to have lynch syndrome. PLoS One. 2015;10(10):e0139753.
  • Schneider NB, Pastor T, Paula AED, et al. Germline MLH1, MSH2 and MSH6 variants in Brazilian patients with colorectal cancer and clinical features suggestive of Lynch syndrome. Cancer Med. 2018;7(5):2078–2088.
  • Rosset C, Vairo F, Cristina Bandeira I, et al. Clinical and molecular characterization of neurofibromatosis in southern Brazil. Expert Rev Mol Diagn. 2018;18(6):577–586.
  • Ottaviani D, Parma D, Giliberto F, et al. Spectrum of RB1 mutations in Argentine patients: 20-years experience in the molecular diagnosis of retinoblastoma. Ophthalmic Genet. 2013;34(4):189–198.
  • Parma D, Ferrer M, Luce L, et al. RB1 gene mutations in Argentina retinoblastoma patients. Implications for genetic counseling. PLoS One. 2017;12:e0189736.
  • Tchekmedyian A, Amos CI, Bale SJ, et al. Findings from the Peutz-Jeghers syndrome registry of Uruguay. PLoS One. 2013;8(11):e79639.
  • Andrade RC, Dos Santos ACE, de Aguirre Neto Jc, et al. TP53 and CDKN1A mutation analysis in families with Li–Fraumeni and Li–Fraumeni like syndromes. Fam Cancer. 2017;16(2):243–248.
  • Rosset C, Vairo F, Bandeira IC, et al. Molecular analysis of TSC1 and TSC2 genes and phenotypic correlations in Brazilian families with tuberous sclerosis. PLoS One. 2017;12(10):e0185713.
  • Mathó C, Sansó G, Diez B, et al. VHL germline mutations in argentinian patients with clinical diagnoses or single typical manifestations of type 1 von Hippel–Lindau disease. Genet Test Mol Biomarkers. 2016;20(12):771–776.
  • Gomy I, Molfetta GA, de Andrade Barreto E, et al. Clinical and molecular characterization of Brazilian families with von Hippel-Lindau disease: a need for delineating genotype-phenotype correlation. Fam Cancer. 2010;9(4):635–642.
  • Arnold AM, Morak M, Benet-pagès A, et al. Targeted deep-intronic sequencing in a cohort of unexplained cases of suspected Lynch syndrome. Eur J Hum Genet. 2020;28(5):597–608.
  • Armour JA, Barton DE, Cockburn DJ, et al. The detection of large deletions or duplications in genomic DNA. Hum Mutat. 2002;20(5):325–337.
  • Toland AE, Forman A, Couch FJ, et al. Clinical testing of BRCA1 and BRCA2: a worldwide snapshot of technological practices. NPJ Genom Med. 2018;3(1):7.
  • NCCN. NCCN clinical practice guidelines in oncology: breast cancer V.3; 2020 [accessed 2021 Apr]. http://www.nccn.org/
  • Rodziewicz TL, Houseman B, Hipskind JE. Medical Error Reduction and Prevention. 2022 Jan 4. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022.
  • Kim G, Ison G, McKee AE, et al. FDA approval summary: olaparib monotherapy in patients with deleterious germline BRCA -mutated advanced ovarian cancer treated with three or more lines of chemotherapy. Clin Cancer Res. 2015;21(19):4257–4261.
  • Ledermann JA, Drew Y, Kristeleit RS. Homologous recombination deficiency and ovarian cancer. Eur J Cancer. 2016;60:49–58.
  • Uusitalo E, Rantanen M, Kallionpää RA, et al. Distinctive cancer associations in patients with neurofibromatosis type 1. J Clin Oncol. 2016;34(17):1978–1986.
  • Evans DG, Moran A, King A, et al. Incidence of vestibular schwannoma and neurofibromatosis 2 in the North West of England over a 10-year period: higher incidence than previously thought. Otol Neurotol. 2005;26(1):93–97.
  • Ong KR, Woodward ER, Killick P, et al. Genotype-phenotype correlations in von Hippel-Lindau disease. Hum Mutat. 2007;28(2):143–149.
  • Arnold AG, Otegbeye E, Fleischut MH, et al. Assessment of individuals with BRCA1 and BRCA2 large rearrangements in high-risk breast and ovarian cancer families. Breast Cancer Res Treat. 2014;145(3):625–634.
  • Agata S, Viel A, Della Puppa L, et al. Prevalence ofBRCA1 genomic rearrangements in a large cohort of Italian breast and breast/ovarian cancer families without detectableBRCA1 andBRCA2 point mutations. Genes Chromosomes Cancer. 2006;45(9):791–797.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.