596
Views
2
CrossRef citations to date
0
Altmetric
Review

Alzheimer’s disease: a scoping review of biomarker research and development for effective disease diagnosis

ORCID Icon &
Pages 681-703 | Received 07 Aug 2021, Accepted 19 Jul 2022, Published online: 28 Jul 2022

References

  • Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2021;17:327–406.
  • Kumar A, Singh A A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep. 2015;67(2):195–203. http://www.sciencedirect.com/science/article/pii/S1734114014002886.
  • Barber RC. The genetics of Alzheimer’s disease. Lao O, Chagnon Y, Castro JA, et al., editors. Scientifica (Cairo). 2012;2012:246210.
  • DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease.Mol Neurodegener. 2019;14(1):1–18.
  • Palmqvist S, Insel PS, Stomrud E, et al. Cerebrospinal fluid and plasma biomarker trajectories with increasing amyloid deposition in Alzheimer’s disease. EMBO Mol Med. 2019;cited 2021 Oct 12 1112 DOI: 10.15252/emmm.201911170.
  • Jack CR, Holtzman DM. Biomarker modeling of Alzheimer’s disease. Neuron. 2013;80(6):1347–1358.
  • Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science(80-) 1992;256:184–185.
  • Zetterberg H, and Bendlin BB. Biomarkers for Alzheimer’s disease—preparing for a new era of disease-modifying therapies. Mol Psychiatry. 2021;26(1):296–308.
  • Srivastava S, Ahmad R, Khare SK. Alzheimer’s disease and its treatment by different approaches: a review. Eur J Med Chem Elsevier Masson S R L. 2021;216:113320.
  • Current treatments, Alzheimer’s & Dementia | research Center | Alzheimer’s association [Internet]. cited 2016 May 23]. Available from 2016 May 23: http://www.alz.org/research/science/alzheimers_disease_treatments.asp.
  • Aduhelm | ALZFORUM [Internet]. cited 2021 Jun 18]. Available from 2021 Jun 18: https://www.alzforum.org/therapeutics/aduhelm.
  • Cohen AD, Landau SM, Snitz BE, et al. Fluid and PET biomarkers for amyloid pathology in Alzheimer’s disease [Internet]. Mol Cell Neurosci. 2019;97:3–17. Academic Press Inc.
  • Schöll M, Maass A, Mattsson N, et al. Biomarkers for tau pathology. Mol Cell Neurosci. 2019;18–33. https://pubmed.ncbi.nlm.nih.gov/30529601/.
  • Lee JC, Kim SJ, Hong S, et al. Diagnosis of Alzheimer’s disease utilizing amyloid and tau as fluid biomarkers [Internet]. Exp. Mol. Med. Nature Publishing Group; 2019 cited 2021 Jun 23]. Available from 2021 Jun 23: /pmc/articles/PMC6509326/.
  • Atkinson AJ, Colburn WA, DeGruttola VG, et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework [Internet]. Clin. Pharmacol. Ther. Clin Pharmacol Ther; 2001 [cited 2021 Jun 23]. p. 89–95. Available from: https://pubmed.ncbi.nlm.nih.gov/11240971/.
  • Khoury R, and Ghossoub E. Diagnostic biomarkers of Alzheimer’s disease: a state-of-the-art review. Biomarkers Neuropsychiatry. 2019;1:100005.
  • Baldacci F, Mazzucchi S, and Della Vecchia A, et al. The path to biomarker-based diagnostic criteria for the spectrum of neurodegenerative diseases. Expert Rev Mol Diagn. 2020;20(4):421–441.
  • Thies B, Truschke E, Morrison-Bogorad M, et al. Consensus report of the working group on: molecular and biochemical markers of Alzheimer’s disease. Neurobiol Aging. 1999;20(2):247.
  • Dubois B, Villain N, and Frisoni GB, et al. Clinical diagnosis of Alzheimer’s disease: recommendations of the international working group. Lancet Neurol. 2021;20(6):484–496.
  • Jack CR, Bennett DA, and Blennow K, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018;14(4):535–562. Internet.
  • McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7(3):263–269.
  • Shaw LM, Arias J, Blennow K, et al. Appropriate use criteria for lumbar puncture and cerebrospinal fluid testing in the diagnosis of Alzheimer’s disease [Internet]. Alzheimer’s Dement. Elsevier Inc; 2018 [cited 2021 Jun 23]. p. 1505–1521. Available from: https://pubmed.ncbi.nlm.nih.gov/30316776/.
  • Cummings J, Lee G, Zhong K, et al. Alzheimer’s disease drug development pipeline: 2021. Alzheimer’s Dement Transl Res Clin Interv. 2021;cited 2021 Sep 19; 7:e12179. Internet https://onlinelibrary.wiley.com/doi/full/10.1002/trc2.12179.
  • Lang FM, Mo Y, Sabbagh M, et al. Intepirdine as adjunctive therapy to donepezil for mild-to-moderate Alzheimer’s disease: a randomized, placebo-controlled, phase 3 clinical trial (MINDSET). Alzheimer’s Dement Transl Res Clin Interv. 2021;7:e12136. https://onlinelibrary.wiley.com/doi/full/10.1002/trc2.12136.
  • Rosenberg PB, Drye LT, Porsteinsson AP, et al. Change in agitation in Alzheimer’s disease in the placebo arm of a nine-week controlled trial. Int Psychogeriatrics. 2015;27(12):2059–2067. Available from
  • Teunissen CE, Verberk IMW, and Thijssen EH, et al. Blood-based biomarkers for Alzheimer’s disease: towards clinical implementation. Lancet Neurol. 2022;21(1):66–77.
  • Moscoso A, Grothe MJ, Ashton NJ, et al. Time course of phosphorylated-tau181 in blood across the Alzheimer’s disease spectrum. Brain Internet]. 2021 144:325–339. Available from.;(1)
  • Palmqvist S, Janelidze S, Quiroz YT, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA. 2020 [cited 2021 Sep 19];324(8):772–781. Internet: https://jamanetwork.com/journals/jama/fullarticle/2768841.
  • Mattsson N, Cullen NC, Andreasson U, et al. Association between longitudinal plasma neurofilament Light And Neurodegeneration In Patients With Alzheimer disease. JAMA Neurol. 2019 [cited 2021 Sep 19];76(7):791–799. Internet: https://jamanetwork.com/journals/jamaneurology/fullarticle/2731440.
  • Ovod V, Ramsey KN, Mawuenyega KG, et al. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimer’s Dement [Internet]. 2017 [cited 2021 Aug 6];13(8):841–849. Available from: https://alzjournals.onlinelibrary.wiley.com/doi/full/10.1016/j.jalz.2017.06.2266
  • Fagan AM, Shaw LM, Xiong C, et al. Comparison of analytical platforms for cerebrospinal fluid measures of β-amyloid 1-42, total tau, and P-tau181 for identifying Alzheimer disease amyloid plaque pathology. Arch Neurol Internet]. 2011;68:1137–1144. Available from.;(9)
  • Janelidze S, Zetterberg H, Mattsson N, et al. CSF Aβ42/Aβ40 and Aβ42/Aβ38 ratios: better diagnostic markers of Alzheimer disease. Ann Clin Transl Neurol. 2016;3:154–165.
  • Willemse EAJ, van Maurik IS, Tijms BM, et al. Diagnostic performance of Elecsys immunoassays for cerebrospinal fluid Alzheimer’s disease biomarkers in a nonacademic, multicenter memory clinic cohort: the ABIDE project. Alzheimer’s Dement Diagnosis Assess Dis Monit. 2018;10:563–572.
  • Budelier MM, Bateman RJ. Biomarkers of Alzheimer disease. J Appl Lab Med. 2020;5(1):194–208.
  • Alcolea D, Pegueroles J, Muñoz L, et al. Agreement of amyloid PET and CSF biomarkers for Alzheimer’s disease on lumipulse. Ann Clin Transl Neurol. 2019;6(9):1815. Internet
  • Schindler SE, Gray JD, Gordon BA, et al. Cerebrospinal fluid biomarkers measured by Elecsys assays compared to amyloid imaging. Alzheimer’s Dement. 2018;14(11):1460–1469.
  • Korecka M, Waligorska T, Figurski M, et al. Qualification of a surrogate matrix-based absolute quantification method for amyloid-β 42 in human cerebrospinal fluid using 2D UPLC-tandem mass spectrometry. J Alzheimer’s Dis. 2014;41(2):441–451.
  • Pannee J, Portelius E, Minthon L, et al. Reference measurement procedure for CSF amyloid beta (Aβ)1–42 and the CSF Aβ1–42/Aβ1–40 ratio – a cross-validation study against amyloid PET. J Neurochem. 2016 [cited 2022 Mar 18];139(4):651–658. https://onlinelibrary.wiley.com/doi/full/10.1111/jnc.13838
  • Leinenbach A, Pannee, Dülffer T, et al. Mass spectrometry–based candidate reference measurement procedure for quantification of Amyloid-β in cerebrospinal fluid. Clin Chem. 2014;60(7):987994. Internet
  • Moon S, Kim S, Mankhong S, et al. Alzheimer’s cerebrospinal biomarkers from Lumipulse fully automated immunoassay: concordance with amyloid-beta PET and manual immunoassay in Koreans: CSF AD biomarkers measured by Lumipulse in Koreans. Alzheimer’s Res Ther. 2021;13:1–12. Internet: https://alzres.biomedcentral.com/articles/10.1186/s13195-020-00767-3
  • Leitão MJ, Silva-Spínola A, Santana I, et al. Clinical validation of the lumipulse G cerebrospinal fluid assays for routine diagnosis of Alzheimer’s disease. Alzheimer’s Res Ther. 2019;11:1–12. 111: https://alzres.biomedcentral.com/articles/10.1186/s13195-019-0550-8
  • Hansson O, Lehmann S, Otto M, et al. Advantages and disadvantages of the use of the CSF Amyloid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer’s disease. Alzheimer’s Res Ther. 2019;11:1–15. 111: https://alzres.biomedcentral.com/articles/10.1186/s13195-019-0485-0
  • Lewczuk P, Matzen A, Blennow K, et al. Cerebrospinal fluid Aβ 42/40 corresponds better than Aβ 42 to amyloid PET in Alzheimer’s disease. J Alzheimer’s Dis. 2017;55(2):813–822.
  • Mattsson N, Palmqvist S, Stomrud E, et al. Staging β-amyloid pathology with amyloid positron emission tomography. JAMANeurol. 2019;76(11):1319–1329.
  • Zetterberg H, Andreasson U, Hansson O, et al. Elevated cerebrospinal fluid BACE1 activity in incipient Alzheimer disease. Arch Neurol. 2008;65(8):1102–1107.
  • Mulder SD, van der Flier WM, Verheijen JH, et al. BACE1 activity in cerebrospinal fluid and its relation to markers of AD pathology. J Alzheimer’s Dis. 2010;20(1):253–260.
  • Zhong Z, Ewers M, Teipel S, et al. Levels of β-secretase (BACE1) in cerebrospinal fluid as a predictor of risk in mild cognitive impairment. Arch Gen Psychiatry. 2007;64(6):718–726.
  • Perneczky R, Alexopoulos P Cerebrospinal fluid BACE1 activity and markers of amyloid precursor protein metabolism and axonal degeneration in Alzheimer’s disease. Alzheimer’s Dement. 2014;10(5S):S425–S429.e1. https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1016/j.jalz.2013.09.006.
  • Savage MJ, Holder DJ, Wu G, et al. Soluble BACE-1 activity and sAβPPβ concentrations in Alzheimer’s disease and age-matched healthy control cerebrospinal fluid from the Alzheimer’s disease neuroimaging initiative-1 baseline cohort. J Alzheimers Dis. 2015;46(2):431. Internet
  • Bloudek LM, Spackman DE, Blankenburg M, et al. Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer’s disease. J Alzheimer’s Dis. 2011;26(4):627–645.
  • Yuan Y, Gu ZX, Wei WS Fluorodeoxyglucose-positron-emission tomography, single-photon emission tomography, and structural MR imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment: a meta-analysis. Am J Neuroradiol. 2009;30(2):404–410. www.ajnr.org.
  • Sanchez-Catasus C A, Stormezand G N, van Laar P J, et al. FDG-PET for prediction of AD dementia in mild cognitive impairment. a review of the state of the art with particular emphasis on the comparison with other neuroimaging modalities (MRI and perfusion SPECT). Curr Alzheimer Res. 2017;14(2):127–142.
  • Marcus C, Mena E, Subramaniam RM Brain PET in the diagnosis of Alzheimer’s disease [Internet]. Clin. Nucl. Med. Lippincott Williams and Wilkins; 2014p. e413–e426. /pmc/articles/PMC4332800/.
  • O’Brien JT, Herholz K Amyloid imaging for dementia in clinical practice. BMC Med. 2015;13(1):1–3. http://www.alz.co.uk/sites/default/files/national-.
  • Zhang S, Smailagic N, Hyde C, et al. 11C-PIB-PET for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI) [Internet]. Cochrane Database Syst. Rev. John Wiley and Sons Ltd; 2014 /pmc/articles/PMC6464750/.
  • Martínez G, Vernooij RW, Fuentes Padilla P, et al. 18F PET with florbetapir for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2017;11:CD012216.
  • Martínez G, Vernooij RW, Fuentes Padilla P, et al. 18F PET with florbetaben for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI) [Internet]. Cochrane Database Syst. Rev. John Wiley and Sons Ltd; 2017 cited 2021 Jul 1]. Available from 2021 Jul 1: pmc/articles/PMC6485979/.
  • Müller EG, Edwin TH, Stokke C, et al. Amyloid-β PET—Correlation with cerebrospinal fluid biomarkers and prediction of Alzheimer´s disease diagnosis in a memory clinic. PLoS One. 2019;14(8):e0221365.
  • Jia L, Qiu Q, Zhang H, et al. Concordance between the assessment of Aβ42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid. Alzheimer’s Dement. 2019;15(8):1071–1080.
  • Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 2016;15(7):673–684.
  • Toledo JB, Vanderstichele H, Figurski M, et al. Factors affecting Aβ plasma levels and their utility as biomarkers in ADNI. Acta Neuropathol. 2011;122(4):401–413.
  • Rembach A, Faux NG, Watt AD, et al. Changes in plasma amyloid beta in a longitudinal study of aging and Alzheimer’s disease. Alzheimer’s Dement. 2014;10(1):53–61.
  • Hanon O, Vidal JS, Lehmann S, et al. Plasma amyloid levels within the Alzheimer’s process and correlations with central biomarkers. Alzheimer’s Dement. 2018;14(7):858–868.
  • Janelidze S, Stomrud E, Palmqvist S, et al. Plasma β-amyloid in Alzheimer’s disease and vascular disease. Sci Rep. 2016;6(1). DOI: 10.1038/srep26801.
  • Verberk IMW, Slot RE, Verfaillie SCJ, et al. Plasma amyloid as prescreener for the earliest Alzheimer pathological changes. Ann Neurol. 2018;84(5):648–658.
  • Wennström M, Surova Y, Hall S, et al. The inflammatory marker YKL-40 is elevated in cerebrospinal fluid from patients with Alzheimer’s but not Parkinson’s disease or dementia with lewy bodies. PLoS One. 2015;10(8):e0135458.
  • Walker JM. p53 protocols - IN M OLECULAR B IOLOGY TM series editor. Life Sci. 2009;531:588.
  • Arbaciauskaite M, Lei Y, Cho YK. High-specificity antibodies and detection methods for quantifying phosphorylated tau from clinical samples. Antib Ther. 2021;4(1):34–44.
  • Yang S-Y, Chiu M-J, Chen T-F, et al. Detection of plasma biomarkers using immunomagnetic reduction: a promising method for the early diagnosis of Alzheimer’s disease. Neurol Ther. 2017;6(S1):37–56.
  • Green AJE RT-QuIC: a new test for sporadic CJD. Pract Neurol. 2019;19(1):49–55. https://pn.bmj.com/content/19/1/49.
  • Del PE, Beatino MF, and Campese N, et al. Fluid candidate biomarkers for Alzheimer’s disease: a precision medicine approach. J Pers Med. 2020;10(4):221.
  • Candelise N, Baiardi S, and Franceschini A, et al. Towards an improved early diagnosis of neurodegenerative diseases: the emerging role of in vitro conversion assays for protein amyloids. Acta Neuropathol Commun. 2020;8(1):1–16.
  • Zetterberg H, Blennow K. Moving fluid biomarkers for Alzheimer’s disease from research tools to routine clinical diagnostics. Mol Neurodegener. 2021;16(1):1–7.
  • Nakamura A, Kaneko N, Villemagne VL, et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature. 2018;554(7691):249–254.
  • Li Q, Berndt M, Bush A, et al. Membrane-associated forms of the βA4 amyloid protein precursor of Alzheimer’s disease in human platelet and brain: surface expression on the activated human platelet. Blood. 1994;84(1):133–142.
  • Ashton NJ, Ide M, Zetterberg H, et al. Salivary biomarkers for Alzheimer’s disease and related disorders. Neurol Ther. 201982;8(S2):83–94.
  • van Wijngaarden P, Hadoux X, Alwan M, et al. Emerging ocular biomarkers of Alzheimer disease. Clin Experiment Ophthalmol. 2017;45(1):54–61.
  • Stix B, Leber M, Bingemer P, et al. Hereditary lattice corneal dystrophy is associated with corneal amyloid deposits enclosing C-terminal fragments of keratoepithelin. Invest Ophthalmol Vis Sci. 2005;46(4):1133–1139.
  • Prakasam A, Muthuswamy A, Ablonczy Z, et al. Differential accumulation of secreted AβPP metabolites in ocular fluids. J Alzheimer’s Dis. 2010;20(4):1243–1253.
  • Örnek N, Dağ E, Örnek K. Corneal sensitivity and tear function in neurodegenerative diseases. Current Eye Research. 2015;40 423–428. Available from 4
  • Mancino R, Martucci A, Cesareo M, et al. Glaucoma and Alzheimer disease: one age-related neurodegenerative disease of the brain. Curr Neuropharmacol. 2018;16(7):971.
  • Zhou L, Zhao SZ, Koh SK, et al. In-depth analysis of the human tear proteome. J Proteomics. 2012;75(13):3877–3885.
  • Frost S, Kanagasingam Y, Sohrabi H, et al. Retinal vascular biomarkers for early detection and monitoring of Alzheimer’s disease. Transl Psychiatry. 2013;3(2):e233–e233.
  • Feke GT, Hyman BT, Stern RA, et al. Retinal blood flow in mild cognitive impairment and Alzheimer’s disease. Alzheimer’s Dement Diagnosis Assess Dis Monit. 2015;1:144. /pmc/articles/PMC4876882/.
  • Parisi V, Restuccia R, Fattapposta F, et al. Morphological and functional retinal impairment in Alzheimer’s disease patients. Clin Neurophysiol. 2001;112(10):1860–1867.
  • Kesler A, Vakhapova V, Korczyn AD, et al. Retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Clin Neurol Neurosurg. 2011;113(7):523–526.
  • Koronyo Y, Biggs D, Barron E, et al. Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease. JCI Insight. 2017;2(16). DOI: 10.1172/jci.insight.93621.
  • Ganmor E, Segev R, Schneidman E The architecture of functional interaction networks in the retina. J Neurosci. 2011;31(8):3044–3054. https://www.jneurosci.org/content/31/8/3044.
  • Masland RH. The neuronal organization of the Retina. Neuron. 2012;76(2):266–280.
  • London A, Benhar I, Schwartz M The retina as a window to the brain - From eye research to CNS disorders [Internet]. Nat. Rev. Neurol. Nat Rev Neurol; 2013. p. 44–53. https://pubmed.ncbi.nlm.nih.gov/23165340/.
  • Schaffer C, Sarad N, DeCrumpe A, et al. Biomarkers in the diagnosis and prognosis of Alzheimer’s disease.2014;20:589–600. Available from.Journal of Laboratory Automation5:
  • Zetterberg H Review: tau in biofluids – relation to pathology, imaging and clinical features. Neuropathol Appl Neurobiol. 2017;43(3):194–199. https://onlinelibrary.wiley.com/doi/full/10.1111/nan.12378.
  • Willemse EAJ, van Maurik IS, Tijms BM, et al. Diagnostic performance of Elecsys immunoassays for cerebrospinal fluid Alzheimer’s disease biomarkers in a nonacademic, multicenter memory clinic cohort: the ABIDE project. Alzheimer’s Dement Diagnosis Assess Dis Monit. 2018;10:563–572. https://pubmed.ncbi.nlm.nih.gov/30406175/.
  • Lifke V, Kollmorgen G, Manuilova E, et al. Elecsys® total-tau and phospho-tau (181P) CSF assays: analytical performance of the novel, fully automated immunoassays for quantification of tau proteins in human cerebrospinal fluid. Clin Biochem. 2019;72:30–38.
  • Sato C, Barthélemy NR, Mawuenyega KG, et al. Tau kinetics in neurons and the human central nervous system. Neuron. 2018;97(6):1284–1298.e7.
  • Sato C, Barthélemy NR, Mawuenyega KG, et al. Erratum: tau kinetics in neurons and the human central nervous system neuron. 2018;976:Neuron. Cell Press 861–864.https://profiles.wustl.edu/en/publications/erratum-tau-kinetics-in-neurons-and-the-human-central-nervous-sys.
  • Barthélemy NR, Mallipeddi N, Moiseyev P, et al. Tau phosphorylation rates measured by mass spectrometry differ in the intracellular brain vs. Extracellular cerebrospinal fluid compartments and are differentially affected by Alzheimer’s disease. Front Aging Neurosci Internet]. 2019 cited 2021 Jun 30;11:121. Available from
  • McAvoy T, Lassman ME, Spellman DS, et al. Quantification of tau in cerebrospinal fluid by immunoaffinity enrichment and tandem mass spectrometry. Clin Chem. 2014;60(4):683–689.
  • Chiasserini D, Biscetti L, Farotti L, et al. Performance evaluation of an automated ELISA system for Alzheimer’s disease detection in clinical routine. J Alzheimer’s Dis. 2016;54(1):55–67.
  • Arora H, Ramesh M, and Rajasekhar K, et al. Molecular tools to detect alloforms of Aβ and Tau: implications for multiplexing and multimodal diagnosis of Alzheimer’s disease. Bull Chem Soc Jpn. 2020;93(4):507–546.
  • Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13(6):614–629.
  • Zhou J, Jangili P, and Son S, et al. Fluorescent diagnostic probes in neurodegenerative diseases. Adv Mater. 2020;32:2001945. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202001945.
  • Maia LF, Kaeser SA, Reichwald J, et al. Changes in amyloid-β and tau in the cerebrospinal fluid of transgenic mice overexpressing amyloid precursor protein. Sci Transl Med. 2013;5(194) DOI: 10.1126/scitranslmed.3006446.
  • Tariciotti L, Casadei M, Honig LS, et al. Clinical experience with cerebrospinal fluid Aβ 42, total and phosphorylated tau in the evaluation of 1,016 individuals for suspected dementia. J Alzheimer’s Dis. 2018;65(4):1417–1425.
  • Fossati S, Cejudo JR, Debure L, et al. Plasma tau complements CSF tau and P-tau in the diagnosis of Alzheimer’s disease. Alzheimer’s Dement Diagnosis Assess Dis Monit. 2019;11:483. /pmc/articles/PMC6624242/.
  • Mattsson N, Zetterberg H, Janelidze S, et al. Plasma tau in Alzheimer disease. Neurology. 2016;87(17):1827–1835.
  • Pase MP, Beiser AS, Himali JJ, et al. Assessment of plasma total tau level as a predictive biomarker for dementia and related endophenotypes. JAMA Neurol. 2019;76(5):598–606.
  • Mielke MM, Hagen CE, Wennberg AMV, et al. Association of plasma total tau level with cognitive decline and risk of mild cognitive impairment or dementia in the mayo clinic study on aging. JAMA Neurol. 2017;74(9):1073–1080.
  • Tatebe H, Kasai T, Ohmichi T, et al. Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzheimer pathology: pilot case-control studies including patients with Alzheimer’s disease and down syndrome. Mol Neurodegener. 2017;12(1):1–11. 121
  • Shi M, Sui Y-T, Peskind ER, et al. Salivary tau species are potential biomarkers of Alzheimer’s disease. J Alzheimer’s Dis. 2011;27(2):299–305.
  • Ashton NJ, Ide M, Schöll M, et al. No association of salivary total tau concentration with Alzheimer’s disease. Neurobiol Aging. 2018;70:125–127.
  • Kehoe EG, McNulty JP, Mullins PG, et al. Advances in MRI biomarkers for the diagnosis of Alzheimer’s disease [Internet]. Biomark Med Future Med Ltd. 2014;1151–1169. https://www.futuremedicine.com/doi/abs/10.2217/bmm.14.42.
  • Golebiowski M, Barcikowska M, Pfeffer A Magnetic resonance imaging-based hippocampal volumetry in patients with dementia of the Alzheimer type. Dement Geriatr Cogn Disord. 1999;10(4):284–288. https://www.karger.com/Article/FullText/17133.
  • Juottonen K, Laakso MP, Partanen K, et al. Comparative MR analysis of the entorhinal cortex and hippocampus in diagnosing Alzheimer's disease. AJNR Am J Neuroradiol. 1999;20(1):139–144.
  • Trzepacz PT, Yu P, Sun J, et al. Comparison of neuroimaging modalities for the prediction of conversion from mild cognitive impairment to Alzheimer’s dementia. Neurobiology of Aging. 2014;35(1):143–151.
  • Roe JM, Vidal-Piñeiro D, Sørensen Ø, et al. Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer’s disease. Nat Commun. 2021;12(1):1–11. 121
  • Planche V, Bouteloup V, Mangin J-F, et al. Alzheimer’s disease brain atrophy subtypes are associated with incident dementia in subjective cognitive complaint and mild cognitive impairment. Alzheimer’s Dement. 2020;16(S5):e039861.
  • Mofrad SA, Lundervold AJ, Vik A, et al. Cognitive and MRI trajectories for prediction of Alzheimer’s disease. Sci Rep. 2021;11:1–10. 111: https://www.nature.com/articles/s41598-020-78095-7
  • Ford J, Kafetsouli D, Wilson H, et al. At a glance: an update on neuroimaging and retinal imaging in Alzheimer’s disease and related research. J Prev Alzheimer’s Dis. 2022;9:67–76. 91: https://link.springer.com/article/10.14283/jpad.2022.7
  • Behfar Q, Behfar SK, von Reutern B, et al. Graph theory analysis reveals resting-state compensatory mechanisms in healthy aging and prodromal Alzheimer’s disease. Front Aging Neurosci. 2020;12:1–13.
  • Prakash RS, McKenna MR, Gbadeyan O, et al. A whole-brain functional connectivity model of Alzheimer’s disease pathology. medRxiv [Internet]. 2021 [cited 2022 Mar 19];2021.01.13.21249597. Available from: https://www.medrxiv.org/content/10.1101/2021.01.13.21249597v1.
  • Badji A, Westman E. Cerebrovascular pathology in Alzheimer’s disease: hopes and gaps. Psychiatry Res Neuroimaging. 2020;306:111184.
  • Tubi MA, Feingold FW, Kothapalli D, et al. White matter hyperintensities and their relationship to cognition: effects of segmentation algorithm. Neuroimage. 2020;206:116327.
  • Kuhn E, Perrotin A, and Tomadesso C, et al. Subjective cognitive decline: opposite links to neurodegeneration across the Alzheimer’s continuum. Brain Commun. 2021;3(3). DOI: 10.1093/braincomms/fcab199.
  • Villa C, Lavitrano M, Salvatore E, et al. Molecular and imaging biomarkers in Alzheimer’s disease: a focus on recent insights. J Pers Med. 2020;10(3):1–32.
  • Forgrave LM, Ma M, Best JR, et al. The diagnostic performance of neurofilament light chain in CSF and blood for Alzheimer’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis: a systematic review and meta-analysis. Alzheimer’s Dement: Diagn Assess Dis Monit. 2019;730–743.
  • Osborn KE, Khan OA, Kresge HA, et al. Cerebrospinal fluid and plasma neurofilament light relate to abnormal cognition. Alzheimer’s Dement Diagnosis Assess Dis Monit. 2019;11:700–709. /pmc/articles/PMC6827361/.
  • Palmqvist S, Janelidze S, Stomrud E, et al. Performance of fully automated plasma assays as screening tests for Alzheimer disease-related β-amyloid Status. JAMA Neurol. 2019;76(9):1060–1069.
  • Marizzoni M, Ferrari C, Babiloni C, et al. CSF cutoffs for MCI due to AD depend on APOEε4 carrier status. Neurobiol Aging. 2020;89:55–62.
  • Dhiman K, Gupta VB, Villemagne VL, et al. Cerebrospinal fluid neurofilament light concentration predicts brain atrophy and cognition in Alzheimer’s disease. Alzheimer’s Dement Diagnosis Assess Dis Monit. 2020;12: /pmc/articles/PMC7085283/.
  • Mattsson N, Andreasson U, Zetterberg H, et al. Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer Disease. JAMA Neurol. 2017;74(5):557–566.
  • Gisslén M, Price RW, Andreasson U, et al. Plasma concentration of the neurofilament light protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-sectional study. EBioMedicine. 2016;3:135–140.
  • Rojas JC, Bang J, Lobach I V, et al. CSF neurofilament light chain and phosphorylated tau 181 predict disease progression in PSP. Neurology. 2018;90(4):e273–e281.
  • Preische O, Schultz SA, Apel A, et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nat Med. 2019;25(2):277–283. Internet
  • Sánchez-Valle R, Heslegrave A, Foiani MS, et al. Serum neurofilament light levels correlate with severity measures and neurodegeneration markers in autosomal dominant Alzheimer’s disease. Alzheimer’s Res Ther. 2018;10:1–6. 101: https://alzres.biomedcentral.com/articles/10.1186/s13195-018-0439-y
  • Weston PSJ, Poole T, Ryan NS, et al. Serum neurofilament light in familial Alzheimer disease: a marker of early neurodegeneration. Neurology. 2017;89(21):2167–2175.
  • Y-n O, Xu W, J-q L, et al. FDG-PET as an independent biomarker for Alzheimer’s biological diagnosis: a longitudinal study. Alzheimers Res Ther. 2019;11(1):57.
  • Anchisi D, Borroni B, Franceschi M, et al. Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Arch Neurol. 2005;62(11):1728–1733.
  • Chen M-K, Mecca AP, Naganawa M, et al. Assessing synaptic density in Alzheimer disease with synaptic vesicle glycoprotein 2A positron emission tomographic imaging. JAMA Neurol. 2018;75(10):1215–1224.
  • Constantinescu CC, Tresse C, Zheng M, et al. Development and in Vivo preclinical imaging of fluorine-18-labeled synaptic vesicle protein 2A (SV2A) PET tracers. Mol Imaging Biol. 2018;213(21):509–518. https://link.springer.com/article/10.1007/s11307-018-1260-5
  • Li S, Cai Z, Zhang W, et al. Synthesis and in vivo evaluation of [18F]UCB-J for PET imaging of synaptic vesicle glycoprotein 2A (SV2A). Eur J Nucl Med Mol Imaging. 2019;46(9):1952–1965. 469
  • Schmidt FM, Mergl R, Stach B, et al. Elevated levels of cerebrospinal fluid neuron-specific enolase (NSE) in Alzheimer’s disease. Neurosci Lett. 2014;570:81–85.
  • Llorens F, Schmitz M, Knipper T, et al. Cerebrospinal fluid biomarkers of Alzheimer’s disease show different but partially overlapping profile compared to vascular dementia. Front Aging Neurosci. 2017;9:289.
  • Lista S, Hampel H Synaptic degeneration and neurogranin in the pathophysiology of Alzheimer’s disease [Internet]. Expert Rev. Neurother. Taylor and Francis Ltd; 2017.p.4757. https://www.tandfonline.com/doi/abs/10.1080/14737175.2016.1204234.
  • Kvartsberg H, Duits FH, Ingelsson M, et al. Cerebrospinal fluid levels of the synaptic protein neurogranin correlates with cognitive decline in prodromal Alzheimer’s disease. Alzheimer’s Dement. 2015;11(10):1180–1190.
  • Blennow K, Zetterberg H The past and the future of Alzheimer’s disease fluid biomarkers [Internet]. J. Alzheimer’s Dis. IOS Press; 2018. p. 1125–1140. http://post-test.com/JAD-9.
  • Kvartsberg H, Lashley T, Murray CE, et al. The intact postsynaptic protein neurogranin is reduced in brain tissue from patients with familial and sporadic Alzheimer’s disease. Acta Neuropathol. 2019;137(1):89–102.
  • Willemse EAJ, De Vos A, Herries EM, et al. Neurogranin as cerebrospinal fluid biomarker for Alzheimer disease: an assay comparison study. Clin Chem. 2018;64(6):927–937.
  • Portelius E, Zetterberg H, Skillbäck T, et al. Cerebrospinal fluid neurogranin: relation to cognition and neurodegeneration in Alzheimer’s disease. Brain. 2015;138(11):3373–3385.
  • Wellington H, Paterson RW, Portelius E, et al. Increased CSF neurogranin concentration is specific to Alzheimer disease. Neurology. 2016;86(9):829–835.
  • Brinkmalm A, Brinkmalm G, Honer WG, et al. SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer’s disease. Mol Neurodegener. 2014;9:1–13. https://molecularneurodegeneration.biomedcentral.com/articles/10.1186/1750-1326-9-53.
  • Davidsson P, Blennow K Neurochemical dissection of synaptic pathology in Alzheimer’s disease. Int Psychogeriatrics. 1998;10(1):11–23. https://pubmed.ncbi.nlm.nih.gov/9629521/.
  • Clarke MTM, Brinkmalm A, Foiani MS, et al. CSF synaptic protein concentrations are raised in those with atypical Alzheimer’s disease but not frontotemporal dementia. Alzheimer’s res ther 111. 2019;11:1–9. https://alzres.biomedcentral.com/articles/10.1186/s13195-019-0564-2
  • Öhrfelt A, Brinkmalm A, Dumurgier J, et al. The pre-synaptic vesicle protein synaptotagmin is a novel biomarker for Alzheimer’s disease. Alzheimer’s Res Ther. 2016;8:1–10. https://pubmed.ncbi.nlm.nih.gov/27716408/.
  • Gratuze M, Leyns CEG, Holtzman DM. New insights into the role of TREM2 in Alzheimer’s disease. Mol Neurodegener. 2018;1–16. DOI: 10.1186/s13024-018-0298-9
  • Atagi Y, Liu -C-C, Painter MM, et al. Apolipoprotein E Is a ligand for triggering receptor expressed on myeloid cells 2 (TREM2) *. J Biol Chem. 2015;290(43):26043–26050.
  • Parhizkar S, Arzberger T, Brendel M, et al. Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE. Nat Neurosci. 2019;22(2):191–204. 222
  • Heslegrave A, Heywood W, Paterson R, et al. Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer’s disease. Mol Neurodegener. 2016;11(1). DOI: 10.1186/s13024-016-0071-x.
  • Suárez-Calvet M, Caballero MÁA, Kleinberger G, et al. Early changes in CSF sTREM2 in dominantly inherited Alzheimer’s disease occur after amyloid deposition and neuronal injury. Sci Transl Med. 2016;8(369):369ra178–369ra178.
  • Piccio L, Deming Y, Del-Águila JL, et al. Cerebrospinal fluid soluble TREM2 is higher in Alzheimer disease and associated with mutation status. Acta Neuropathol. 2016;131(6):925–933.
  • Liu D, Cao B, Zhao Y, et al. Soluble TREM2 changes during the clinical course of Alzheimer’s disease: a meta-analysis. Neurosci Lett. 2018;686:10–16.
  • Suárez-Calvet M, Morenas-Rodríguez E, Kleinberger G, et al. Early increase of CSF sTREM2 in Alzheimer’s disease is associated with tau related-neurodegeneration but not with amyloid-β pathology. Mol Neurodegener. 2019;14(1):1–14. 141
  • Piccio L, Buonsanti C, Cella M, et al. Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation. Brain. 2008;131(11):3081–3091.
  • Henjum K, Quist-Paulsen E, Zetterberg H, et al. CSF sTREM2 in delirium—relation to Alzheimer’s disease CSF biomarkers Aβ42, t-tau and p-tau. J Neuroinflammation. 2018;15(1):1–15. 151.
  • Ishiki A, Kamada M, Kawamura Y, et al. Glial fibrillar acidic protein in the cerebrospinal fluid of Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal lobar degeneration. J Neurochem. 2016;136(2):258–261.
  • Craig-Schapiro R, Perrin RJ, Roe CM, et al. YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol Psychiatry. 2010;68(10):903–912.
  • Lleó A, Alcolea D, Martínez-Lage P, et al. Longitudinal cerebrospinal fluid biomarker trajectories along the Alzheimer’s disease continuum in the BIOMARKAPD study. Alzheimer’s Dement. 2019;15(6):742–753.
  • Kester MI, Teunissen CE, Sutphen C, et al. Cerebrospinal fluid VILIP-1 and YKL-40, candidate biomarkers to diagnose, predict and monitor Alzheimer’s disease in a memory clinic cohort. Alzheimer’s Res Ther 71. 2015;7:1–9. https://alzres.biomedcentral.com/articles/10.1186/s13195-015-0142-1.
  • Scarf AM, Kassiou M The translocator protein. J Nucl Med. 2011;52(5):677–680. https://jnm.snmjournals.org/content/52/5/677.
  • Parbo P, Ismail R, Hansen KV, et al. Brain inflammation accompanies amyloid in the majority of mild cognitive impairment cases due to Alzheimer’s disease. Brain. 2017;140(7):2002–2011.
  • Edison P, Archer HA, Hinz R, et al. Amyloid, hypometabolism, and cognition in Alzheimer disease. Neurology. 2007;68(7):501–508.
  • Owen DR, Yeo AJ, Gunn RN, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28.2012;32:1–5.
  • Carro E, Bartolomé F, Bermejo-Pareja F, et al. Early diagnosis of mild cognitive impairment and Alzheimer’s disease based on salivary lactoferrin. Alzheimer’s Dement Diagnosis Assess Dis Monit. 2017;8:131. /pmc/articles/PMC5470603/.
  • Shen X-N, Niu L-D, Wang Y-J, et al. Inflammatory markers in Alzheimer’s disease and mild cognitive impairment: a meta-analysis and systematic review of 170 studies. J Neurol Neurosurg Psychiatry. 2019;90(5):590–598.
  • Angelopoulou E, Paudel YN, Shaikh MF, et al. Flotillin: a promising biomarker for Alzheimer’s disease. J Pers Med. 2020;10(2):20.
  • Abdullah M, Kimura N, Akatsu H, et al. Flotillin is a novel diagnostic blood marker of Alzheimer’s disease. J Alzheimer’s Dis. 2019;72(4):1165–1176.
  • Zengi O, Karakas A, Ergun U, et al. Urinary 8-hydroxy-2′-deoxyguanosine level and plasma paraoxonase 1 activity with Alzheimer’s disease. Clin Chem Lab Med. 2012;50(3):529–534.
  • Increased 8,12‐iso‐iPF2α‐VI in Alzheimer’s disease: correlation of a noninvasive index of lipid peroxidation with disease severity - Praticò - 2000 - Annals of neurology - Wiley Online Library [Internet]. cited 2021 Aug 4]. Available from 2021 Aug 4: https://onlinelibrary.wiley.com/doi/abs/10.1002/1531-8249%28200011%2948%3A5%3C809%3A%3AAID-ANA19%3E3.0.CO%3B2-9?sid=nlm%3Apubmed.
  • Zhang J, Zhang C-H, R-j L, et al. Accuracy of urinary AD7c-NTP for Diagnosing Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimer’s Dis. 2014;40(1):153–159.
  • Yao F, Hong X, Li S, et al. Urine-based biomarkers for Alzheimer’s disease identified through coupling computational and experimental methods. J Alzheimer’s Dis. 2018;65(2):421–431.
  • Robinson JL, Lee EB, Xie SX, et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain. 2018;141(7):2181–2193.
  • James BD, Wilson RS, Boyle PA, et al. TDP-43 stage, mixed pathologies, and clinical Alzheimer’s-type dementia. Brain. 2016;139(11):2983.
  • Mollenhauer B, El-Agnaf OM, Marcus K, et al. Quantification of α-synuclein in cerebrospinal fluid as a biomarker candidate: review of the literature and considerations for future studies. Biomarkers in Medicine. 2010;4(5): 683–689.
  • Paciotti S, Bellomo G, Gatticchi L, et al. Are we ready for detecting α-synuclein prone to aggregation in patients? The case of “protein-misfolding cyclic amplification” and “real-time quaking-induced conversion” as diagnostic tools. Front Neurol. 2018; 415.
  • Shahnawaz M, Tokuda T, Waragai M, et al. Development of a biochemical diagnosis of Parkinson disease by detection of α-synuclein misfolded aggregates in cerebrospinal fluid. JAMA Neurol. 2017;74(2):163–172.
  • Blennow K. A review of fluid biomarkers for Alzheimer’s disease: moving from CSF to blood. Neurol Ther. 2017 61;6(S1):15–24.
  • Guzman-Martinez L, Maccioni RB, Farías GA, et al. Biomarkers for Alzheimer’s disease. Curr Alzheimer Res. 2019;16(6):518–528.
  • Henriksen K, O’Bryant SE, Hampel H, et al. The future of blood-based biomarkers for Alzheimer’s disease. Alzheimer’s Dement. 2014;10(1):115–131.
  • Zetterberg H, Burnham SC. Blood-based molecular biomarkers for Alzheimer ’ s disease. 2019;1:1–7.
  • Kim K, Kim MJ, and Kim DW, et al. Clinically accurate diagnosis of Alzheimer’s disease via multiplexed sensing of core biomarkers in human plasma. Nat Commun. 2020;11(1):1–9. 111
  • Ashton NJ, Schöll M, Heurling K, et al. Update on biomarkers for amyloid pathology in Alzheimer’s disease. Biomarkers in Medicine. 2018;12(7): 799–812.
  • Spielmann N, Wong D Saliva: diagnostics and therapeutic perspectives. Oral Dis. 2011;17(4):345–354. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1601-0825.2010.01773.x.
  • Goldstein LE, Muffat JA, Cherny RA, et al. Cytosolic β-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer’s disease. Lancet. 2003;361(9365):1258–1265.
  • Kalló G, Emri M, Varga Z, et al. Changes in the chemical barrier composition of tears in Alzheimer’s disease reveal potential tear diagnostic biomarkers. PLoS One. 2016;11(6):e0158000.
  • Ausó E, Gómez-Vicente V, and Esquiva G. Biomarkers for Alzheimer’s disease early diagnosis. J Pers Med. 2020;10(3):1–27.
  • Navas-Carrillo D, Ríos A, Rodríguez JM, et al. Familial nonmedullary thyroid cancer: screening, clinical, molecular and genetic findings. Biochim Biophys Acta - Rev Cancer. 2014;1846(2):468–476.
  • Kozomara A, Birgaoanu M, Griffiths-Jones S miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155–D162. https://academic.oup.com/nar/article/47/D1/D155/5179337.
  • Long JM, Lahiri DK. MicroRNA-101 downregulates Alzheimer’s amyloid-β precursor protein levels in human cell cultures and is differentially expressed. Biochem Biophys Res Commun. 2011;404(4):889–895.
  • Hébert SS, Horré K, Nicolaï L, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/β-secretase expression. Proc Natl Acad Sci U S A. 2008;105(17):6415–6420.
  • Boissonneault V, Plante I, Rivest S, et al. MicroRNA-298 and microRNA-328 regulate expression of mouse β-amyloid precursor protein-converting enzyme 1 *. J Biol Chem. 2009;284(4):1971–1981.
  • Tan L, Yu JT, Hu N, et al. Non-coding RNAs in Alzheimer’s disease. Molecular Neurobiology Mol Neurobiol . 2012;47(1):382–393. Available from: https://link.springer.com/article/10.1007/s12035-012-8359-5.
  • Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus.Neuroreport. 2007;18(3):297–300.
  • Kumar S, Vijayan M, Reddy PH MicroRNA-455-3p as a potential peripheral biomarker for Alzheimer’s disease. Hum Mol Genet. 2017;26(19):3808–3822. https://academic.oup.com/hmg/article/26/19/3808/3976567.
  • Kiko T, Nakagawa K, Tsuduki T, et al. MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer’s disease. J Alzheimer’s Dis. 2014;39(2):253–259.
  • Wang L, Liu J, Wang Q, et al. MicroRNA-200a-3p mediates neuroprotection in Alzheimer-related deficits and attenuates amyloid-beta overproduction and tau hyperphosphorylation via coregulating BACE1 and PRKACB. Front Pharmacol. 2019;10:806.
  • Navas-Carrillo D, Rivera-Caravaca JM, Sampedro-Andrada A, et al. Novel biomarkers in Alzheimer’s disease using high resolution proteomics and metabolomics: miRNAS, proteins and metabolites. Crit Rev Clin Lab Sci. 2021;58(3):167–179.
  • Ansari A, Maffioletti E, Milanesi E, et al. miR-146a and miR-181a are involved in the progression of mild cognitive impairment to Alzheimer’s disease. Neurobiol Aging. 2019;82:102–109.
  • Herrera-Espejo S, Santos-Zorrozua B, Álvarez-González P, et al. A systematic review of microRNA expression as biomarker of late-onset Alzheimer’s disease. Mol Neurobiol. 2019;56(12):8376–8391. Available from
  • Takousis P, Sadlon A, Schulz J, et al. Differential expression of microRNAs in Alzheimer’s disease brain, blood, and cerebrospinal fluid. Alzheimer’s Dement. 2019;15(11):1468–1477.
  • Siedlecki-Wullich D, Català-Solsona J, Fábregas C, et al. Altered microRNAs related to synaptic function as potential plasma biomarkers for Alzheimer’s disease. Alzheimer’s Res Ther. 2019;11:1–11. https://alzres.biomedcentral.com/articles/10.1186/s13195-019-0501-4.
  • Rufino-Ramos D, Albuquerque PR, Carmona V, et al. Extracellular vesicles: novel promising delivery systems for therapy of brain diseases. J Control Release. 2017;262:247–258.
  • Lee S, Mankhong S, Kang JH Extracellular vesicle as a source of Alzheimer’s biomarkers: opportunities and challenges. Int J Mol Sci. 2019;20(7):1728. https://www.mdpi.com/1422-0067/20/7/1728/htm.
  • Chiasserini D, Van Weering JRT, Piersma SR, et al. Proteomic analysis of cerebrospinal fluid extracellular vesicles: a comprehensive dataset. J Proteomics. 2014;106:191–204.
  • Muraoka S, Jedrychowski MP, Yanamandra K, et al. Proteomic profiling of extracellular vesicles derived from Cerebrospinal fluid of Alzheimer’s disease patients: a pilot study. Cells. 2020;9(9):1959.
  • Cilento EM, Jin L, Stewart T, et al. Mass spectrometry: a platform for biomarker discovery and validation for Alzheimer’s and Parkinson’s diseases. J Neurochem. 2019;151(4):397.
  • Ringman JM, Schulman H, Becker C, et al. Proteomic changes in cerebrospinal fluid of presymptomatic and affected persons carrying familial Alzheimer disease mutations. Arch Neurol. 2012;69(1):96–104.
  • Hendrickson RC, Lee AYH, Song Q, et al. High resolution discovery proteomics reveals candidate disease progression markers of Alzheimer’s disease in human cerebrospinal fluid. PLoS One. 2015;10(8):e0135365.
  • Hölttä M, Minthon L, Hansson O, et al. An integrated workflow for multiplex CSF proteomics and peptidomics-identification of candidate cerebrospinal fluid biomarkers of Alzheimer’s disease. J Proteome Res. 2015;14(2):654–663.
  • Wildsmith KR, Schauer SP, Smith AM, et al. Identification of longitudinally dynamic biomarkers in Alzheimer’s disease cerebrospinal fluid by targeted proteomics. Mol Neurodegener. 2014;9(1):22.
  • Bader JM, Geyer PE, Müller JB, et al. Proteome profiling in cerebrospinal fluid reveals novel biomarkers of Alzheimer’s disease. Mol Syst Biol. 2020;16(6):e9356.
  • Wang H, Dey KK, Chen PC, et al. Integrated analysis of ultra-deep proteomes in cortex, cerebrospinal fluid and serum reveals a mitochondrial signature in Alzheimer’s disease. Mol Neurodegener. 2020;15(1):1–20.
  • Zhou M, Haque RU, Dammer EB, et al. Targeted mass spectrometry to quantify brain-derived cerebrospinal fluid biomarkers in Alzheimer’s disease. Clin Proteomics. 2020;17(1):1–14.
  • Mapstone M, Lin F, Nalls MA, et al. What success can teach us about failure: the plasma metabolome of older adults with superior memory and lessons for Alzheimer’s disease. Neurobiol Aging. 2017;51:148–155.
  • Hurtado MO, Kohler I, De Lange ECM. Next-generation biomarker discovery in Alzheimer’s disease using metabolomics – from animal to human studies. Bioanalysis. 2018;10(18):1525–1546.
  • Chouraki V, Preis SR, Yang Q, et al. Association of amine biomarkers with incident dementia and Alzheimer’s disease in the Framingham Study. Alzheimer’s Dement. 2017;13(12):1327–1336.
  • de Leeuw FA, Peeters CFW, Kester MI, et al. Blood-based metabolic signatures in Alzheimer’s disease. Alzheimer’s Dement Diagnosis Assess Dis Monit. 2017;8:196. /pmc/articles/PMC5607205/.
  • John-Williams L S, Blach C, Toledo JB, et al. Targeted metabolomics and medication classification data from participants in the ADNI1 cohort. Sci Data. 2017;4. /pmc/articles/PMC5644370/.
  • Graham SF, Chevallier OP, Elliott CT, et al. Untargeted metabolomic analysis of human plasma indicates differentially affected polyamine and L-arginine metabolism in mild cognitive impairment subjects converting to Alzheimer’s disease. PLoS One. 2015;10(3):e0119452.
  • Sun C, Gao M, Wang F, et al. Serum metabolomic profiling in patients with Alzheimer disease and amnestic mild cognitive impairment by GC/MS. Biomed Chromatogr. 2020;34(9):e4875.
  • Mahajan UV, Varma VR, Griswold ME, et al. Dysregulation of multiple metabolic networks related to brain transmethylation and polyamine pathways in Alzheimer disease: a targeted metabolomic and transcriptomic study. PLOS Med. 2020;17(1):e1003012.
  • Islam J, and Zhang Y A novel deep learning based multi-class classification method for Alzheimer’s disease detection using brain MRI data. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 2017 10654 LNAI:213–222. DOI: 10.1007/978-3-319-70772-3_20.
  • Katako A, Shelton P, Goertzen AL, et al. Machine learning identified an Alzheimer’s disease-related FDG-PET pattern which is also expressed in Lewy body dementia and Parkinson’s disease dementia. Sci Rep. 2018;81 8:1–13.https://www.nature.com/articles/s41598-018-31653-6.
  • Sarraf S, Tofighi G, Org S Classification of Alzheimer’s disease structural MRI data by deep learning convolutional neural networks. 2016 cited 2022 Apr 11]; Available from 2022 Apr 11: https://arxiv.org/abs/1607.06583v2.
  • Mahmood R, and Ghimire B. Automatic detection and classification of Alzheimer’s disease from MRI scans using principal component analysis and artificial neural networks. Int Conf Syst Signals Image Process. 2013;133–137. DOI: 10.1109/IWSSIP.2013.6623471.
  • Davatzikos C, Resnick SM, Wu X, et al. Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. Neuroimage. 2008;41(4):1220–1227.
  • Kautzky A, Seiger R, Hahn A, et al. Prediction of autopsy verified neuropathological change of Alzheimer’s disease using machine learning and MRI. Front Aging Neurosci. 2018;10:406.
  • Ahmed OB, Benois-Pineau J, Allard M, et al. Recognition of Alzheimer’s disease and mild cognitive impairment with multimodal image-derived biomarkers and multiple Kernel learning. Neurocomputing. 2017;220:98–110.
  • Jabason E, Omair Ahmad M, Swamy MNS. Deep structural and clinical feature learning for semi-supervised multiclass prediction of Alzheimer’s disease. Midwest Symp Circuits Syst. 2019;2018(August):791–794.
  • Lee SH, Bachman AH, Yu D, et al. Predicting progression from mild cognitive impairment to Alzheimer’s disease using longitudinal callosal atrophy. Alzheimer’s Dement Diagnosis Assess Dis Monit. 2016;2:68. /pmc/articles/PMC4879655/.
  • Salvatore C, Cerasa A, Battista P, et al. Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer’s disease: a machine learning approach. Front Neurosci. 2015;9:307.
  • Plant C, Teipel SJ, Oswald A, et al. Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer’s disease. Neuroimage. 2010;50(1):162–174.
  • Liu M, Zhang D, Shen D. Relationship induced multi-template learning for diagnosis of Alzheimer’s disease and mild cognitive impairment. IEEE Trans Med Imaging. 2016;35(6):1463–1474.
  • Lu D, Popuri K, Ding GW, et al. Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images. Sci Rep. 81 2018;8:1–13.https://www.nature.com/articles/s41598-018-22871-z.
  • Yan T, Wang Y, Weng Z, et al. Early-stage identification and pathological development of Alzheimer’s disease using multimodal MRI. J Alzheimer’s Dis. 2019;68(3):1013–1027.
  • Lebedev AV, Westman E, Van Westen GJP, et al. Random Forest ensembles for detection and prediction of Alzheimer’s disease with a good between-cohort robustness. NeuroImage Clin. 2014;6:115–125.
  • Cassani R, Falk TH, Fraga FJ, et al. Towards automated electroencephalography-based Alzheimer’s disease diagnosis using portable low-density devices. Biomed Signal Process Control. 2017;33:261–271.
  • Mamani GQ, Fraga FJ, Tavares G, et al. EEG-based biomarkers on working memory tasks for early diagnosis of Alzheimer’s disease and mild cognitive impairment. 2017 IEEE Healthc Innov Point Care Technol HI-POCT 2017. 2017;2017-December:237–240.
  • Trambaiolli LR, Spolaôr N, Lorena AC, et al. Feature selection before EEG classification supports the diagnosis of Alzheimer’s disease. Clin Neurophysiol. 2017;128(10):2058–2067.
  • Jeong DH, Do KY, Song IU, et al. Wavelet energy and Wavelet coherence as EEG biomarkers for the Diagnosis of Parkinson’s disease-related Dementia and Alzheimer’s disease. Entropy. 2016. 2015 https://www.mdpi.com/1099-4300/18/1/8/htm.
  • Dauwan M, van der Zande JJ, van Dellen E, et al. Random forest to differentiate dementia with Lewy bodies from Alzheimer’s disease. Alzheimer’s Dement Diagnosis Assess Dis Monit. 2016;4:99. /pmc/articles/PMC5050257/.
  • McBride JC, Zhao X, Munro NB, et al. Sugihara causality analysis of scalp EEG for detection of early Alzheimer’s disease. Neuroimage (Amst). 2015;7:258. /pmc/articles/PMC4300018/.
  • Grassi M, Perna G, Caldirola D, et al. A clinically-translatable machine learning algorithm for the prediction of Alzheimer’s disease conversion in individuals with mild and premild cognitive impairment. J Alzheimer’s Dis. 2018;61(4):1555–1573.
  • Multimodal monitoring of Parkinson’s and Alzheimer’s patients using the ICT4LIFE platform — Maastricht University [Internet]. cited 2022 Apr 11]. Available from 2022 Apr 11: https://cris.maastrichtuniversity.nl/en/publications/multimodal-monitoring-of-parkinsons-and-alzheimers-patients-using.
  • Colloby SJ, Cromarty RA, Peraza LR, et al. Multimodal EEG-MRI in the differential diagnosis of Alzheimer’s disease and dementia with Lewy bodies. J Psychiatr Res. 2016;78:48–55.
  • Fraser KC, Fors KL, and Kokkinakis D, et al. An analysis of eye-movements during reading for the detection of mild cognitive impairment. EMNLP - Conf empir methods nat lang process proc. 2017:1016–1026. DOI:10.18653/v1/D17-1107.
  • Blennow K, Zetterberg H. Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med. 2018;284(6):643–663.
  • Janeiro MH, Ardanaz CG, and Sola-sevilla N, et al. Biomarkers in Alzheimer ’ s disease. Avances en Medicina de Laboratorio. 2021;2:27–37.
  • Schindler SE, Bateman RJ. Combining blood-based biomarkers to predict risk for Alzheimer’s disease dementia. Nat Aging. 2021;1(1):26–28.
  • Snyder PJ, Alber J, Alt C, et al. Retinal imaging in Alzheimer’s and neurodegenerative diseases. Alzheimer’s Dement. 2021;17(1):103–111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.