1,810
Views
4
CrossRef citations to date
0
Altmetric
Review

Critical insight into recombinase polymerase amplification technology

ORCID Icon
Pages 725-737 | Received 07 Nov 2021, Accepted 02 Aug 2022, Published online: 11 Aug 2022

References

  • Mullis K, Faloona F, Scharf S, et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. In Incold spring harbor symposia on quantitative biology. CSHL Press; 1986. Vol. 51 p. 263–273. Available from: https://cbm.msoe.edu/markMyweb/sepaTimeline/assets/13.%20Specific%20enzymatic%20amplification%20of%20DNA.pdf
  • Grand View Research. Isothermal nucleic acid amplification technology (INAAT) market analysis by product, by technology (NASBA, HDA, LAMP, SDA, SPIA, NEAR, TMA, RCA, RPA, SMAP2), and segment forecasts, 2018–2025, report GVR-1-68038-588-5, grand view research, 2017.
  • Li J, Macdonald J, von Stetten F. A comprehensive summary of a decade development of the recombinase polymerase amplification. Analyst. 2019;144(1):31–67.
  • Xu H, Beernink HT, Morrical SW. DNA-binding properties of T4 UvsY recombination mediator protein: polynucleotide wrapping promotes high-affinity binding to single-stranded DNA. Nucleic Acids Res. 2010;38(14):4821–4833.
  • Piepenburg O, Williams CH, Stemple DL, et al., DNA detection using recombination proteins. PLoS Biol. 2006;4(7): e204.
  • Munawar MA. Application of recombinase polymerase amplification to diagnosis of Phytophthora diseases of strawberry [Doctoral dissertation], University of Eastern Finland; 2021. https://erepo.uef.fi/handle/123456789/24149
  • Zarling DA, Sena EP, Green CJ, inventors; SRI International Inc, assignee. Process for nucleic acid hybridization and amplification. United States patent US 5,223,414. 1993.
  • Armes NA, Stemple DL. Recombinase polymerase amplification. 2007. U.S. Patent 7,270,981.
  • Stringer OW, Andrews JM, Greetham HL, et al. TwistAmp liquid: a versatile amplification method to replace PCR. Nat Methods. 2018;15(5):395.
  • TwistDx. RPA assay design. [cited 2022 April 05]. Available from: https://www.twistdx.co.uk/en/support/rpa-assay-design-2
  • Euler M, Wang Y, Otto P, et al. Recombinase polymerase amplification assay for rapid detection of Francisella tularensis. J Clin Microbiol. 2012;50(7):2234–2238.
  • Faye M, Abd El Wahed A, Faye O, et al. A recombinase polymerase amplification assay for rapid detection of rabies virus. Sci Rep. 2021;11(1):1–10.
  • Higgins M, Ravenhall M, Ward D, et al. PrimedRPA: primer design for recombinase polymerase amplification assays. Bioinformatics. 2019;35(4):682–684.
  • Lutz S, Weber P, Focke M, et al. Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip. 2010;10(7):887–893.
  • Shen F, Davydova EK, Du W, et al. Digital isothermal quantification of nucleic acids via simultaneous chemical initiation of recombinase polymerase amplification reactions on slipchip. Anal Chem. 2011;83(9):3533–3540.
  • Hakenberg S, Hügle M, Weidmann M, et al. A phase guided passive batch microfluidic mixing chamber for isothermal amplification. Lab Chip. 2012;12(21):4576–4580.
  • Kalsi S, Valiadi M, Turner C, et al. Sample pre-concentration on a digital microfluidic platform for rapid AMR detection in urine. Lab Chip. 2019;19(1):168–177.
  • Liu HB, Du XJ, Zang YX, et al. SERS-based lateral flow strip biosensor for simultaneous detection of Listeria monocytogenes and Salmonella enterica serotype enteritidis. J Agric Food Chem. 2017;65(47):10290–10299.
  • Kim JY, Lee JL. Development of a multiplex real-time recombinase polymerase amplification (RPA) assay for rapid quantitative detection of Campylobacter coli and jejuni from eggs and chicken products. Food Control. 2017;73:1247–1255.
  • Lau HY, Wang Y, Wee EJ, et al. Field demonstration of a multiplexed point-of-care diagnostic platform for plant pathogens. Anal Chem. 2016;88(16):8074–8081.
  • Crannell Z, Castellanos-Gonzalez A, Nair G, et al. Multiplexed recombinase polymerase amplification assay to detect intestinal protozoa. Anal Chem. 2016;88(3):1610–1616.
  • Kersting S, Rausch V, Bier FF, et al. Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens. Mikrochim Acta. 2014;181(13):1715–1723.
  • Lau YL, Ismail IB, Mustapa NI, et al. Development of a reverse transcription recombinase polymerase amplification assay for rapid and direct visual detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). PLoS One. 2021;16(1):e0245164.
  • Crannell ZA, Rohrman B, Richards-Kortum R. Quantification of HIV-1 DNA using real-time recombinase polymerase amplification. Anal Chem. 2014;86(12):5615–5619.
  • Sun N, Wang W, Wang J, et al. Reverse transcription recombinase polymerase amplification with lateral flow dipsticks for detection of influenza A virus and subtyping of H1 and H3. Mol Cell Probes. 2018;42:25–31.
  • Boyle DS, McNerney R, Teng Low H, et al. Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification. PLoS One. 2014;9(8):e103091.
  • Kersting S, Rausch V, Bier FF, et al. Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malar J. 2014;13(1):1–9.
  • Tamer C, Benkaroun J, Kurucay HN, et al. Development of a recombinase polymerase amplification assay for viral haemorrhagic septicemia virus. J Fish Dis. 2022;45(8):1065–1071.
  • Conrad CC, Daher RK, Stanford K, et al. A sensitive and accurate recombinase polymerase amplification assay for detection of the primary bacterial pathogens causing bovine respiratory disease. Front Vet Sci. 2020;7:208.
  • Kapoor R, Srivastava N, Kumar S, et al. Development of a recombinase polymerase amplification assay for the diagnosis of banana bunchy top virus in different banana cultivars. Arch Virol. 2017;162(9):2791–2796.
  • Ahn H, Batule BS, Seok Y, et al. Single-step recombinase polymerase amplification assay based on a paper chip for simultaneous detection of multiple foodborne pathogens. Anal Chem. 2018;90(17):10211–10216.
  • Su C, Xie J, Wang X, et al. Integrated structure and event-specific real-time detection of transgenic cry1Ac/SCK rice Kefeng 6. Eur Food Res Technol. 2011;232(2):351–359.
  • Li K, Luo Y, Huang K, et al. Single universal primer recombinase polymerase amplification-based lateral flow biosensor (SUP-RPA-LFB) for multiplex detection of genetically modified maize. Anal Chim Acta. 2020;1127:217–224.
  • Cao Y, Zheng K, Jiang J, et al. A novel method to detect meat adulteration by recombinase polymerase amplification and SYBR green I. Food Chem. 2018;266:73–78.
  • Li T, Jalbani YM, Zhang G, et al. Rapid authentication of mutton products by recombinase polymerase amplification coupled with lateral flow dipsticks. Sens Actuators B. 2019;290:242–248.
  • Liu Y, Wang XY, Wei XM, et al. Rapid authentication of Ginkgo biloba herbal products using the recombinase polymerase amplification assay. Sci Rep. 2018;8(1):1–8.
  • Zhao M, Wang B, Xiang L, et al. A novel onsite and visual molecular technique to authenticate saffron (Crocus sativus) and its adulterants based on recombinase polymerase amplification. Food Control. 2019;100:117–121.
  • Wang Z, Li T, Yu W, et al. A low-cost novel lateral flow nucleic acid assay (LFNAA) for yak milk authentication. LWT. 2020;122:109038.
  • Yamanaka ES, Tortajada-Genaro LA, Á M. Low-cost genotyping method based on allele-specific recombinase polymerase amplification and colorimetric microarray detection. Microchim Acta. 2017;184(5):1453–1462.
  • Martorell S, Palanca S, Maquieira Á, et al. Blocked recombinase polymerase amplification for mutation analysis of PIK3CA gene. Anal Biochem. 2018;544:49–56.
  • Wee EJ, Trau M. Simple isothermal strategy for multiplexed, rapid, sensitive, and accurate miRNA detection. ACS Sens. 2016;1(6):670–675.
  • Schrader C, Schielke A, Ellerbroek L, et al. PCR inhibitors – occurrence, properties and removal. J Appl Microbiol. 2012;113(5):1014–1026.
  • Li Y, Li S, Wang J, et al., CRISPR/Cas systems towards next-generation biosensing. Trends Biotechnol. 2019;37(7): 730–743.
  • Munawar MA, Martin F, Toljamo A, et al., RPA-PCR couple: an approach to expedite plant diagnostics and overcome PCR inhibitors. BioTechniques. 2020;69(4): 270–280.
  • Munawar MA, Toljamo A, Martin F, et al. Development and evaluation of a recombinase polymerase amplification assay for rapid detection of strawberry red stele pathogen. Phytopathol Res. 2020;2(1):1–2.
  • Moore MD, Jaykus LA. Development of a recombinase polymerase amplification assay for detection of epidemic human noroviruses. Sci Rep. 2017;7(1):1–8.
  • Kong M, Li Z, Wu J, et al. A wearable microfluidic device for rapid detection of HIV-1 DNA using recombinase polymerase amplification. Talanta. 2019;205:120155.
  • Trinh KT, Lee NY. Fabrication of wearable PDMS device for rapid detection of nucleic acids via recombinase polymerase amplification operated by human body heat. Biosensors (Basel). 2022;12(2):72.
  • Euler M, Wang Y, Heidenreich D, et al. Development of a panel of recombinase polymerase amplification assays for detection of biothreat agents. J Clin Microbiol. 2013;51(4):1110–1117.
  • Mayboroda O, Benito AG, Del Rio JS, et al. Isothermal solid-phase amplification system for detection of Yersinia pestis. Anal Bioanal Chem. 2016;408(3):671–676.
  • Bentahir M, Ambroise J, Delcorps C, et al. Sensitive and specific recombinase polymerase amplification assays for fast screening, detection, and identification of Bacillus anthracis in a field setting. Appl Environ Microbiol. 2018;84(11):e00506–18.
  • Jauset-Rubio M, Tomaso H, El-Shahawi MS, et al. Duplex lateral flow assay for the simultaneous detection of Yersinia pestis and Francisella tularensis. Anal Chem. 2018;90(21):12745–12751.
  • Zasada AA, Zacharczuk K, Formińska K, et al. Isothermal DNA amplification combined with lateral flow dipsticks for detection of biothreat agents. Anal Biochem. 2018;560:60–66.
  • Saxena A, Pal V, Tripathi NK, et al. Development of a rapid and sensitive recombinase polymerase amplification‐lateral flow assay for detection of Burkholderia mallei. Transboundary Emerging Dis. 2019;66(2):1016–1022.
  • Kortli S, Jauset-Rubio M, Tomaso H, et al. Yersinia pestis detection using biotinylated dNTPs for signal enhancement in lateral flow assays. Anal Chim Acta. 2020;1112:54–61.
  • Saxena A, Pal V, Tripathi NK, et al. A recombinase polymerase amplification lateral flow assay for rapid detection of Burkholderia pseudomallei, the causative agent of melioidosis. Braz J Microbiol. 2022;53(1):185–193.
  • Clancy E, Higgins O, Forrest MS, et al. Development of a rapid recombinase polymerase amplification assay for the detection of Streptococcus pneumoniae in whole blood. BMC Infect Dis. 2015;15(1):1–11.
  • Rohrman B, Richards-Kortum R. Inhibition of recombinase polymerase amplification by background DNA: a lateral flow-based method for enriching target DNA. Anal Chem. 2015;87(3):1963–1967.
  • Piepenburg O, Williams CH, Armes NA, et al. Recombinase polymerase amplification. 2013. U.S. Patent 8,426,134.
  • Rosser A, Rollinson D, Forrest M, et al. Isothermal recombinase polymerase amplification (RPA) of Schistosoma haematobium DNA and oligochromatographic lateral flow detection. Parasites Vectors. 2015;8(1):1–5.
  • Londoño MA, Harmon CL, Polston JE. Evaluation of recombinase polymerase amplification for detection of begomoviruses by plant diagnostic clinics. Virol J. 2016;13(1):1–9.
  • Howson EL, Kurosaki Y, Yasuda J, et al. Defining the relative performance of isothermal assays that can be used for rapid and sensitive detection of foot-and-mouth disease virus. J Virol Methods. 2017;249:102–110.
  • Wang J, Wang J, Li R, et al. Rapid and sensitive detection of canine distemper virus by real-time reverse transcription recombinase polymerase amplification. BMC Vet Res. 2017;13(1):1–7.
  • Shahin K, Gustavo Ramirez-Paredes J, Harold G, et al. Development of a recombinase polymerase amplification assay for rapid detection of Francisella noatunensis subsporientalis. PLoS One. 2018;13(2):e0192979.
  • Xing W, Yu X, Feng J, et al. Field evaluation of a recombinase polymerase amplification assay for the diagnosis of Schistosoma japonicum infection in Hunan province of China. BMC Infect Dis. 2017;17(1):1–7.
  • Mohandas A, Bhat AI. Recombinase polymerase amplification assay for the detection of piper yellow mottle virus infecting black pepper. Virus Dis. 2020;31(1):38–44.
  • Mekuria TA, Zhang S, Eastwell KC. Rapid and sensitive detection of Little cherry virus 2 using isothermal reverse transcription-recombinase polymerase amplification. J Virol Methods. 2014;205:24–30.
  • Boyle DS, Lehman DA, Lillis L, et al. Rapid detection of HIV-1 proviral DNA for early infant diagnosis using recombinase polymerase amplification. MBio. 2013;4(2):e00135–13.
  • El Wahed A A, El-Deeb A, El-Tholoth M, et al. A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus. PLoS One. 2013;8(8):e71642.
  • Daher RK, Stewart G, Boissinot M, et al. Influence of sequence mismatches on the specificity of recombinase polymerase amplification technology. Mol Cell Probes. 2015;29(2):116–121.
  • Patel P, Abd El Wahed A, Faye O, et al. A field-deployable reverse transcription recombinase polymerase amplification assay for rapid detection of the chikungunya virus. PLoS Negl Trop Dis. 2016;10(9):e0004953.
  • Yang Y, Qin X, Sun Y, et al. Development of isothermal recombinase polymerase amplification assay for rapid detection of porcine circovirus type 2. BioMed Res Int. 2017. DOI: 10.1155/2017/8403642.
  • Zheng Y, Hu P, Ren H, et al. RPA-SYBR green I based instrument-free visual detection for pathogenic Yersinia enterocolitica in meat. Anal Biochem. 2021;621:114157.
  • Mo Y, Cui F, Li D, et al. Establishment of a rapid and sensitive method based on recombinase polymerase amplification to detect mts90, a new molecular target of Mycobacterium tuberculosis. RSC Adv. 2017;7(79):49895–49902.
  • Kang J, Jang H, Yeom G, et al. Ultrasensitive detection platform of disease biomarkers based on recombinase polymerase amplification with H-sandwich aptamers. Anal Chem. 2020;93(2):992–1000.
  • Wu H, Zhao P, Yang X, et al. A recombinase polymerase amplification and lateral flow strip combined method that detects Salmonella enterica serotype typhimurium with no worry of primer-dependent artifacts. Front Microbiol. 2020;11:1015.
  • Prescott MA, Reed AN, Jin L, et al. Rapid detection of Cyprinid herpesvirus 3 in latently infected koi by recombinase polymerase amplification. J Aquat Anim Health. 2016;28(3):173–180.
  • Liu HB, Zang YX, Du XJ, et al. Development of an isothermal amplification-based assay for the rapid visual detection of Salmonella bacteria. J Dairy Sci. 2017;100(9):7016–7025.
  • Oyola SO, Otto TD, Gu Y, et al. Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes. BMC Genomics. 2012;13(1):1–2.
  • Sharma N, Hoshika S, Hutter D, et al., Recombinase‐based isothermal amplification of nucleic acids with self‐avoiding molecular recognition systems (SAMRS). ChemBioChem. 2014;15(15): 2268–2274.
  • Luo GC, Yi TT, Jiang B, et al. Betaine-assisted recombinase polymerase assay with enhanced specificity. Anal Biochem. 2019;575:36–39.
  • Santiago-Felipe S, Tortajada-Genaro LA, Morais S, et al. Isothermal DNA amplification strategies for duplex microorganism detection. Food Chem. 2015;174:509–515.
  • Rojas JA, Miles TD, Coffey MD, et al. Development and application of qPCR and RPA genus-and species-specific detection of Phytophthora sojae and P. sansomeana root rot pathogens of soybean. Plant Dis. 2017;101(7):1171–1181.
  • Lee J, Heo S, Bang D. Applying a linear amplification strategy to recombinase polymerase amplification for uniform DNA library amplification. ACS Omega. 2019;4(22):19953–19958.
  • Richards SM, Mitchell KJ, Tobler R, et al. Recombinase polymerase amplification (RPA) versus PCR for ancient DNA library amplification. Peer J Preprints. 2019.
  • Krehenwinkel H, Wolf M, Lim JY, et al. Estimating and mitigating amplification bias in qualitative and quantitative arthropod metabarcoding. Sci Rep. 2017;7(1):1–2.
  • Hoser MJ, Mansukoski HK, Morrical SW, et al. Strand invasion based amplification (SIBA®): a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte. PLoS One. 2014;9(11):e112656.
  • TwistDx. Using PCR primers with standard recombinase polymerase amplification reagents. [cited 2022 Apr 05]. Available from: https://www.twistdx.co.uk/en/rpa/using-pcr-primers
  • Rostela T. Developing duplex Yersinia assay for strand invasion based amplification (SIBA) technology [Master’s thesis]. 2015. https://aaltodoc.aalto.fi/handle/123456789/16643
  • Shen Q XX, Shen LP FZ, Shen L-P, et al. A rapid and sensitive recombinase aided amplification assay to detect hepatitis B virus without DNA extraction. BMC Infect Dis. 2019;19(1):1–5.
  • Wu T, Ge Y, Zhao K, et al. A reverse-transcription recombinase-aided amplification assay for the rapid detection of N gene of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Virology. 2020;549:1–4.
  • Nie M, Deng H, Zhou Y, et al. Development of a reverse transcription recombinase-aided amplification assay for detection of Getah virus. Sci Rep. 2021;11(1):1–7.
  • Qin Z, Xue L, Cai W, et al. Development of a recombinase-aided amplification assay for rapid detection of human norovirus GII. 4. BMC Infect Dis. 2021;21(1):1–8.
  • Zhang W, Feng Y, Zhao H, et al. A recombinase aided amplification assay for rapid detection of the Klebsiella pneumoniae carbapenemase gene and its characteristics in Klebsiella pneumoniae. Front Cell Infect Microbiol. 2021;746325. DOI: 10.3389/fcimb.2021.746325
  • Wu X, Liu Y, Gao L, et al. Development and application of a reverse-transcription recombinase-aided amplification assay for porcine epidemic diarrhea virus. Viruses. 2022;14(3):591.
  • Bei L, Cheng HR, Yan QF, et al. Recombinase-aid amplification: a novel technology of in vitro rapid nucleic acid amplification. Sci Sin. 2010;40. 983–988.
  • Zhang RQ, Li GX, Li XN, et al. A rapid and sensitive recombinase aided amplification assay incorporating competitive internal control to detect Bordetella pertussis using the DNA obtained by boiling. Int J Infect Dis. 2019;86:108–113.
  • Xue G, Li S, Zhang W, et al. Reverse-transcription recombinase-aided amplification assay for rapid detection of the 2019 novel coronavirus (SARS-CoV-2). Anal Chem. 2020 May 22 92(14):9699–9705.
  • Mu D, Zhou D, Xie G, et al. The fluorescent probe-based recombinase-aided amplification for rapid detection of Escherichia coli O157: H7. Mol Cell Probes. 2021;60:101777.
  • Chen W, Fan J, Li Z, et al. Development of recombinase aided amplification combined with disposable nucleic acid test strip for rapid detection of porcine circovirus type 2. Front Vet Sci. 2021;676294. DOI: 10.3389/fvets.2021.676294.
  • Faye O, Faye O, Soropogui B, et al. Development and deployment of a rapid recombinase polymerase amplification Ebola virus detection assay in Guinea in 2015. Eurosurveillance. 2015;20(44):30053.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.