179
Views
0
CrossRef citations to date
0
Altmetric
Review

An overview of advancement in aptasensors for influenza detection

, , &
Pages 705-724 | Received 28 Jan 2022, Accepted 19 Aug 2022, Published online: 25 Aug 2022

References

  • Reid AH, Taubenberger JK. The origin of the 1918 pandemic influenza virus: a continuing enigma. J Gen Virol. 2003 84;84(9):2285–2292.
  • Epps HLV. Influenza: exposing the true killer. J Exp Med. 2006;203(4):803.
  • Kilbourne ED. Influenza pandemics of the 20th century. Emerg Infect Dis. 2006;12(1):9–14.
  • Saunders Hastings PR, Krewski D. Reviewing the history of pandemic influenza: understanding patterns of emergence and transmission. Pathogens. 2016;5(4):66.
  • Shrestha SS, Swerdlow DL, Borse RH, et al. Estimating the burden of 2009 pandemic influenza a (H1N1) in the United States. Clin Infect Dis. 2009;52: 75–82.
  • CDC, influenza type a viruses | avian influenza (Flu), centers dis. Control Prev 2017.
  • World Health Organisation, Cumulative number of confirmed human cases for avian influenza A (H5N1) reported to WHO, 2003-2015, 2020. 2017.
  • Guan MD. Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev. 20(2):243–67.
  • Bouvier NM. Human infection with avian influenza A(H5) viruses. WHO. 2020.
  • Peiris JSM, Jong Palese P, Chen H. Genomic characterizations of bat coronaviruses (1A, 1B and HKU8) and evidence for co-infections in Miniopterus bats. The Journal of General Virology. 2008;89(Pt 5):1282–1287.
  • Centres for Disease Control and Prevention (CDC). Types of influenza viruses - seasonal influenza (Flu. Centres Dis. Control Prev. 2017.
  • Francis T A NEW TYPE OF VIRUS FROM EPIDEMIC INFLUENZA .Science . Available from. 1940;92:2392: 405–408.
  • Taubenberger JK, Morens DM. The pathology of influenza virus infections. Annu Rev Pathol Mech Dis. 2008;3(1):499–522.
  • Vemula SV, Zhao J, Liu J, et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses. 2016;8(4):96.
  • Patel S, Nanda R, Sahoo S, et al. Biosensors in health care: the milestones achieved in their development towards lab on chip analysis. Biochem Res Int. 2016;2016:1–12.
  • Torres Chavolla E, Alocilja EC. Aptasensors for detection of microbial and viral pathogens. Biosens Bioelectron. 2009;24(11):3175–3182.
  • Yao Y, Zhipeng Z, Wenqi S, et al. Unreliable usage of a single influenza virus IgM anti body assay in influenza like illness: a retrospective study of the 2016 2018 flu epidemic. PLoS One. 2019;14(4):e0215514.
  • Zou X, Wu J, Gu J, et al. Application of aptamers in virus detection and antiviral therapy. Front Microbiol. 2019;10.
  • Kim T-H, Lee S-W. Aptamers for anti-viral therapeutics and diagnostics. Int J Mol Sci. 2021;22(8):4168.
  • Davidson MW. Molecular expressions cell biology: the influenza (Flu) virus. 2015;26:D49–D53.
  • Briedis DJ, Lamb RA, Choppin PW. Sequence of RNA segment 7 of the influenza B virus genome: partial amino acid homology between the membrane proteins (M1) of Influenza A and B viruses and conservation of a second open reading frame. Virology. 1982 ;116(2): 581–588.
  • Samji T. Influenza A: understanding the viral life cycle. Yale J Biol Med. 2009;84(4): 153–159.
  • Mineev KS, Lyukmanova EN, Krabben L, et al. Structural investigation of influenza virus hemagglutinin membrane anchoring peptide. Protein Eng Des Sel. 2013;26(9):547–552.
  • Kosik I, Yewdell JW Influenza Hemagglutinin and Neuraminidase: Yin–Yang Proteins Coevolving to Thwart Immunity Viruses . 2019; 11(4) 346 .
  • Shao W, Li X, Goraya MU, et al., Evolution of influenza a virus by mutation and re assortment. Int J Mol Sci. 2017;18(8): 1650. .
  • How the flu virus can change: “Drift” and “Shift” | seasonal influenza (Flu) | CDC, centers dis. Control Prev 2017.
  • Fiore AE, Bridges CB, Katz JM, et al. Inactivated influenza vaccines. in: Vaccines Sixth Ed; 2012.
  • Forrest HL, Webster RG. Perspectives on influenza evolution and the role of research. Anim Health Res Rev. 2010;11(1):3–18.
  • Selman M, Dankar SK, Forbes NE, et al. Adaptive mutation in influenza A virus non structural gene is linked to host switching and induces a novel protein by alternative splicing. Emerg Microbes Infect. 2012;1(1):1–10.
  • Ayora Talavera G. Sialic acid receptors: focus on their role in influenza infection. J Receptor Ligand Channel Res. 2018;10:1–11.
  • Mair CM, Ludwig K, Herrmann A, et al. Receptor binding and pH stability How influenza A virus hemagglutinin affects host specific virus infection. Biochim Biophys Acta Biomembr. 2014;1838(4):1153–1168.
  • Edinger TO, Pohl MO, Stertz S. Entry of influenza A virus: host factors and antiviral targets. J Gen Virol. 2014;95(2):263–277.
  • Dou D, Revol R, Östbye H, et al. Influenza A virus cell entry, replication, virion assembly and movement. Front Immunol. 2018;9.
  • Who. Influenza W. Bull world health organ. 2013.
  • Minodier L, Charrel RN, Ceccaldi PE, et al. Prevalence of gastrointestinal symptoms in patients with influenza, clinical significance, and pathophysiology of human influenza viruses in faecal samples: what do we know? Virol J. 2015;12(1).
  • Who C, preserving and shipping specimen for the diagnosis of avian influenza A(H5N1) virus infection. Guide for field operations. Collect Preserv Shipp Specim Diagnosis Avian Influ A(H5N1) Virus Infect Guid F Oper. 2006;
  • Heikkinen T, Marttila J, Salmi AA, et al. Nasal swab versus nasopharyngeal aspirate for isolation of respiratory viruses. J Clin Microbiol. 2002;40(11):4337–4339.
  • Kim DK, Poudel B. Tools to detect influenza virus. Yonsei Med J. 2013;54(3):560–566.
  • Yamane N, Yuki M, Nakamura Y. Single radial complement fixation test for assaying antibody to influenza virus type specific antigens. J Clin Microbiol. 1983;18(4):837–843.
  • Schild GC, Wood JM, Newman RW. A single radial immunodiffusion technique for the assay of influenza haemagglutinin antigen. Proposals for an assay method for the haemagglutinin content of influenza vaccines. Bull World Health Organ. 1975;52(2):223–31.
  • Dowdle WR, Galphin JC, Coleman MT, et al. A simple double immunodiffusion test for typing influenza viruses. Bull World Health Organ. 1974;51(3):213–215.
  • Schmeisser F, Vodeiko GM, Lugovtsev VY, et al. An alternative method for prepara tion of pandemic influenza strain specific antibody for vaccine potency determination. Vaccine. 2010;28(12):2442–2449.
  • Killian Mary Lea. Hemagglutination Assay for Influenza Virus Methods in Molecular Biology. 2020:3–10.
  • Rajendran Madhusudan, Sun, Weina, Comella, Phillip. An immuno-assay to quantify influenza virus hemagglutinin with correctly folded stalk domains in vaccine preparations. PLOS ONE. 2018;13(4): e0194830 .
  • Killian ML. Hemagglutination assay for influenza virus. Methods Mol Biol. 2014;436;47–52.
  • Rizzo F, Lovecchio C, Ingravalle F, et al. Swine influenza A serology: ELISA versus HI test. Int J Infect Dis. 2016;53:105.
  • Gao Y, Zhou Y, Chandrawati R. Metal and metal oxide nanoparticles to enhance the performance of Enzyme Linked Immunosorbent Assay (ELISA). ACS Appl Nano Mater. 2020;3(1):1–21 .
  • Pollock NR, Duong S, Cheng A, et al. Ruling out novel H1N1 influenza virus infection with direct fluorescent antigen testing. Clin Infect Dis. 2009;49(6):e66–e68.
  • Ganzenmueller T, Kluba J, Hilfrich B, et al. Comparison of the performance of direct fluorescent antibody staining, a point of care rapid antigen test and virus isolation with that of RT PCR for the detection of novel 2009 influenza A (H1N1) virus in respiratory specimens. J Med Microbiol. 2010;59(6):713–717.
  • Peci A, Winter AL, King EC, et al. Performance of rapid influenza diagnostic testing in outbreak settings. J Clin Microbiol. 2014;52(12):4309–4317.
  • Apisarnthanarak A, Mundy LM. Rapid testing for pandemic influenza A (H1N1): di agnostic test utility and specimen source. Infect Control Hosp Epidemiol. 2010;31(6):663–664.
  • Koul PA, Mir H, Bhat MA, et al. Performance of rapid influenza diagnostic tests (Quick Vue) for influenza A and B infection in India. Indian J Med Microbiol. 2015;33:S26–S31.
  • Shu B, Wu KH, Emery S, et al. Design and performance of the CDC real time reverse transcriptase PCR swine flu panel for detection of 2009 A (H1N1) pandemic influenza virus. J Clin Microbiol. 2011;49(7):2614–2619.
  • Moore C, Hibbitts S, Owen N, et al. Development and evaluation of a real time nucleic acid sequence based amplification assay for rapid detection of influenza A. J Med Virol. 2004;74(4):619–628.
  • Ahn SJ, Baek YH, Lloren KKS, et al. Rapid and simple colorimetric detection of mul tiple influenza viruses infecting humans using a reverse transcriptional loop mediated isothermal amplification (RT LAMP) diagnostic platform. BMC Infect Dis. 2019;19(1).
  • Wu LT, Thomas I, Curran MD, et al. Duplex molecular assay intended for point of care diagnosis of influenza A/B virus infection. J Clin Microbiol. 2013;51(9):3031–3038.
  • Rodovalho V, Alves L, Castro A, et al. Biosensors applied to diagnosis of infectious diseases an update. Austin J Biosens Bioelectron. 2015;
  • Lee KG, Lee TJ, Jeong SW, et al. Development of a plastic based microfluidic im munosensor chip for detection of H1N1 influenza. Sensors. 2012;12(8):10810–10819. (Switzerland).
  • Nidzworski D, Pranszke P, Grudniewska M, et al. Universal biosensor for detection of influenza virus. Biosens Bioelectron. 2014;59:239–242.
  • Jarocka U, Sawicka R, Góra Sochacka A, et al. Electrochemical immunosensor for de tection of antibodies against influenza A virus H5N1 in hen serum. Biosens Bioelectron. 2014;55:301–306.
  • Singh R, Hong S, Jang J. Label free detection of influenza viruses using a reduced graphene oxide based electrochemical immunosensor integrated with a microfluidic platform. Sci Rep. 2017;7:42771 .
  • Nidzworski D, Siuzdak K, Niedziałkowski P, et al. A rapid response ultrasensitive biosen sor for influenza virus detection using antibody modified boron doped diamond. Sci Rep. 2017;7(1).
  • Horiguchi Y, Goda T, Matsumoto A, et al. Direct and label free influenza virus detection based on multisite binding to sialic acid receptors. Biosens Bioelectron. 2017;92:234–240.
  • Gold L. SELEX: how it happened and where it will go. J Mol Evol. 2015;81(5–6):140–143.
  • Zhang Y, Lai BS, Juhas M . 2019. Available from: https://doi.org/10.3390/molecules24050941.
  • Mosing RK, Bowser MT, CE SELEX: isolating aptamers using capillary electrophoresis. Handb Capill Microchip Electrophor Assoc Microtech. 2007;
  • Ellington AD, Szostak JW. Selection in vitro of single stranded DNA molecules that fold into specific ligand binding structures. Nature. 1992;355(6363):850–852.
  • Mazaafrianto DN, Maeki M, Ishida A, et al. 2018. Available from: https://doi.org/10.3390/mi9050202.
  • Stoltenburg R, Nikolaus N, Strehlitz B. Capture SELEX: selection of DNA aptamers for aminoglycoside antibiotics. J Anal Methods Chem. 2012;2012:1–14.
  • Bruno JG, Kiel JL. In vitro selection of DNA aptamers to anthrax spores with electro chemiluminescence detection. Biosens Bioelectron. 1999:(14)5:28–35.
  • Li X, An Y, Jin J, et al. Evolution of DNA aptamers through in vitro metastatic cell based systematic evolution of ligands by exponential enrichment for metastatic cancer recognition and imaging. Anal Chem. 2015;87(9):4941–8.
  • Li X, Zhang W, Liu L, et al. In vitro selection of DNA aptamers for metastatic breast cancer cell recognition and tissue imaging. Anal Chem. 2014;86(13):6596–6603.
  • Song Y, Zhu Z, An Y, et al. Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal Chem. 2013;85(8):4141–4149.
  • Bayrac AT, Sefah K, Parekh P, et al. In vitro selection of DNA aptamers to glioblastoma multiforme. ACS Chem Neurosci. 2011;2(3):175–181.
  • Shum KT, Lui ELH, Wong SCK, et al. Aptamer-mediated inhibition of mycobacterium tuberculosis polyphosphate kinase 2. Biochemistry. 2011;50(15):3261–3271.
  • Chuang YM, Belchis DA, Karakousis PC. The polyphosphate kinase gene ppk2 is required for mycobacterium tuberculosis inorganic polyphosphate regulation and virulence. MBio. 2013;4(3).
  • Bala J, Chinnapaiyan S, Dutta RK, et al. Aptamers in HIV research diagnosis and therapy. RNA Biology. 2018;15(3):327–337.
  • Ge XY, Li JL, Yang XL, et al. Isolation and characterization of a bat SARS like coronavirus that uses the ACE2 receptor. Nature. 2013;503(7477):535–538.
  • Shubham S, Hoinka J, Banerjee S, et al. A 2jFY RNA motif defines an aptamer for Ebola virus secreted protein. Sci Rep. 2018;8(1).
  • Alves LN, Abalo AA, Argondizzo APC, et al. Selection and evaluation of the binding of aptamers against NS5 Zika virus using fluorescence spectroscopy. AIP Conf Proc. 2018:2040:100005.
  • Phanchai W, Srikulwong U, Chompoosor A, et al. Insight into the molecular mechanisms of aunp based aptasensor for colorimetric detection: a molecular dynamics approach. Langmuir. 2018;34(21):6161–6169.
  • Wang L, Wu A, Wei G. Graphene based aptasensors: from molecule interface interactions to sensor design and biomedical diagnostics. Analyst. 2018;143:1526–1543 .
  • Wen L, Qiu L, Wu Y, et al. Aptamer modified semiconductor quantum dots for biosensing applications. Sensors. 2017;17(8):1736. (Switzerland).
  • Hasan MR, Pulingam T, Appaturi JN, et al. Carbon nanotube based aptasensor for sensitive electrochemical detection of whole cell Salmonella. Anal Biochem. 2018;554:34–43.
  • Kwon J, Lee Y, Lee T, et al., Aptamer based field effect transistor for detection of avian influenza virus in chicken serum. Anal Chem. 2020;92(7): 5524–5531.
  • Shiratori I, Akitomi J, Boltz DA, et al. Selection of DNA aptamers that bind to influenza A viruses with high affinity and broad subtype specificity. Biochem Biophys Res Commun. 2014;443(1):37–41.
  • Novoseltseva AA, Ivanov NM, Novikov RA, et al. Structural and functional aspects of G quadruplex aptamers which bind a broad range of influenza a viruses. Biomolecules. 2020;10(1):119.
  • Lee T, Park SY, Jang H, et al. Fabrication of electrochemical biosensor consisted of multifunctional DNA structure/porous au nanoparticle for avian influenza virus (H5N1) in chicken serum. Mater Sci Eng C. 2019 99;99:511–519. .
  • Lee T, Kim GH, Kim SM, et al. Label free localized surface plasmon resonance biosensor composed of multifunctional DNA 3-way junction on hollow Au spike like nanoparticles (HAuSN) for avian influenza virus detection. Colloids Surf B Biointerfaces. 2019;182:110341.
  • Wang F, Gopinath SCB, Lakshmipriya T. Aptamer antibody complementation on multiwalled carbon nanotube gold transduced dielectrode surfaces to detect pandemic swine influenza virus. Int J Nanomedicine. 2019;14:8469–8481.
  • Bhardwaj J, Chaudhary N, Kim H, et al. Subtyping of influenza A H1N1 virus using a label free electrochemical biosensor based on the DNA aptamer targeting the stem region of HA protein. Anal Chim Acta. 2019;1064:94–103.
  • Nguyen ATV, Trinh TTT, Hoang VT, et al. Peptide aptamer of complementarity determining region to detect avian influenza virus. J Biomed Nanotechnol. 2019;15(6):1185–1200.
  • Li W, Feng X, Yan X, et al. A DNA aptamer against influenza a virus: an effective inhibitor to the hemagglutinin glycan interactions. Nucleic Acid Ther. 2016;26(3):166–172.
  • Zhang Y, Yu Z, Jiang F, et al. Two DNA aptamers against avian influenza H9N2 virus prevent viral infection in cells. PLoS One. 2015; 10(3): e0123060 .
  • Woo HM, Lee JM, Yim S, et al. Isolation of single stranded DNA aptamers that distinguish influenza virus hemagglutinin subtype H1 from H5. PLoS One. 2015;10(4):e0125060.
  • Diba FS, Kim S, Lee HJ, Amperometric bioaffinity sensing platform for avian influenza virus proteins with aptamer modified gold nanoparticles on carbon chips. 2015;Biosens Bio electron. 72:355–361. 10.1016/j.bios.2015.05.020
  • Lee JM, Kim JW, Ryu I, et al. An aptamer based electrochemical sensor that can distinguish influenza virus subtype H1 from H5. J Microbiol Biotechnol. 2017;27(11):2037–2043.
  • Fu Y, Callaway Z, Lum J, et al. Exploiting enzyme catalysis in ultra low ion strength media for impedance biosensing of avian influenza virus using a bare interdigitated electrode. Anal Chem. 2014;86(4):1965–1971.
  • Tseng YT, Wang CH, Chang CP, et al. Integrated microfluidic system for rapid detection of influenza H1N1 virus using a sandwich based aptamer assay. Biosens Bioelectron. 2016;82:105–111.
  • Lu PH, Ma YD, Fu CY, et al. Bin Lee, A structure free digital microfluidic platform for detection of influenza a virus by using magnetic beads and electromagnetic forces. Lab Chip. 2020;20(4):789–797.
  • Kukushkin VI, Ivanov NM, Novoseltseva AA, et al. Highly sensitive detection of influenza virus with SERS aptasensor. PLoS One. 2019;14(4):e0216247.
  • Kushwaha A, Takamura Y, Nishigaki K, et al. Competitive non SELEX for the selective and rapid enrichment of DNA aptamers and its use in electrochemical aptasensor. Sci Rep. 2019; 9(1).
  • Lee BH, Nguyen VT, Gu MB. Highly sensitive detection of 25 HydroxyvitaminD3 by using a target induced displacement of aptamer. Biosens Bioelectron. 2017;88:174–180.
  • Park JW, Tatavarty R, Kim DW, et al. Immobilization free screening of aptamers as sisted by graphene oxide. Chem Commun. 2012;48(15):2071–2073.
  • Kim SH, Lee J, Lee BH, et al. Specific detection of avian influenza H5N2 whole virus par ticles on lateral flow strips using a pair of sandwich type aptamers. Biosens Bioelectron. 2019;134:123–129.
  • Kang J, Yeom G, Jang H, et al. Development of replication protein a conjugated gold nanoparticles for highly sensitive detection of disease biomarkers. Anal Chem. 2019;91(15):10001–10007.
  • Kirkegaard J, Rozlosnik N. Screen printed all polymer aptasensor for impedance based detection of influenza A virus. Methods Mol Biol. 2017:1572:55–70 .
  • Hushegyi A, Pihíková D, Bertok T, et al. Ultrasensitive detection of influenza viruses with a glycan based impedimetric biosensor. Biosens Bioelectron. 2016;79:644–649.
  • Pang Y, Rong Z, Wang J, et al. A fluorescent aptasensor for H5N1 influenza virus detec tion based on the core shell nanoparticles metal enhanced fluorescence (MEF). Biosens Bioelectron. 2015;66:527–532.
  • Lum J, Wang R, Hargis B, et al. An impedance aptasensor with microfluidic chips for specific detection of H5N1 avian influenza virus. Sensors. 2015;15(8):18565–18578. (Switzerland).
  • Lai HC, Wang CH, Liou TM, et al. Influenza A virus specific aptamers screened by using an integrated microfluidic system. Lab Chip. 2014;14(12):2002–2013.
  • Wang R, Li Y. Hydrogel based QCM aptasensor for detection of avian influenza virus. Biosens Bioelectron. 2013:(42):148–55
  • Wang R, Zhao J, Jiang T, et al. Selection and characterization of DNA aptamers for use in detection of avian influenza virus H5N1. J Virol Methods. 2013:189(2): 362–369.
  • Bai C, Lu Z, Jiang H, et al. Aptamer selection and application in multivalent binding based electrical impedance detection of inactivated H1N1 virus. Biosens Bioelectron. 2018;110:162–167.
  • Wang CH, Chang CP, Lee G. Integrated microfluidic device using a single universal aptamer to detect multiple types of influenza viruses. Biosens Bioelectron. 2016;86:247–254.
  • Karash S, Wang R, Kelso L, et al. Rapid detection of avian influenza virus H5N1 in chicken tracheal samples using an impedance aptasensor with gold nanoparticles for signal amplification. J Virol Methods. 2016;236:147–156.
  • Liu G, Li J, Feng DQ, et al. Silver nanoclusters beacon as stimuli responsive versatile platform for multiplex DNAs detection and aptamer substrate complexes sensing. Anal Chem. 2017 :89(1): 1002–1008 .
  • Li Y, Wang R. Aptasensors for detection of avian influenza virus H5N1. Methods Mol Biol. 2017; 1572: 379–402 .
  • Bai H, Wang R, Hargis B, et al. A SPR aptasensor for detection of avian influenza virus H5N1. Sensors. 2012;12(9):12506–12518. (Switzerland).
  • Chen H, Park SG, Choi N, et al. SERS imaging based aptasensor for ultrasensitive and reproducible detection of influenza virus A. Biosens Bioelectron. 2020;167: 32818752– 32818752.
  • Zhao Q, Du P, Wang X, et al. Upconversion fluorescence resonance energy transfer aptasensors for H5N1 influenza virus detection. ACS omega. 2021;6(23):15236–15245.
  • Gribanyov D, Zhdanov G, Olenin A, et al. SERS based colloidal aptasensors for quan titative.J. Virol. Methods. 2016;236:147–156 .
  • Gautam V, Kumar A, Kumar R et al. Silicon nanowires/reduced graphene oxide nanocomposite based novel sensor platform for detection of cyclohexane and formaldehyde. Materials Science in Semiconductor Processing, 2021;123:105571. DOI: 10.1016/j.mssp.2020.105571
  • Gautam V, Kumar A, Kumar Ret al. Ultrafast trace-level detection of methyl nicotinate biomarker using TiO2/SiNWs nanocomposite-based sensing platform. J Mater Sci: Mater Electron, 2022;33(6):3411–3423. DOI: 10.1007/s10854-021-07538-2
  • Kumar R, Nagpal S, Kaushik S et al. COVID-19 diagnostic approaches: different roads to the same destination. VirusDis. 2020;31(2):97–105. DOI: 10.1007/s13337-020-00599-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.