225
Views
2
CrossRef citations to date
0
Altmetric
Review

Challenges in diagnosing hydatidiform moles: a review of promising molecular biomarkers

, , , &
Pages 783-796 | Received 10 Apr 2022, Accepted 24 Aug 2022, Published online: 05 Sep 2022

References

  • Hui P, Buza N, Murphy KM, et al. Hydatidiform moles: genetic basis and precision diagnosis. Annu Rev Pathol -Mech. 2017;12(1):449–485.
  • Wallace DC, Surti U, Adams CW, et al. Complete moles have paternal chromosomes but maternal mitochondrial DNA. Hum Genet. 1982;61(2):145–147.
  • Azuma C, Saji F, Tokugawa Y, et al. Application of gene amplification by polymerase chain reaction to genetic analysis of molar mitochondrial DNA: the detection of anuclear empty ovum as the cause of complete mole. Gynecol Oncol. 1991 Jan;40(1):29–33.
  • Fisher RA, Maher GJ. Genetics of gestational trophoblastic disease. Best Pract Res Clin Obstet Gynaecol. 2021 Jul;74:29–41.
  • Murdoch S, Djuric U, Mazhar B, et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet. 2006 Mar;38(3):300–302.
  • Qian J, Deveault C, Bagga R, et al. Women heterozygous for NALP7/NLRP7 mutations are at risk for reproductive wastage: report of two novel mutations. Hum Mutat. 2007 Jul;28(7):741.
  • Reddy R, Akoury E, Phuong Nguyen NM, et al. Report of four new patients with protein-truncating mutations in C6orf221/KHDC3L and colocalization with NLRP7. Eur J Hum Genet. 2013 Sep;21(9):957–964.
  • Bifulco C, Johnson C, Hao L, et al. Genotypic analysis of hydatidiform mole: an accurate and practical method of diagnosis. Am J Surg Pathol. 2008 Mar;32(3):445–451.
  • Savage P, Sebire N, Dalton T, et al. Partial molar pregnancy after intracytoplasmic sperm injection occurring as a result of diploid sperm usage. J Assist Reprod Genet. 2013 Jun;30(6):761–764.
  • Surti U, Szulman AE, Wagner K, et al. Tetraploid partial hydatidiform moles: two cases with a triple paternal contribution and a 92,XXXY karyotype. Hum Genet. 1986 Jan;72(1):15–21.
  • Bynum J, Batista D, Xian R, et al. Tetraploid partial hydatidiform moles: molecular genotyping and determination of parental contributions. J Mol Diagn. 2020 Jan;22(1):90–100.
  • Berkowitz RS, Goldstein DP. Clinical practice. Molar pregnancy. N Engl J Med. 2009 Apr 16;360(16):1639–1645.
  • Seckl MJ, Sebire NJ, Berkowitz RS. Gestational trophoblastic disease. Lancet. 2010 Aug 28;376(9742):717–729.
  • Eagles N, Sebire NJ, Short D, et al. Risk of recurrent molar pregnancies following complete and partial hydatidiform moles. Hum Reprod. 2015 Sep;30(9):2055–2063.
  • Zheng X-Z, Qin X-Y, Chen S-W, et al. Heterozygous/dispermic complete mole confers a significantly higher risk for post-molar gestational trophoblastic disease. Mod Pathol. 2020 Oct;33(10):1979–1988.
  • Banet N, DeScipio C, Murphy KM, et al. Characteristics of hydatidiform moles: analysis of a prospective series with p57 immunohistochemistry and molecular genotyping. Mod Pathol. 2014 Feb;27(2):238–254.
  • Ronnett BM. Hydatidiform moles: ancillary techniques to refine diagnosis. Arch Pathol Lab Med. 2018 Dec;142(12):1485–1502.
  • King JR, Wilson ML, Hetey S, et al. Dysregulation of placental functions and immune pathways in complete hydatidiform moles. Int J Mol Sci. 2019 Oct 10;20(20):4999.
  • Ngan HYS, Seckl MJ, Berkowitz RS, et al. Diagnosis and management of gestational trophoblastic disease: 2021 update. Int J Gynaecol Obstet. 2021 Oct;155 Suppl 1(S1):86–93.
  • Jauniaux E, Nicolaides KH. Early ultrasound diagnosis and follow-up of molar pregnancies. Ultrasound Obstet Gynecol. 1997 Jan;9(1):17–21.
  • Chan S, Grant EG, Chen FK, et al. Early first-trimester appearance of a hydatidiform mole on sonography: the “snowball.” Sign. J Ultrasound Med. 2016 Jul;35(7):1610–1612.
  • Jauniaux E, Memtsa M, Johns J, et al. New insights in the pathophysiology of complete hydatidiform mole. Placenta. 2018 Feb;62:28–33.
  • Johns J, Greenwold N, Buckley S, et al. A prospective study of ultrasound screening for molar pregnancies in missed miscarriages. Ultrasound Obstet Gynecol. 2005 May;25(5):493–497.
  • Memtsa M, Johns J, Jurkovic D, et al. Diagnosis and outcome of hydatidiform moles in missed-miscarriage: a cohort-study, systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2020 Oct;253:206–212.
  • Fowler DJ, Lindsay I, Seckl MJ, et al. Routine pre-evacuation ultrasound diagnosis of hydatidiform mole: experience of more than 1000 cases from a regional referral center. Ultrasound Obstet Gynecol. 2006 Jan;27(1):56–60.
  • Kirk E, Papageorghiou AT, Condous G, et al. The accuracy of first trimester ultrasound in the diagnosis of hydatidiform mole. Ultrasound Obstet Gynecol. 2007 Jan;29(1):70–75.
  • Jauniaux E, Memtsa M, Johns J, et al. Ultrasound diagnosis of complete and partial hydatidiform moles in early pregnancy failure: an inter-observer study. Placenta. 2020 Aug;97:65–67.
  • Fukunaga M, Katabuchi H, Nagasaka T, et al. Interobserver and intraobserver variability in the diagnosis of hydatidiform mole. Am J Surg Pathol. 2005 Jul;29(7):942–947.
  • Sarmadi S, Izadi-Mood N, Sanii S, et al. Inter-observer variability in the histologic criteria of diagnosis of hydatidiform moles. Malays J Pathol. 2019 Apr;41(1):15–24.
  • Maisenbacher MK, Merrion K, Kutteh WH. Single-nucleotide polymorphism microarray detects molar pregnancies in 3% of miscarriages. Fertil Steril. 2019 Oct;112(4):700–706.
  • Hui P, Martel M, Parkash V. Gestational trophoblastic diseases: recent advances in histopathologic diagnosis and related genetic aspects. Adv Anat Pathol. 2005 May;12(3):116–125.
  • McConnell TG, Murphy KM, Hafez M, et al. Diagnosis and subclassification of hydatidiform moles using p57 immunohistochemistry and molecular genotyping: validation and prospective analysis in routine and consultation practice settings with development of an algorithmic approach. Am J Surg Pathol. 2009 Jun;33(6):805–817.
  • Lelic M, Fatusic Z, Iljazovic E, et al. Challenges in the routine praxis diagnosis of hydatidiform mole: a tertiary health center experience. Med Arch. 2017 Aug;71(4):256–260.
  • Buza N, Hui P. Partial hydatidiform mole: histologic parameters in correlation with DNA genotyping. Int J Gynecol Pathol. 2013 May;32(3):307–315.
  • Ishikawa N, Harada Y, Tokuyasu Y, et al. Re-evaluation of the histological criteria for complete hydatidiform mole: comparison with the immunohistochemical diagnosis using p57KIP2 and CD34. Biomed Res. 2009 Jun;30(3):141–147.
  • Castrillon DH, Sun D, Weremowicz S, et al. Discrimination of complete hydatidiform mole from its mimics by immunohistochemistry of the paternally imprinted gene product p57KIP2. Am J Surg Pathol. 2001 Oct;25(10):1225–1230.
  • Kaur B, Sebire NJ. p57(KIP2) immunostaining for diagnosis of hydatidiform mole. Bjog. 2018 Sep;125(10):1234.
  • Fisher RA, Hodges MD, Rees HC, et al. The maternally transcribed gene p57(KIP2) (CDNK1C) is abnormally expressed in both androgenetic and biparental complete hydatidiform moles. Hum Mol Genet. 2002 Dec 15;11(26):3267–3272.
  • Lewis GH, DeScipio C, Murphy KM, et al. Characterization of androgenetic/biparental mosaic/chimeric conceptions, including those with a molar component: morphology, p57 immnohistochemistry, molecular genotyping, and risk of persistent gestational trophoblastic disease. Int J Gynecol Pathol. 2013 Mar;32(2):199–214.
  • Gaillot-Durand L, Patrier S, Aziza J, et al. p57-discordant villi in hydropic products of conception: a clinicopathological study of 70 cases. Hum Pathol. 2020 Jul;101:18–30.
  • Murphy KM, Carrick K, Gwin K, et al. Rare complete hydatidiform mole with p57 expression in villous mesenchyme: case report and review of discordant p57 expression in hydatidiform moles. Int J Gynecol Pathol. 2022 Jan 1;41(1):45–50.
  • Xing D, Adams E, Huang J, et al. Refined diagnosis of hydatidiform moles with p57 immunohistochemistry and molecular genotyping: updated analysis of a prospective series of 2217 cases. Mod Pathol. 2021 May;34(5):961–982.
  • Sebire NJ, May PC, Kaur B, et al. Abnormal villous morphology mimicking a hydatidiform mole associated with paternal trisomy of chromosomes 3,7,8 and unipaternal disomy of chromosome 11. Diagn Pathol. 2016 Feb 4;11(1):20.
  • Buza N, McGregor SM, Barroilhet L, et al. Paternal uniparental isodisomy of tyrosine hydroxylase locus at chromosome 11p15.4: spectrum of phenotypical presentations simulating hydatidiform moles. Mod Pathol. 2019 Jul;32(8):1180–1188.
  • Xing D, Miller K, Beierl K, et al. Loss of p57 expression in conceptions other than complete hydatidiform mole: a case series with emphasis on the etiology, genetics, and clinical significance. Am J Surg Pathol. 2022 Jan 1;46(1):18–32.
  • Buza N, Hui P. Genotyping diagnosis of gestational trophoblastic disease: frontiers in precision medicine. Mod Pathol. 2021 Sep;34(9):1658–1672.
  • Lipata F, Parkash V, Talmor M, et al. Precise DNA genotyping diagnosis of hydatidiform mole. Obstet Gynecol. 2010 Apr;115(4):784–794.
  • Furtado LV, Paxton CN, Jama MA, et al. Diagnostic utility of microsatellite genotyping for molar pregnancy testing. Arch Pathol Lab Med. 2013 Jan;137(1):55–63.
  • Colgan TJ, Chang MC, Nanji S, et al. DNA genotyping of suspected partial hydatidiform moles detects clinically significant aneuploidy. Int J Gynecol Pathol. 2017 May;36(3):217–221.
  • Chen KH, Hsu SC, Chen HY, et al. Utility of fluorescence in situ hybridization for ploidy and p57 immunostaining in discriminating hydatidiform moles. Biochem Biophys Res Commun. 2014 Apr 4;446(2):555–560.
  • Wong YP, Chia WK, Selimin A, et al. Diagnostic utility of p57 immunohistochemistry and DNA ploidy analysis by fluorescence in situ hybridisation in hydatidiform moles. Malays J Pathol. 2021 Dec;43(3):341–351.
  • Khawajkie Y, Mechtouf N, Nguyen P, et al. Microsatellite DNA genotyping and flow cytometry ploidy analyses of formalin-fixed paraffin-embedded hydatidiform molar tissues. J Vis Exp. 2019 Oct;20(152):e60366.
  • Fallahian M, Sebire NJ, Savage PM, et al. Mutations in NLRP7 and KHDC3L confer a complete hydatidiform mole phenotype on digynic triploid conceptions. Hum Mutat. 2013 Feb;34(2):301–308.
  • Buza N, Hui P. Egg donor pregnancy: a potential pitfall in DNA genotyping diagnosis of hydatidiform moles. Int J Gynecol Pathol. 2014 Sep;33(5):507–510.
  • Joseph NM, Pineda C, Rabban JT. DNA genotyping of nonmolar donor egg pregnancies with abnormal villous morphology: allele zygosity patterns prevent misinterpretation as complete hydatidiform mole. Int J Gynecol Pathol. 2018 Mar;37(2):191–197.
  • Xie Y, Pei X, Dong Y, et al. Single nucleotide polymorphism-based microarray analysis for the diagnosis of hydatidiform moles. Mol Med Rep. 2016 Jul;14(1):137–144.
  • Ostrzega N, Phillipson J, Liu P. Proliferative activity in placentas with hydropic change and hydatidiform mole as detected by Ki-67 and proliferating cell nuclear antigen immunostaining. Am J Clin Pathol. 1998 Dec;110(6):776–781.
  • Erfanian M, Sharifi N, Omidi AA. P63 and Ki-67 expression in trophoblastic disease and spontaneous abortion. J Res Med Sci. 2009 Nov;14(6):375–384.
  • Chen Y, Shen D, Gu Y, et al. The diagnostic value of Ki-67, P53 and P63 in distinguishing partial hydatidiform mole from hydropic abortion. Wien Klin Wochenschr. 2012 Mar;124(5–6):184–187.
  • Moussa RA, Eesa AN, Abdallah ZF, et al. Diagnostic utility of Twist1, Ki-67, and E-cadherin in diagnosing molar gestations and hydropic abortions. Am J Clin Pathol. 2018 Mar 29;149(5):442–455.
  • Missaoui N, Landolsi H, Mestiri S, et al. Immunohistochemical analysis of c-erbB-2, Bcl-2, p53, p21(WAF1/Cip1), p63 and Ki-67 expression in hydatidiform moles. Pathol Res Pract. 2019 Mar;215(3):446–452.
  • Alwaqfi R, Chang MC, Colgan TJ. Does Ki-67 have a role in the diagnosis of placental molar disease? Int J Gynecol Pathol. 2020 Jan;39(1):1–7.
  • Zhao Y, Xiong GW, Zhang XW, et al. Is Ki-67 of diagnostic value in distinguishing between partial and complete hydatidiform moles? A systematic review and meta-analysis. Anticancer Res. 2018 Feb;38(2):1105–1110.
  • Giacometti C, Bellan E, Ambrosi A, et al. “While there is p57, there is hope.” The past and the present of diagnosis in first trimester abortions: diagnostic dilemmas and algorithmic approaches. A review. Placenta. 2021 Dec;116:31–37.
  • Tucci V, Isles AR, Kelsey G, et al. Genomic imprinting and physiological processes in mammals. Cell. 2019 Feb 21;176(5):952–965.
  • Lund H, Nyegaard M, Svarrer T, et al. A major imprinted gene involved in hydatidiform mole is not located in 2q31.2-qter or 5q34-qter. Gene. 2012 Apr 15;497(2):280–284.
  • Sunde L, Lund H, Js N, et al. Paternal hemizygosity in 11p15 in mole-like conceptuses: two case reports. Medicine (Baltimore). 2015 Nov;94(44):e1776.
  • Saxena A, Frank D, Panichkul P, et al. The product of the imprinted gene IPL marks human villous cytotrophoblast and is lost in complete hydatidiform mole. Placenta. 2003 Sep-Oct;24(8–9):835–842.
  • Wake N, Takao T, Asanoma K, et al. Establishment of a new diagnostic method for hydropic villi by using TSSC3 antibody. J Obstet Gynaecol Res. 2013 Jul;39(7):1230–1235.
  • Huang TC, Chang KC, Chang JY, et al. Variants in maternal effect genes and relaxed imprinting control in a special placental mesenchymal dysplasia case with mild trophoblast hyperplasia. Biomedicines. 2021 May 13;9(5):544.
  • Begemann M, Rezwan FI, Beygo J, et al. Maternal variants in NLRP and other maternal effect proteins are associated with multilocus imprinting disturbance in offspring. J Med Genet. 2018 Jul;55(7):497–504.
  • Nguyen NMP, Khawajkie Y, Mechtouf N, et al. The genetics of recurrent hydatidiform moles: new insights and lessons from a comprehensive analysis of 113 patients. Mod Pathol. 2018 Jul;31(7):1116–1130.
  • Zhu K, Yan L, Zhang X, et al. Identification of a human subcortical maternal complex. Mol Hum Reprod. 2015 Apr;21(4):320–329.
  • Monk D, Sanchez-Delgado M, Fisher R. NLRPs, the subcortical maternal complex and genomic imprinting. Reproduction. 2017 Dec;154(6):R161–R170.
  • Rezaei M, Suresh B, Bereke E, et al. Novel pathogenic variants in NLRP7, NLRP5, and PADI6 in patients with recurrent hydatidiform moles and reproductive failure. Clin Genet. 2021 Jun;99(6):823–828.
  • Hayward BE, De Vos M, Talati N, et al. Genetic and epigenetic analysis of recurrent hydatidiform mole. Hum Mutat. 2009 May;30(5):E629–39.
  • Parry DA, Logan CV, Hayward BE, et al. Mutations causing familial biparental hydatidiform mole implicate c6orf221 as a possible regulator of genomic imprinting in the human oocyte. Am J Hum Genet. 2011 Sep 9;89(3):451–458.
  • Qian J, Cheng Q, Murdoch S, et al. The genetics of recurrent hydatidiform moles in China: correlations between NLRP7 mutations, molar genotypes and reproductive outcomes. Mol Hum Reprod. 2011 Oct;17(10):612–619.
  • Qian J, Nguyen NMP, Rezaei M, et al. Biallelic PADI6 variants linking infertility, miscarriages, and hydatidiform moles. Eur J Hum Genet. 2018 Jul;26(7):1007–1013.
  • Demond H, Anvar Z, Jahromi BN, et al. A KHDC3L mutation resulting in recurrent hydatidiform mole causes genome-wide DNA methylation loss in oocytes and persistent imprinting defects post-fertilisation. Genome Med. 2019 Dec 17;11(1):84.
  • Alazami AM, Awad SM, Coskun S, et al. TLE6 mutation causes the earliest known human embryonic lethality. Genome Biol. 2015 Nov 5;16(1):240.
  • Xu Y, Shi Y, Fu J, et al. Mutations in PADI6 cause female infertility characterized by early embryonic arrest. Am J Hum Genet. 2016 Sep 1;99(3):744–752.
  • Mu J, Wang W, Chen B, et al. Mutations in NLRP2 and NLRP5 cause female infertility characterised by early embryonic arrest. J Med Genet. 2019 Jul;56(7):471–480.
  • Xu Y, Qian Y, Liu Y, et al. A novel homozygous variant in NLRP5 is associate with human early embryonic arrest in a consanguineous Chinese family. Clin Genet. 2020 Jul;98(1):69–73.
  • Zhao JR, Cheng WW, Wang YX, et al. Identification of microRNA signature in the progression of gestational trophoblastic disease. Cell Death Dis. 2018 Jan 24;9(2):94.
  • Lin LH, Maesta I, St Laurent JD, et al. Distinct microRNA profiles for complete hydatidiform moles at risk of malignant progression. Am J Obstet Gynecol. 2021 Apr;224(4):372 e1–372 e30.
  • Na Q, Wang D, Song W. Underexpression of 4 placenta-associated microRNAs in complete hydatidiform moles. Int J Gynecol Cancer. 2012 Jul;22(6):1075–1080.
  • Wang YX, Zhao JR, Xu YY, et al. miR-21 is overexpressed in hydatidiform mole tissues and promotes proliferation, migration, and invasion in choriocarcinoma cells. Int J Gynecol Cancer. 2017 Feb;27(2):364–374.
  • Guo Z, Sui L, Qi J, et al. miR-196b inhibits cell migration and invasion through targeting MAP3K1 in hydatidiform mole. Biomed Pharmacother. 2019 May;113:108760.
  • Guo Z, Sun Q, Liao Y, et al. MiR-30a-5p inhibits proliferation and metastasis of hydatidiform mole by regulating B3GNT5 through ERK/AKT pathways. J Cell Mol Med. 2020 Aug;24(15):8350–8362.
  • Hasegawa Y, Miura K, Furuya K, et al. Identification of complete hydatidiform mole pregnancy-associated microRNAs in plasma. Clin Chem. 2013 Sep;59(9):1410–1412.
  • Morales-Prieto DM, Ospina-Prieto S, Chaiwangyen W, et al. Pregnancy-associated miRNA-clusters. J Reprod Immunol. 2013 Mar;97(1):51–61.
  • Szilagyi M, Pos O, Marton E, et al. Circulating cell-free nucleic acids: main characteristics and clinical application. Int J Mol Sci. 2020 Sep 17;21(18):6827.
  • Ignatiadis M, Sledge GW, Jeffrey SS. Liquid biopsy enters the clinic - implementation issues and future challenges. Nat Rev Clin Oncol. 2021 May;18(5):297–312.
  • Gabra MG, Gonzalez MG, Bullock HN, et al. Cell-free DNA as an addition to ultrasound for screening of a complete hydatidiform mole and coexisting normal fetus pregnancy: a case report. AJP Rep. 2020 Apr;10(2):e176–e178.
  • Openshaw MR, Harvey RA, Sebire NJ, et al. Circulating cell free DNA in the diagnosis of trophoblastic tumors. EBioMedicine. 2016 Feb;4:146–152.
  • Bolze PA, Slim R. Circulating tumor DNA: a potential novel diagnostic approach in gestational trophoblastic neoplasia. EBioMedicine. 2016 Feb;4:11–12.
  • Bolze PA, Patrier S, Massardier J, et al. PD-L1 expression in premalignant and malignant trophoblasts from gestational trophoblastic diseases is ubiquitous and independent of clinical outcomes. Int J Gynecol Cancer. 2017 Mar;27(3):554–561.
  • Lu B, Teng X, Fu G, et al. Analysis of PD-L1 expression in trophoblastic tissues and tumors. Hum Pathol. 2019 Feb;84:202–212.
  • Inaguma S, Wang Z, Lasota J, et al. Comprehensive Immunohistochemical study of programmed cell death ligand 1 (PD-L1): analysis in 5536 cases revealed consistent expression in trophoblastic tumors. Am J Surg Pathol. 2016 Aug;40(8):1133–1142.
  • Veras E, Kurman RJ, Wang TL, et al. PD-L1 expression in human placentas and gestational trophoblastic diseases. Int J Gynecol Pathol. 2017 Mar;36(2):146–153.
  • Brinkman-Van der Linden EC, Hurtado-Ziola N, Hayakawa T, et al. Human-specific expression of Siglec-6 in the placenta. Glycobiology. 2007 Sep;17(9):922–931.
  • Rumer KK, Post MD, Larivee RS, et al. Siglec-6 is expressed in gestational trophoblastic disease and affects proliferation, apoptosis and invasion. Endocr Relat Cancer. 2012 Dec;19(6):827–840.
  • Luchini C, Parcesepe P, Nottegar A, et al. CD71 in gestational pathology: a versatile immunohistochemical marker with new possible applications. Appl Immunohistochem Mol Morphol. 2016 Mar;24(3):215–220.
  • Nili F, Babazadeh S, Sarmadi S, et al. Diagnostic value of glycophorin-A in comparison with P57 immunohistochemical staining method in differentiating complete and partial molar pregnancies. Ann Diagn Pathol. 2021 Aug;53:151769.
  • Zuo Q, Huang S, Zou Y, et al. The Lnc RNA SPRY4-it1 modulates trophoblast cell invasion and migration by affecting the epithelial-mesenchymal transition. Sci Rep. 2016 Nov 17;6(1):37183.
  • Shen XY, Zheng LL, Huang J, et al. CircTRNC18 inhibits trophoblast cell migration and epithelial-mesenchymal transition by regulating miR-762/Grhl2 pathway in pre-eclampsia. RNA Biol. 2019 Nov;16(11):1565–1573.
  • Illsley NP, DaSilva-Arnold SC, Zamudio S, et al. Trophoblast invasion: lessons from abnormally invasive placenta (placenta accreta). Placenta. 2020 Dec;102:61–66.
  • Shih IM, Hsu MY, Oldt RJ, 3rd, et al. The role of E-Cadherin in the motility and invasion of implantation site intermediate trophoblast. Placenta. 2002 Nov;2310:706–715.
  • Candelier JJ, Frappart L, Diatta AL, et al. Differential expression of E-cadherin, beta-catenin, and Lewis x between invasive hydatidiform moles and post-molar choriocarcinomas. Virchows Arch. 2013 Jun;462(6):653–663.
  • Wang J, Zhao M, Xiao J, et al. E-Cadherin, CD44v6, and insulin-like growth factor-II mRNA-binding protein 3 expressions in different stages of hydatidiform moles. J Biochem Mol Toxicol. 2016 Sep;30(9):455–461.
  • Erol O, Suren D, Tutus B, et al. Immunohistochemical analysis of e-cadherin, p53 and inhibin-alpha expression in hydatidiform mole and hydropic abortion. Pathol Oncol Res. 2016 Jul;22(3):515–521.
  • Luchini C, Parcesepe P, Mafficini A, et al. Specific expression patterns of epithelial to mesenchymal transition factors in gestational molar disease. Placenta. 2015 Nov;36(11):1318–1324.
  • Gong Y, Woda BA, Jiang Z. Oncofetal protein IMP3, a new cancer biomarker. Adv Anat Pathol. 2014 May;21(3):191–200.
  • Imamura H, Ohishi Y, Aman M, et al. Ovarian high-grade serous carcinoma with a noninvasive growth pattern simulating a serous borderline tumor. Hum Pathol. 2015 Oct;46(10):1455–1463.
  • Wu C, Ma H, Qi G, et al. Insulin-like growth factor II mRNA-binding protein 3 promotes cell proliferation, migration and invasion in human glioblastoma. Onco Targets Ther. 2019;12:3661–3670.
  • Wagner DE, Weinreb C, Collins ZM, et al. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science. 2018 Jun 1;360(6392):981–987.
  • Marx V. A dream of single-cell proteomics. Nat Methods. 2019 Sep;16(9):809–812.
  • Huang C, Xiang Z, Zhang Y, et al. Using deep learning in a monocentric study to characterize maternal immune environment for predicting pregnancy outcomes in the recurrent reproductive failure patients. Front Immunol. 2021;12:642167.
  • Lund H, Vyberg M, Eriksen HH, et al. Decreasing incidence of registered hydatidiform moles in Denmark 1999-2014. Sci Rep. 2020 Oct 12;10(1):17041.
  • Hemmatzadeh M, Shomali N, Yousefzadeh Y, et al. MicroRNAs: small molecules with a large impact on pre-eclampsia. J Cell Physiol. 2020 Apr;235(4):3235–3248.
  • Elbracht M, Mackay D, Begemann M, et al. Disturbed genomic imprinting and its relevance for human reproduction: causes and clinical consequences. Hum Reprod Update. 2020 Feb 28;26(2):197–213.
  • Li L, Lu X, Dean J. The maternal to zygotic transition in mammals. Mol Aspects Med. 2013 Oct;34(5):919–938.
  • Singhal S, Rolfo C, Maksymiuk AW, et al. Liquid biopsy in lung cancer screening: the contribution of metabolomics. Results of a pilot study. Cancers (Basel). 2019 Jul 29;11(8):1069.
  • Chen Y, He B, Liu Y, et al. Maternal plasma lipids are involved in the pathogenesis of preterm birth. Gigascience. 2022 Feb 15;11:giac004.
  • Jiang B, Zhang J, Sun X, et al. Circulating exosomal hsa_circRNA_0039480 is highly expressed in gestational diabetes mellitus and may be served as a biomarker for early diagnosis of GDM. J Transl Med. 2022 Jan 3;20(1):5.
  • Ying X, Jin X, Zhu Y, et al. Exosomes released from decidual macrophages deliver miR-153-3p, which inhibits trophoblastic biological behavior in unexplained recurrent spontaneous abortion. Int Immunopharmacol. 2020 Nov;88:106981.
  • Gao P, Zha Y, Wei L, et al. G-CSF: a vehicle for communication between trophoblasts and macrophages which may cause problems in recurrent spontaneous abortion. Placenta. 2022 Mar 26;121:164–172.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.