180
Views
0
CrossRef citations to date
0
Altmetric
Review

Diagnosis of echinococcosis by detecting circulating cell-free DNA and miRNA

, , ORCID Icon &
Pages 133-142 | Received 13 Nov 2022, Accepted 07 Feb 2023, Published online: 18 Feb 2023

References

  • da Silva AM. Human echinococcosis: a neglected disease. Gastroenterol Res Pract. 2010;2010:1–9.
  • Casulli A, Siles-Lucas M, Tamarozzi F. Echinococcus granulosus sensu lato. Trends Parasitol. 2019;35(8):663–664.
  • Casulli A, Barth TF, Tamarozzi F. Echinococcus multilocularis. Trends Parasitol. 2019;35(9):738–739.
  • McManus DP, Gray DJ, Zhang W, et al. Diagnosis, treatment, and management of echinococcosis. Bmj. 2012;11:344.
  • Torgerson P, Budke C. Echinococcosis–an international public health challenge. Res Vet Sci. 2003;74(3):191–202.
  • Holcman B, Heath DD. The early stages of Echinococcus granulosus development. Acta Trop. 1997;64(1–2):5–17.
  • Wen H, Vuitton L, Tuxun T, et al. Echinococcosis: advances in the 21st century. Clin Microbiol Rev. 2019;32:2.
  • Brunetti E, Junghanss T. Update on cystic hydatid disease. Curr Opin Infect Dis. 2009;22(5):497–502.
  • Brunetti E, Kern P, Vuitton DA. Expert consensus for the diagnosis and treatment of cystic and alveolar echinococcosis in humans. Acta Trop. 2010;114(1):1–16.
  • McManus DP, Zhang,W., Li,J., et al. Echinococcosis. Lancet. 2003;362(9392):1295–1304.
  • Polat P, Kantarci,M., Alper,F., et al. Hydatid disease from head to toe. Radiographics. 2003;23(2):475–494.
  • Garbi H, Hassine,W, Brauner,M W., et al. Ultrasound examination of the hydatid liver. Radiology. 1981;139(2):459–463.
  • Stojkovic M, Weber TF, Junghanss T. Clinical management of cystic echinococcosis: state of the art and perspectives. Curr Opin Infect Dis. 2018;31(5):383–392.
  • Grüner B, Schmidberger J, Drews O, et al. Imaging in alveolar echinococcosis (AE): comparison of Echinococcus multilocularis classification for computed-tomography (EMUC-CT) and ultrasonography (EMUC-US). Radiol Infect Dis. 2017;4(2):70–77.
  • Brunetti E, Tamarozzi F, Macpheson C, et al. Ultrasound and cystic echinococcosis. Ultrasound Int Open. 2018;4(3):E70.
  • Cattaneo F, Graffeo M, Brunetti E. Extrahepatic textiloma long misdiagnosed as calcified echinococcal cyst. Case Rep Gastrointest Med. 2013;2013:1–5.
  • Engler A, Shi I, Beer M, et al. Simple liver cysts and cystoid lesions in hepatic alveolar echinococcosis: a retrospective cohort study with Hounsfield analysis. Parasite. 2019;26.
  • Tamarozzi F, Silva R, Fittipaido VA, et al. Serology for the diagnosis of human hepatic cystic echinococcosis and its relation with cyst staging: a systematic review of the literature with meta-analysis. PLoS Negl Trop Dis. 2021;15(4):e0009370.
  • Zhang W, Wen H, Li J, et al. Immunology and immunodiagnosis of cystic echinococcosis: an update. Clin Dev Immunol. 2012;2012:1–10.
  • Zhang W, McManus DP. Recent advances in the immunology and diagnosis of echinococcosis. FEMS Immunol Med Microbiol. 2006;47(1):24–41.
  • Carmena D, Benito A, Eraso E. Antigens for the immunodiagnosis of Echinococcus granulosus infection: an update. Acta Trop. 2006;98(1):74–86.
  • Lissandrin R, Tamarozzi F, Piccoli L, et al. Factors influencing the serological response in hepatic Echinococcus granulosus infection. Am J Trop Med Hyg. 2016;94(1):166–171.
  • Wan Z, Peng X, Ma L, et al. Targeted sequencing of genomic repeat regions detects circulating cell-free echinococcus DNA. PLoS Negl Trop Dis. 2020;14(3):e0008147.
  • Knapp J, Millon L, Mouzon L, et al. Real time PCR to detect the environmental faecal contamination by Echinococcus multilocularis from red fox stools. Vet Parasitol. 2014;201(1–2):40–47.
  • Al-Jawabreh A, et al. Incidence of Echinococcus granulosus in domestic dogs in Palestine as revealed by copro-PCR. PLoS Negl Trop Dis. 2015;9(7):e0003934.
  • Boubaker G, Macchiaroli N, Prada L, et al. A multiplex PCR for the simultaneous detection and genotyping of the Echinococcus granulosus complex. PLoS Negl Trop Dis. 2013;7(1):e2017.
  • Wahlström H, Comin A, Isaksson M, et al. Detection of Echinococcus multilocularis by MC-PCR: evaluation of diagnostic sensitivity and specificity without gold standard. Infect Ecol Epidemiol. 2016;6(1):30173.
  • Knapp J, Ubhang G, Roulle M-L, et al. Development of a real-time PCR for a sensitive one-step coprodiagnosis allowing both the identification of carnivore feces and the detection of Toxocara spp. and Echinococcus multilocularis. Appl Environ Microbiol. 2016;82(10):2950.
  • Boufana B, Umhang G, Qiu J, et al. Development of three PCR assays for the differentiation between Echinococcus shiquicus, E. granulosus (G1 genotype), and E. multilocularis DNA in the co-endemic region of Qinghai-Tibet plateau, China. Am J Trop Med Hyg. 2013;88(4):795–802.
  • Salant H, Abbasi I, Hamburger J. The development of a loop-mediated isothermal amplification method (LAMP) for Echinococcus granulosis coprodetection. Am J Trop Med Hyg. 2012;87(5):883–887.
  • Garo LP, Murugaiyan G. Contribution of MicroRNAs to autoimmune diseases. Cell Mol Life Sci. 2016;73(10):2041–2051.
  • Naveed A, Abdullah S, Naveed MA. A concise review of MicroRNA exploring the insights of MicroRNA regulations in bacterial, viral and metabolic diseases. Mol Biotechnol. 2017;59(11):518–529.
  • Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem. 2015;61(1):112–123.
  • Mandel P. Les acides nucleiques du plasma sanguin chez 1 homme. CR Seances Soc Biol Fil. 1948;142:241–243.
  • Kandel ES. Mutations in circulating mitochondrial DNA: cassandra of oral cancer? Oncotarget. 2012;3(7):664.
  • Figg WD II, Reid J. Monitor tumor burden with circulating tumor DNA. Cancer Biol Ther. 2013;14(8):697–698.
  • Jin D, Xie S, Mo Z, et al. Circulating DNA–important biomarker of cancer. J Mol Biomark Diagnos. 2012;2:2–7.
  • Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11(6):426–437.
  • Perkins G, Yap TA, Pope L, et al. Multi-purpose utility of circulating plasma DNA testing in patients with advanced cancers. PloS one. 2012;7(11):e47020.
  • Jiang P, Lo YD. The long and short of circulating cell-free DNA and the ins and outs of molecular diagnostics. Trends Genet. 2016;32(6):360–371.
  • Snyder MW, Kircher M, Hill AJ, et al. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell. 2016;164(1–2):57–68.
  • Diehl F, Schmidt K, Durkee KH, et al. Analysis of mutations in DNA isolated from plasma and stool of colorectal cancer patients. Gastroenterology. 2008;135(2):489–498. e7.
  • Van der Drift M, Prinsen C, Hol B, et al. Can free DNA be detected in sputum of lung cancer patients? Lung Cancer. 2008;61(3):385–390.
  • Wang Y, Springer S, Zhang M, et al. Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord. Proc Nat Acad Sci. 2015;112(31):9704–9709.
  • Pajek J, Kvender R, Guek A, et al. Cell‐free DNA in the peritoneal effluent of peritoneal dialysis solutions. Therapeutic Apheresis Dialysis. 2010;14(1):20–26.
  • Leon SA, Revach M, Ehrlich GE, et al. DNA in synovial fluid and the circulation of patients with arthritis. Arthritis Rheum. 1981;24(9):1142–1150.
  • Wu D, Chi H, Shaon M, et al. Prenatal diagnosis of Down syndrome using cell-free fetal DNA in amniotic fluid by quantitative fluorescent polymerase chain reaction. Chin Med J (Engl). 2014;127(10):1897–1901.
  • Breitbach S, Tug S, Helmig S, et al. Direct quantification of cell-free, circulating DNA from unpurified plasma. PloS one. 2014;9(3):e87838.
  • Volik S, Alcaide M, Morin RD, et al. Cell-free DNA (cfDNA): clinical significance and utility in cancer shaped by emerging technologies. Mol Cancer Res. 2016;14(10):898–908.
  • Kamat AA, Baidwin M, Urbauer D, et al. Plasma cell‐free DNA in ovarian cancer: an independent prognostic biomarker. Cancer. 2010;116(8):1918–1925.
  • Lo YD, Zhang J, Leung TN, et al. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet. 1999;64(1):218–224.
  • Zhang R, Nakaharia K, Guo X, et al. Very short mitochondrial DNA fragments and heteroplasmy in human plasma. Sci Rep. 2016;6(1):1–10.
  • Mouliere F, Chandrananda D, Piskoz AM, et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. 2018;10:466.
  • Zeerleder S. The struggle to detect circulating DNA. Crit Care. 2006;10(3):1–3.
  • Elshimali YI, Khaddour H, Sarkissyan M, et al. The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci. 2013;14(9):18925–18958.
  • Gahan P, Swaminathan R. Circulating nucleic acids in plasma and serum. Ann N Y Acad Sci. 2008;1137(1):1.
  • Stroun M, Lyautey J, Lederre YC, et al. About the possible origin and mechanism of circulating DNA: apoptosis and active DNA release. Clin Chim Acta. 2001;313(1–2):139–142.
  • Anker P, Stroun M, Maurice PA. Spontaneous release of DNA by human blood lymphocytes as shown in an in vitro system. Cancer Res. 1975;35(9):2375–2382.
  • Norwitz ER, Levy B. Noninvasive prenatal testing: the future is now. Rev Obstet Gynecol. 2013;6(2):48.
  • De Vlaminck I, Valantine HA, Snyder TM, et al. Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection. Sci Transl Med. 2014;6(241):241ra77–241ra77.
  • Schütz E, Fisher A, Beck J, et al. Graft-derived cell-free DNA, a noninvasive early rejection and graft damage marker in liver transplantation: a prospective, observational, multicenter cohort study. PLoS Med. 2017;14(4):e1002286.
  • Snyder TM, Khush kk, valatine HA, et al. Universal noninvasive detection of solid organ transplant rejection. Proc Nat Acad Sci. 2011;108(15):6229–6234.
  • Blauwkamp TA, Thair s, Rosen MJ, et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat Microbiol. 2019;4(4):663–674.
  • Wichmann D, Panning M, Quack T, et al. Diagnosing schistosomiasis by detection of cell-free parasite DNA in human plasma. PLoS Negl Trop Dis. 2009;3(4):e422.
  • Najafabadi ZG, Oormazdi H, Akhlaghi L, et al. Detection of Plasmodium vivax and Plasmodium falciparum DNA in human saliva and urine: loop-mediated isothermal amplification for malaria diagnosis. Acta Trop. 2014;136:44–49.
  • Ximenes C, Brandao E, Oliveira P, et al. Detection of Wuchereria bancrofti DNA in paired serum and urine samples using polymerase chain reaction-based systems. Memórias Inst Oswaldo Cruz. 2014;109:978–983.
  • Lodh N, Naples JM, Bosompem KM, et al. Detection of parasite-specific DNA in urine sediment obtained by filtration differentiates between single and mixed infections of Schistosoma mansoni and S. haematobium from endemic areas in Ghana. PLoS One. 2014;9(3):e91144.
  • Cnops L, Soentjens P, Clerinx J, et al. A Schistosoma haematobium-specific real-time PCR for diagnosis of urogenital schistosomiasis in serum samples of international travelers and migrants. PLoS Negl Trop Dis. 2013;7(8):e2413.
  • Kato-Hayashi N, Yasuda M, Yuasa J, et al. Use of cell-free circulating schistosome DNA in serum, urine, semen, and saliva to monitor a case of refractory imported schistosomiasis hematobia. J Clin Microbiol. 2013;51(10):3435–3438.
  • Kato-Hayashi N, Leonardo LR, Arevalo NL, et al. Detection of active schistosome infection by cell-free circulating DNA of Schistosoma japonicum in highly endemic areas in Sorsogon Province, the Philippines. Acta Trop. 2015;141:178–183.
  • Guo -J-J, Zheng H-J, Xu J, et al. Sensitive and specific target sequences selected from retrotransposons of Schistosoma japonicum for the diagnosis of schistosomiasis. PLoS Negl Trop Dis. 2012;6(3):e1579.
  • Michelet L, Fleury A, Sciutto E, et al. Human neurocysticercosis: comparison of different diagnostic tests using cerebrospinal fluid. J Clin Microbiol. 2011;49(1):195–200.
  • Hernández M, Conzalez L, Fleury A, et al. Neurocysticercosis: detection of Taenia solium DNA in human cerebrospinal fluid using a semi-nested PCR based on HDP2. Ann Trop Med Parasitol. 2008;102(4):317–323.
  • Lucena WA, Dhalia R, Abath FG, et al. Diagnosis of Wuchereria bancrofti infection by the polymerase chain reaction using urine and day blood samples from amicrofilaraemic patients. Trans R Soc Trop Med Hyg. 1998;92(3):290–293.
  • Abbasi I, Githure J, Ochola JJ, et al. Diagnosis of Wuchereria bancrofti infection by the polymerase chain reaction employing patients’ sputum. Parasitol Res. 1999;85(10):844–849.
  • Fuentes I, Kodrigues M, Domingo CJ, et al. Urine sample used for congenital toxoplasmosis diagnosis by PCR. J Clin Microbiol. 1996;34(10):2368–2371.
  • Hohlfeld P, Daffos F, Costa J-M, et al. Prenatal diagnosis of congenital toxoplasmosis with a polymerase-chain-reaction test on amniotic fluid. N Engl J Med. 1994;331(11):695–699.
  • Motazedian M, Fakhar M, Moatazedian MH, et al. A urine-based polymerase chain reaction method for the diagnosis of visceral leishmaniasis in immunocompetent patients. Diagn Microbiol Infect Dis. 2008;60(2):151–154.
  • Fisa Saladrigas R, Lizandra R, Cristian M, et al. Leishmania infantum DNA detection in urine from patients with visceral leishmaniasis and after treatment control. Am J Trop Med Hyg. 2008;78(5):741–744.
  • Chaya D, Parija SC. Performance of polymerase chain reaction for the diagnosis of cystic echinococcosis using serum, urine, and cyst fluid samples. Trop Parasitol. 2014;4(1):43.
  • Baraquin A, Hervovet E, Richou C, et al. Circulating cell-free DNA in patients with alveolar echinococcosis. Mol Biochem Parasitol. 2018;222:14–20.
  • Moradi M, Meamar AR, Akhlaghi L, et al. Detection and genetic characterization of Echinococcus granulosus mitochondrial DNA in serum and formalin-fixed paraffin embedded cyst tissue samples of cystic echinococcosis patients. PloS one. 2019;14(10):e0224501.
  • Ji J, Li B, Li J, et al. Comprehensive characterization of plasma cell-free Echinococcus spp. DNA in echinococcosis patients using ultra-high-throughput sequencing. PLoS Negl Trop Dis. 2020;14(4):e0008148.
  • Toribio L, Santivanez S, Scott AL, et al. Diagnostic urinary cfDNA detected in human cystic echinococcosis. Mol Biochem Parasitol. 2020;239:111314.
  • Fan H, Gai, W., Zhang, L., et al. Parasite Circulating Cell-free DNA in the Blood of Alveolar Echinococcosis Patients as a Diagnostic and Treatment-Status Indicator. Clinl Infect Dis. 2021;73(1):e246–e251.
  • Zhao Y, Gongsang, Q., Ji, J., et al. Characterizing dynamic changes of plasma cell-free Echinococcus granulosus DNA before and after cystic echinococcosis treatment initiation. Genomics. 2021;113(2):576–582.
  • Lee RC, Feinbaum RL, Ambros V, et al. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. cell. 1993;75(5):843–854.
  • Felden B, Gilot D. Modulation of bacterial srnas activity by epigenetic modifications: inputs from the eukaryotic miRNAs. Genes (Basel). 2019;10(1):22.
  • Paul S, Reyes, P. R., Garza, B. S., et al. MicroRNAs and child neuropsychiatric disorders: a brief review. Neurochem Res. 2020;45(2):232–240.
  • Cissell KA, Deo SK. Trends in microRNA detection. Anal Bioanal Chem. 2009;394(4):1109–1116.
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. cell. 2009;136(2):215–233.
  • Molnar A, Melnyk, C. W., Bassett, A., et al. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. science. 2010;328(5980):872–875.
  • Negrini M, Nicoloso MS, Calin GA. MicroRNAs and cancer—new paradigms in molecular oncology. Curr Opin Cell Biol. 2009;21(3):470–479.
  • Zhu HT, Rong‐Bin Liu, Ya‐Yong Liang, et al. Serum micro RNA profiles as diagnostic biomarkers for HBV‐positive hepatocellular carcinoma. Liver Int. 2017;37(6):888–896.
  • Jin X, Bourgard, C., Kayano, A. C., et al. miRNA profiling in the mice in response to Echinococcus multilocularis infection. Acta Trop. 2017;166:39–44.
  • Guo X, Zheng Y. Expression profiling of circulating miRNAs in mouse serum in response to Echinococcus multilocularis infection. Parasitology. 2017;144(8):1079–1087.
  • Judice CC, Bourgard, C., Kayano, A. C., et al. MicroRNAs in the host-apicomplexan parasites interactions: a review of immunopathological aspects. Front Cell Infect Microbiol. 2016;6:5.
  • Cheng G, Zhou, D. H., Nisbet, A. J., et al. Deep sequencing-based identification of pathogen-specific microRNAs in the plasma of rabbits infected with Schistosoma japonicum. Parasitology. 2013;140(14):1751–1761.
  • Hoy AM, Lundie, R. J., Ivens, A., et al. Parasite-derived microRNAs in host serum as novel biomarkers of helminth infection. PLoS Negl Trop Dis. 2014;8(2):e2701.
  • Xu M-J, Zhou, D. H., Nisbet, A. J., et al. Characterization of mouse brain microRNAs after infection with cyst-forming Toxoplasma gondii. Parasit Vectors. 2013;6(1):1–7.
  • Silakit R, Loilome, W., Yongvanit, P., et al. Circulating mi R‐192 in liver fluke‐associated cholangiocarcinoma patients: a prospective prognostic indicator. J Hepato-Biliary-Pancreatic Sci. 2014;21(12):864–872.
  • Chamnanchanunt S, Kuroki, C.,Desakorn, V., et al. Downregulation of plasma miR-451 and miR-16 in Plasmodium vivax infection. Exp Parasitol. 2015;155:19–25.
  • Ngô HM, Zhou, Y., Lorenzi, H., et al. Toxoplasma modulates signature pathways of human epilepsy, neurodegeneration & cancer. Sci Rep. 2017;7(1):1–32.
  • Xiao J, Li, Y., Prandovszky, E., et al. MicroRNA-132 dysregulation in Toxoplasma gondii infection has implications for dopamine signaling pathway. Neuroscience. 2014;268:128–138.
  • Lemaire J, Mkannez, G., Guerfali, F. Z., et al. MicroRNA expression profile in human macrophages in response to Leishmania major infection. PLoS Negl Trop Dis. 2013;7(10):e2478.
  • Linhares-Lacerda L, Granato, A., Gomes-Neto, J. F., et al. Circulating plasma microRNA-208a as potential biomarker of chronic indeterminate phase of Chagas disease. Front Microbiol. 2018;9:269.
  • López-Rosas I, López-Camarillo, C., Salinas-Vera, Y. M., et al. Entamoeba histolytica up-regulates microRNA-643 to promote apoptosis by targeting XIAP in human epithelial colon cells. Front Cell Infect Microbiol. 2019;8:437.
  • Ren B, H., Ren, L., Yangdan, et al. Screening for microRNA-based diagnostic markers in hepatic alveolar echinococcosis. Medicine (Baltimore). 2019;98:37.
  • Alizadeh Z, Mahami-Oskouei, M., Spotin, A., et al. Parasite-derived microRNAs in plasma as novel promising biomarkers for the early detection of hydatid cyst infection and post-surgery follow-up. Acta Trop. 2020;202:105255.
  • Deping C, Bofan, J., Yaogang, Z., et al. microRNA-125b-5p is a promising novel plasma biomarker for alveolar echinococcosis in patients from the southern province of Qinghai. BMC Infect Dis. 2021;21(1):1–7.
  • Orsten S, Baysal, I., Yabanoglu-Ciftci, S., et al. MicroRNA expression profile in patients with cystic echinococcosis and identification of possible cellular pathways. J Helminthol. 2021 95 ;95.
  • Örsten S, Baysal, İ., Yabanoglu-Ciftci, S., et al. Can parasite-derived microRNAs differentiate active and inactive cystic echinococcosis patients? Parasitol Res. 2022;121(1):191–196.
  • Mariconti M, Vola, A., Manciulli, T., et al. Role of microRNAs in host defense against Echinococcus granulosus infection: a preliminary assessment. Immunol Res. 2019;67(1):93–97.
  • Eroglu F, Dokur M, Ulu Y. MicroRNA profile in immune response of alveolar and cystic echinococcosis patients. Parasite Immunol. 2021;43(7):e12817.
  • Karami MF, and Caner,A. Serum level of egr-miR-2a-3p as a potential diagnostic biomarker for cystic echinococcosis. Acta Parasitol. 2022;1–8 doi:10/1007/s11686-022-0041-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.