257
Views
1
CrossRef citations to date
0
Altmetric
Review

Molecular predictors of metastasis in patients with prostate cancer

, , , &
Pages 199-215 | Received 20 Oct 2022, Accepted 01 Mar 2023, Published online: 08 Mar 2023

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249.
  • Schymura MJ, Sun L, Percy-Laurry A. Prostate cancer collaborative stage data items-their definitions, quality, usage, and clinical implications: a review of SEER data for 2004-2010. Cancer-Am Cancer Soc. 2014;120(23):3758–3770.
  • Chinese guidelines for diagnosis and treatment of prostate cancer. 2018 (English version). Chin J Cancer Res. 2019;31(1):67–83.
  • Evans AJ. Treatment effects in prostate cancer. Modern Pathol. 2018;31:S110–S121.
  • Kyriakopoulos CE, Chen YH, Carducci MA, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer: long-term survival analysis of the randomized Phase III E3805 CHAARTED trial. J Clin Oncol. 2018;36(11):1080–1087.
  • Cooperberg MR, Carroll PR. Trends in management for patients with localized prostate cancer, 1990-2013. JAMA. 2015;314(1):80–82.
  • Boeve L, Hulshof MCCM, Verhagen PCMS, et al. Patient-reported quality of life in patients with primary metastatic prostate cancer treated with androgen deprivation therapy with and without concurrent radiation therapy to the prostate in a prospective randomised clinical trial; data from the HORRAD trial. Eur Urol. 2021;79(2):188–197.
  • Okamoto K. Prostate cancer with nodular bladder invasion (stage T4N1) cured by low-dose-rate brachytherapy with seminal vesicle implantation in combination with external beam radiotherapy of biologically effective dose ≥ 220 Gy: a case report. J Contemp Brachytherapy. 2021;13(1):91–94.
  • Okayasu M, Takahashi H, Yamamoto T, et al. Stratification of seminal vesicle invasion as prognostic factors in prostate cancer. Lab Invest. 2013;93:238A–238A.
  • Bernhardt J, Letzkus C, Kind M, et al. [Metastasis of prostate carcinoma to the lamina submucosa of the distal rectum in ulcerative colitis 2 years after transrectal prostate biopsy and radical prostatovesiculectomy]. Urologe A. 2005;44(1):64–67.
  • Chen -J-J, Zhu Z-S, Zhu -Y-Y, et al. Applied anatomy of pelvic lymph nodes and its clinical significance for prostate cancer: a single-center cadaveric study. BMC CANCER. 2020;20(1):330.
  • Onal C, Ozyigit G, Oymak E, et al. Clinical parameters and nomograms for predicting lymph node metastasis detected with 68 Ga-PSMA-PET/CT in prostate cancer patients candidate to definitive radiotherapy. The Prostate. 2021;81(10):648–656.
  • Amelot A, Terrier LM, Le Nail LR, et al. Spine metastasis in patients with prostate cancer: survival prognosis assessment. Prostate. 2021;81(2):91–101.
  • Patra A, Khasawneh H, Suman G, et al. Atypical metastases in the abdomen and pelvis from biochemically recurrent prostate cancer: c-11-Choline PET/CT with multimodality correlation. Am J Roentgenol. 2022;218(1):141–150.
  • Ulaner GA, Thomsen B, Bassett J, et al. 18F-DCFPyL PET/CT for initially diagnosed and biochemically recurrent prostate cancer: prospective trial with pathologic confirmation. Radiology. 2022;305(2):220218–220218.
  • Lander RD, O’Donnell MJ. A case of metastatic prostate cancer to the distal phalanx. Hand (N Y). 2022;17(3):1–4.
  • Nabih O, Mtalai N, El Maaloum L, et al. Orbital metastases from prostate adenocarcinoma: case report and review of the literature. Ann Med Surg. 2022;76(2012):103530–103530.
  • Akagi N, Oshima K, Fukui K, et al. Castration-resistant prostate cancer with metastasis to external auditory canal - Case report. Urol Case Rep. 2022;44:102141–102141.
  • Ahuja US, Shetty DC, Rathore A, et al. Occult prostate carcinoma with metastasis to the mandible presenting as numb chin syndrome. J Oral Biol Craniofac Res. 2021;11(3):393–395.
  • Kosaka T, Iizuka S, Yoneda T, et al. Solitary pulmonary nodule as the initial manifestation of isolated metastasis from prostate cancer without bone involvement: a case report. Int J Surg Case Rep. 2022;90:106681–106681.
  • Alshalalfa M, Seldon C, Franco I, et al. Clinicogenomic characterization of prostate cancer liver metastases. Prostate Cancer Prostatic Dis. 2022;25(2):366–369.
  • Rodriguez-Calero A, Gallon J, Akhoundova D, et al. Alterations in homologous recombination repair genes in prostate cancer brain metastases. Nat Commun. 2022;13(1): DOI:10.1038/s41467-022-30003-5
  • Dulskas A, Cereska V, Zurauskas E, et al. Prostate cancer solitary metastasis to anal canal: case report and review of literature. BMC CANCER. 2019;19(1). DOI:10.1186/s12885-019-5573-9
  • Saad F, McKiernan J, Eastham J. Rationale for zoledronic acid therapy in men with hormone-sensitive prostate cancer with or without bone metastasis. Urol Oncol: Semin Orig Investig. 2006;24(1):4–12.
  • Wang G, Zhao D, DJ S, et al. Genetics and biology of prostate cancer. Genes Dev. 2018;32(17-18)(17–18):1105–1140.
  • Lee RJ, Saylor PJ, Michaelson MD, et al. A dose-ranging study of cabozantinib in men with castration-resistant prostate cancer and bone metastases. Clin Cancer Res. 2013;19(11):3088–3094.
  • Kolb AA-O, Bussard KA-O. The bone extracellular matrix as an ideal milieu for cancer cell metastases. LID LID - 1020. (2072–6694 (Print))). DOI:10.3390/cancers11071020.
  • Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161(5):1215–1228.
  • Jamaspishvili T, Patel PG, Niu Y, et al. Risk stratification of prostate cancer through quantitative assessment of PTEN loss (qPTEN). J Natl Cancer Inst. 2020;112(11):1098–1104.
  • Chen W, Xia W, Xue S, et al. Analysis of BRCA germline mutations in Chinese prostate cancer patients. Front Oncol. 2022;12:746102.
  • Pritchard CC, Mateo J, Walsh MF, et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med. 2016;375(5):443–453.
  • Goel S, Bhatia V, Kundu S, et al. Transcriptional network involving ERG and AR orchestrates Distal-less homeobox-1 mediated prostate cancer progression. Nat Commun. 2021;12(1). DOI:10.1038/s41467-021-25623-2.
  • Blattner M, Liu DL, Robinson BD, et al. SPOP mutation drives prostate tumorigenesis in vivo through coordinate regulation of PI3K/mTOR and AR signaling. Cancer Cell. 2017;31(3):436–451.
  • Hsieh CL, Botta G, Gao S, et al. PLZF, a tumor suppressor genetically lost in metastatic castration resistant prostate cancer, is a mediator of resistance to androgen deprivation therapy. Cancer Res. 2015;75(10):22.
  • Ku SY, Rosario S, Wang YQ, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science. 2017;355(6320):78–83.
  • Limberger T, Schlederer M, Trachtova K, et al. KMT2C methyltransferase domain regulated INK4A expression suppresses prostate cancer metastasis. Mol Cancer. 2022;21(1). DOI:10.1186/s12943-022-01542-8.
  • Wu YM, Cieslik M, Lonigro RJ, et al. Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell. 2018;173(7):1770–+.
  • Thysell E, Kohn L, Semenas J, et al. Clinical and biological relevance of the transcriptomic-based prostate cancer metastasis subtypes MetA-C. Mol Oncol. 2022;16(4):846–859.
  • Gao Y, Bado I, Wang H, et al. Metastasis organotropism: redefining the congenial soil. Dev Cell. 2019;49(3):375–391.
  • Grasso CS, Wu YM, Robinson DR, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487(7406):239–243.
  • Quigley DA, Dang HX, Zhao SG, et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell. 2018;174(3):758–+.
  • Lin -B-B, Lei H-Q, Xiong H-Y, et al. MicroRNA-regulated transcriptome analysis identifies four major subtypes with prognostic and therapeutic implications in prostate cancer. Comput Struct Biotechnol J. 2021;19:4941–4953.
  • Fraser M, Livingstone J, Wrana JL, et al. Somatic driver mutation prevalence in 1844 prostate cancers identifies ZNRF3 loss as a predictor of metastatic relapse. Nat Commun. 2021;12(1). DOI:10.1038/s41467-021-26489-0.
  • Tong DL. Unravelling the molecular mechanisms of prostate cancer evolution from genotype to phenotype. Crit Rev Oncol Hemat. 2021;163:103370.
  • Zhao Y, Ding LY, Wane DJ, et al. EZH2 cooperates with gain-of-function p53 mutants to promote cancer growth and metastasis. Embo J. 2019;38(5). DOI:10.15252/embj.201899599.
  • Humid AA, Gray KP, Shaw G, et al. Compound genomic alterations of TP53, PTEN, and RB1 tumor suppressors in localized and metastatic prostate cancer. Eur Urol. 2019;76(1):89–97.
  • Mei WJ, Lin XZ, Kapoor A, et al. The contributions of prostate cancer stem cells in prostate cancer initiation and metastasis. Cancers (Basel). 2019;11(4):434.
  • Nombela P, Lozano R, Aytes A, et al. BRCA2 and other DDR genes in prostate cancer. Cancers (Basel). 2019;11(3):352.
  • Chakraborty G, Armenia J, Mazzu YZ, et al. Significance of BRCA2 and RB1 co-loss in aggressive prostate cancer progression. Clin Cancer Res. 2020;26(8):2047–2064.
  • Cheng L, Nagabhushan M, Pretlow TP, et al. Expression of E-cadherin in primary and metastatic prostate cancer. Am J Pathol. 1996;148(5):1375–1380.
  • Kolijn K, Verhoef EI, Smid M, et al. Epithelial-mesenchymal transition in human prostate cancer demonstrates enhanced immune evasion marked by IDO1 expression. Cancer Res. 2018;78(16):4671–4679.
  • Zhang K, Guo Y, Wang X, et al. WNT/beta-catenin directs self-renewal symmetric cell division of hTERT(high) prostate cancer stem cells. Cancer Res. 2017;77(9):2534–2547.
  • Ratnayake WS, Apostolatos CA, Breedy S, et al. Atypical PKCs activate Vimentin to facilitate prostate cancer cell motility and invasion. Cell Adhes Migr. 2021;15(1):37–57.
  • Lee Y, Yoon J, Ko D, et al. TMPRSS4 promotes cancer stem-like properties in prostate cancer cells through upregulation of SOX2 by SLUG and TWIST1. J Exp Clin Canc Res. 2021;40(1). DOI:10.1186/s13046-021-02147-7
  • Wang Z, Hulsurkar M, Zhuo LJ, et al. CKB inhibits epithelial-mesenchymal transition and prostate cancer progression by sequestering and inhibiting AKT activation. Neoplasia. 2021;23(11):1147–1165.
  • Cai G, Wu D, Wang Z, et al. Collapsin response mediator protein-1 (CRMP1) acts as an invasion and metastasis suppressor of prostate cancer via its suppression of epithelial-mesenchymal transition and remodeling of actin cytoskeleton organization. Oncogene. 2017;36(4):546–558.
  • Martinez-Martinez D, Lobo MVT, Baquero P, et al. Downregulation of snail by DUSP1 impairs cell migration and invasion through the inactivation of JNK and ERK and is useful as a predictive factor in the prognosis of prostate cancer. Cancers (Basel). 2021;13(5). DOI:10.3390/cancers13051158.
  • Sun YX, Wang JC, Shelburne CE, et al. Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem. 2003;89(3):462–473.
  • Balasubramaniam S, Comstock CES, Ertel A, et al. Aberrant BAF57 signaling facilitates prometastatic phenotypes. Clin Cancer Res. 2013;19(10):2657–2667.
  • Bamodu OA, Wang Y-H, Ho C-H, et al. Genetic suppressor element 1 (GSE1) promotes the oncogenic and recurrent phenotypes of castration-resistant prostate cancer by targeting tumor-associated calcium signal transducer 2 (TACSTD2). Cancers (Basel). 2021;13(16):3959.
  • Chen WY, Tsai YC, Siu MK, et al. Inhibition of the androgen receptor induces a novel tumor promoter, ZBTB46, for prostate cancer metastasis. Oncogene. 2017;36(45):6213–6224.
  • Tsai YC, Chen WY, Abou-Kheir W, et al. Androgen deprivation therapy-induced epithelial-mesenchymal transition of prostate cancer through downregulating SPDEF and activating CCL2. Bba-Mol Basis Dis. 2018;1864(5):1717–1727.
  • Vanli N, Sheng JH, Li SP, et al. Ribonuclease 4 is associated with aggressiveness and progression of prostate cancer. Commun Biol. 2022;5(1). DOI:10.1038/s42003-022-03597-1
  • Jimenez-Vacas JM, Herrero-Aguayo V, Gomez-Gomez E, et al. Spliceosome component SF3B1 as novel prognostic biomarker and therapeutic target for prostate cancer. Transl Res. 2019;212:89–103.
  • Ye JW, Gao MQ, Guo XW, et al. Breviscapine suppresses the growth and metastasis of prostate cancer through regulating PAQR4-mediated PI3K/Akt pathway. Biomed Pharmacother. 2020;127:110223.
  • Xiao ZM, Lv DJ, Yu YZ, et al. SMARCC1 suppresses tumor progression by inhibiting the PI3K/AKT signaling pathway in prostate cancer. Front Cell Dev Biol. 2021;9. DOI:10.3389/fcell.2021.678967.
  • Li JF, Xie HY, Ying YF, et al. YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer. Mol Cancer. 2020;19(1). DOI:10.1186/s12943-020-01267-6.
  • Zhang AY, Chiam K, Haupt Y, et al. An analysis of a multiple biomarker panel to better predict prostate cancer metastasis after radical prostatectomy. Int J Cancer. 2019;144(5):1151–1159.
  • Luo ZZ, Wang J, Zhu Y, et al. SPOP promotes CDCA5 degradation to regulate prostate cancer progression via the AKT pathway. Neoplasia. 2021;23(10):1037–1047.
  • Chen Q, Wan X, Chen YB, et al. SGO1 induces proliferation and metastasis of prostate cancer through AKT-mediated signaling pathway. Am J Cancer Res. 2019;9(12):2693–+.
  • Li T, Yu Y, Song YR, et al. Activation of BDNF/TrkB pathway promotes prostate cancer progression via induction of epithelial-mesenchymal transition and anoikis resistance. Faseb J. 2020;34(7):9087–9101.
  • Peng SM, Chen X, Huang CY, et al. UBE2S as a novel ubiquitinated regulator of p16 and beta-catenin to promote bone metastasis of prostate cancer. Int J Biol Sci. 2022;18(8):3528–3543.
  • Pan KA-O, Lee WJ, Chou CC, et al. Direct interaction of β-catenin with nuclear ESM1 supports stemness of metastatic prostate cancer. The EMBO journal. 2021;40(4):e105450.
  • Qi M, Hu J, Cui Y, et al. CUL4B promotes prostate cancer progression by forming positive feedback loop with SOX4. ONCOGENESIS. 2019;8(3). DOI:10.1038/s41389-019-0131-5.
  • Wang L, Wang JY, Yin XL, et al. GIPC2 interacts with Fzd7 to promote prostate cancer metastasis by activating WNT signaling. Oncogene. 2022;41(18):2609–2623.
  • Esposito MA-O, Fang C, Cook KA-O, et al. TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis. Nature cell biology. 2021;23(3): 257–267.
  • Mateo J, Carreira S, Sandhu S, et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med. 2015;373(18):1697–1708.
  • Yu HB, Xu Z, Guo MM, et al. FOXM1 modulates docetaxel resistance in prostate cancer by regulating KIF20A. Cancer Cell Int. 2020;20(1). DOI:10.1186/s12935-020-01631-y.
  • Yang L, Jin ML, Park SJ, et al. SETD1A promotes proliferation of castration-resistant prostate cancer cells via FOXM1 transcription. Cancers (Basel). 2020;12(7):1736.
  • Wen SM, Wei YL, Zen C, et al. Long non-coding RNA NEAT1 promotes bone metastasis of prostate cancer through N6-methyladenosine. Mol Cancer. 2020;19(1). DOI:10.1186/s12943-020-01293-4
  • Zou LB, Chen WB, Zhou XM, et al. N6-methyladenosine demethylase FTO suppressed prostate cancer progression by maintaining CLIC4 mRNA stability. Cell Death Discov. 2022;8(1). DOI:10.1038/s41420-022-01003-7.
  • Zhao Y, Hu X, Yu HR, et al. Alternations of gene expression in PI3K and AR pathways and DNA methylation features contribute to metastasis of prostate cancer. Cell Mol Life Sci. 2022;79(8). DOI:10.1007/s00018-022-04456-2
  • Aytes A, Giacobbe A, Mitrofanova A, et al. NSD2 is a conserved driver of metastatic prostate cancer progression. Nat Commun. 2018;9(1). DOI:10.1038/s41467-018-07511-4.
  • Fan LL, Zhang FB, Xu SH, et al. Histone demethylase JMJD1A promotes alternative splicing of AR variant 7 (AR-V7) in prostate cancer cells. Proc Natl Acad Sci U S A. 2018;115(20):E4584–E4593.
  • Kim TD, Jin F, Shin S, et al. Histone demethylase JMJD2A drives prostate tumorigenesis through transcription factor ETV1. J Clin Invest. 2016;126(2):706–720.
  • Yuan PH, Ling L, Gao XT, et al. Identification of RNA-binding protein SNRPA1 for prognosis in prostate cancer. Aging-Us. 2021;13(2):2895–2911.
  • Jacob S, Nayak S, Fernandes G, et al. Androgen receptor as a regulator of ZEB2 expression and its implications in epithelial-to-mesenchymal transition in prostate cancer. Endocr Relat Cancer. 2014;21(3):473–486.
  • Hoflmayer D, Steinhoff A, Hube-Magg C, et al. Expression of CCCTC-binding factor (CTCF) is linked to poor prognosis in prostate cancer. Mol Oncol. 2020;14(1):129–138.
  • Reis ST, Pontes-Júnior J, Fau - Antunes AA, et al. Tgf-β1 expression as a biomarker of poor prognosis in prostate cancer. Clinics (Sao Paulo, Brazil). 2011;66(7):1143–1147.
  • Fournier PGJ, Juarez P, Jiang GL, et al. The TGF-beta signaling regulator PMEPA1 suppresses prostate cancer metastases to bone. Cancer Cell. 2015;27(6):809–821.
  • Her NG, Jeong S, Fau - Cho K, et al. PPARδ promotes oncogenic redirection of TGF-β1 signaling through the activation of the ABCA1-Cav1 pathway. Cell Cycle. 2013;12(10):1521–1535.
  • Mishra S, Tang Y, Fau - Wang L, et al. Blockade of transforming growth factor-beta (TGFβ) signaling inhibits osteoblastic tumorigenesis by a novel human prostate cancer cell line. Prostate. 2011;71(13):1441–1454.
  • Hu J, Tian J, Zhu S, et al. Sox5 contributes to prostate cancer metastasis and is a master regulator of TGF-β-induced epithelial mesenchymal transition through controlling Twist1 expression. British journal of cancer. 2018;118(1):88–97.
  • Shi Z, Xiao C, Lin T, et al. BZW1 promotes cell proliferation in prostate cancer by regulating TGF-β1/Smad pathway. Cell Cycle. 2021;20(9):894–902.
  • Kwon W, Choi SK, Kim D, et al. ZNF507 affects TGF-beta signaling via TGFBR1 and MAP3K8 activation in the progression of prostate cancer to an aggressive state. J Exp Clin Canc Res. 2021;40(1). DOI:10.1186/s13046-021-02094-3.
  • Liu X, Chen L, Fan YH, et al. IFITM3 promotes bone metastasis of prostate cancer cells by mediating activation of the TGF-beta signaling pathway. Cell Death Dis. 2019;10(7). DOI:10.1038/s41419-019-1750-7.
  • Thapa DA-O, Huang SA-O, Muñoz AA-O, et al. Attenuation of NAD[P]H: quinone oxidoreductase 1 aggravates prostate cancer and tumor cell plasticity through enhanced TGFβ signaling. Communications biology. 2020;3:12. DOI:10.1038/s42003-019-0720-z.
  • Lin H-Y, Ko C-J, Lo T-Y, et al. Matriptase-2/NR4A3 axis switches TGF-β action toward suppression of prostate cancer cell invasion, tumor growth, and metastasis. ONCOGENE. 2022;41(20):2833–2845.
  • Yan YW, Zhou B, Qian C, et al. Receptor-interacting protein kinase 2 (RIPK2) stabilizes c-Myc and is a therapeutic target in prostate cancer metastasis. Nat Commun. 2022;13(1):669.
  • Qiu J, Yang B. MAGE-C2/CT10 promotes growth and metastasis through upregulating c-Myc expression in prostate cancer. Mol Cell Biochem. 2021;476(1):1–10.
  • Luo P, Jiang Q, Fang Q, et al. The human positive cofactor 4 promotes androgen-independent prostate cancer development and progression through HIF-1 alpha/beta-catenin pathway. Am J Cancer Res. 2019;9(4):682–+.
  • Kaminski L, Torrino S, Dufies M, et al. PGC1 alpha inhibits polyamine synthesis to suppress prostate cancer aggressiveness. Cancer Res. 2019;79(13):3268–3280.
  • Hsu E-C, Rice MA, Bermudez A, et al. Trop2 is a driver of metastatic prostate cancer with neuroendocrine phenotype via PARP1. Proc Natl Acad Sci U S A. 2020;117(4):2032–2042.
  • Vecchiotti D, Verzella D, Nolfi MDV, et al. Elevated NF-kappa B/SHh/GLI1 signature denotes a worse prognosis and represent a novel potential therapeutic target in advanced prostate cancer. CELLS. 2022;11(13):2118.
  • Jung AR, Kim GE, Kim MY, et al. HMGB1 promotes tumor progression and invasion through HMGB1/TNFR1/NF-kappa B axis in castration-resistant prostate cancer. Am J Cancer Res. 2021;11(5):2215–+.
  • Xu BH, Shi F, Feng YQ. Inhibition of ubiquitin specific protease 17 restrains prostate cancer proliferation by regulation of epithelial-to-mesenchymal transition (EMT) via ROS production. Biomed Pharmacother. 2019;118:108946.
  • Fu Q, Gao Y, Yang F, et al. Suppression of microRNA-454 impedes the proliferation and invasion of prostate cancer cells by promoting N-myc downstream-regulated gene 2 and inhibiting WNT/beta-catenin signaling. Biomed Pharmacother. 2018;97:120–127.
  • Zhu ZG, Luo LM, Xiang Q, et al. MiRNA-671-5p promotes prostate cancer development and metastasis by targeting NFIA/CRYAB axis. Cell Death Dis. 2020;11(11). DOI:10.1038/s41419-020-03138-w.
  • Bonci D, Coppola V, Musumeci M, et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med. 2008;14(11):1271–1277.
  • Ren D, Yang Q, Dai Y, et al. Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-kappa B signaling pathway. Mol Cancer. 2017;16(1). DOI:10.1186/s12943-017-0688-6.
  • Liu YZ, Zhao SK, Wang JM, et al. MiR-629-5p promotes prostate cancer development and metastasis by targeting AKAP13. Front Oncol. 2021;11:754353.
  • Dai YP, Gao XQ. Inhibition of cancer cell-derived exosomal microRNA-183 suppresses cell growth and metastasis in prostate cancer by upregulating TPM1. Cancer Cell Int. 2021;21(1). DOI:10.1186/s12935-020-01686-x
  • Ren D, Wang M, Gu W, et al. Wild-type p53 suppresses the epithelial-mesenchymal transition and sternness in PC-3 prostate cancer cells by modulating miR-145. Int J Oncol. 2013;42(4):1473–1481.
  • Huang S, Wa Q, Pan J, et al. Downregulation of miR-141-3p promotes bone metastasis via activating NF-kappa B signaling in prostate cancer. J Exp Clin Canc Res. 2017;36(1). DOI:10.1186/s13046-017-0645-7.
  • Wa Q, Huang S, Pan J, et al. miR-204-5p represses bone metastasis via inactivating NF-kappa B signaling in prostate cancer. Molecular Therapy - Nucleic Acids. 2019;18:567–579.
  • Wa Q, Zou C, Lin Z, et al. Ectopic expression of miR-532-3p suppresses bone metastasis of prostate cancer cells via inactivating NF-kappa B signaling. Molecular Therapy - Oncolytics. 2020;17:267–277.
  • Rajendiran S, Parwani AV, Hare RJ, et al. MicroRNA-940 suppresses prostate cancer migration and invasion by regulating MIEN1. Mol Cancer. 2014;13(1). DOI:10.1186/1476-4598-13-250
  • Fang L-L, Sun B-F, Huang L-R, et al. Potent inhibition of miR-34b on migration and invasion in metastatic prostate cancer cells by regulating the TGF-beta pathway. Int J Mol Sci. 2017;18(12):2762.
  • Dai YH, Wu ZQ, Lang CD, et al. Copy number gain of ZEB1 mediates a double-negative feedback loop with miR-33a-5p that regulates EMT and bone metastasis of prostate cancer dependent on TGF-beta signaling. Theranostics. 2019;9(21):6063–6079.
  • Bucay N, Bhagirath D, Sekhon K, et al. A novel microRNA regulator of prostate cancer epithelial-mesenchymal transition. Cell Death Differ. 2017;24(7):1263–1274.
  • Fu QZ, Liu XF, Liu Y, et al. MicroRNA-335 and-543 suppress bone metastasis in prostate cancer via targeting endothelial nitric oxide synthase. Int J Mol Med. 2015;36(5):1417–1425.
  • Wang ZY, Duan Y, Wang P. SP1-mediated upregulation of lncRNA SNHG4 functions as a ceRNA for miR-377 to facilitate prostate cancer progression through regulation of ZIC5. J Cell Physiol. 2020;235(4):3916–3927.
  • Wang XB, Chen QJ, Wang X, et al. ZEB1 activated-VPS9D1-AS1 promotes the tumorigenesis and progression of prostate cancer by sponging miR-4739 to upregulate MEF2D. Biomed Pharmacother. 2020;122:109557.
  • Ren SC, Liu YW, Xu WD, et al. Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer. J Urol. 2013;190(6):2278–2287.
  • Zhang W, Shi XL, Chen R, et al. Novel long non-coding RNA lncAMPC promotes metastasis and immunosuppression in prostate cancer by stimulating LIF/LIFR expression. Mol Ther. 2020;28(11):2473–2487.
  • Malik R, Patel L, Prensner JR, et al. The lncRNA PCAT29 inhibits oncogenic phenotypes in prostate cancer. Mol Cancer Res. 2014;12(8):1081–1087.
  • Sakurai K, Reon BJ, Anaya J, et al. The lncRNA DRAIC/PCAT29 locus constitutes a tumor-suppressive nexus. Mol Cancer Res. 2015;13(5):828–838.
  • White NM, Zhao SG, Zhang J, et al. Multi-institutional analysis shows that low PCAT-14 expression associates with poor outcomes in prostate cancer. Eur Urol. 2017;71(2):257–266.
  • Jin CJ, Zhao WM, Zhang ZJ, et al. Silencing circular RNA circZNF609 restrains growth, migration and invasion by up-regulating microRNA-186-5p in prostate cancer (Publication with Expression of Concern. See vol. 49, pg. 164, 2021). Artif Cell Nanomed B. 2019;47(1):3350–3358.
  • Huang CK, Deng HH, Wang YH, et al. Circular RNA circABCC4 as the ceRNA of miR-1182 facilitates prostate cancer progression by promoting FOXP4 expression. J Cell Mol Med. 2019;23(9):6112–6119.
  • Shan GY, Shao B, Liu Q, et al. circFMN2 sponges miR-1238 to promote the expression of LIM-homeobox gene 2 in prostate cancer cells. Mol Ther Nucleic Acids. 2020;21:133–146.
  • Liu DC, Song LL, Li XZ, et al. Circular RNA circHIPK3 modulates prostate cancer progression via targeting miR-448/MTDH signaling. Clin Transl Oncol. 2021;23(12):2497–2506.
  • Wu G, Sun Y, Xiang ZD, et al. Preclinical study using circular RNA 17 and micro RNA 181c-5p to suppress the enzalutamide-resistant prostate cancer progression. Cell Death Dis. 2019;10(2):37.
  • Song ZY, Zhuo ZY, Ma Z, et al. Hsa_Circ_0001206 is downregulated and inhibits cell proliferation, migration and invasion in prostate cancer. Artificial Cells Nano Biotech. 2019;47(1):2449–2464.
  • Yang Z, Qu CB, Zhang Y, et al. Dysregulation of p53-RBM25-mediated circAMOTL1L biogenesis contributes to prostate cancer progression through the circAMOTL1L-miR-193a-5p-Pcdha pathway. Oncogene. 2019;38(14):2516–2532.
  • Montes MR, Calvo PA, Sanchez JAG. Small cell metastatic prostate cancer with ectopic adrenocorticotropic hormone hypersecretion: a case report. Ann Palliat Med. 2021;10(12):12911–12914.
  • Lu XJ, Gao WW, Zhang Y, et al. Case report: systemic treatment and serial genomic sequencing of metastatic prostate adenocarcinoma progressing to small cell carcinoma. Front Oncol. 2021;11. DOI:10.3389/fonc.2021.732071.
  • Zong Y, Montironi R, Massari F, et al. Intraductal carcinoma of the prostate: pathogenesis and molecular perspectives. Eur Urol Focus. 2021;7(5):955–963.
  • Zhang CJ, Qian JQ, Wu YC, et al. Identification of novel diagnosis biomarkers for therapy-related neuroendocrine prostate cancer. Pathol Oncol Res. 2021;27. DOI:10.3389/pore.2021.1609968.
  • Pedersen V, Petersen KS, Brasso K, et al. Basal cell carcinoma of prostate with MSMB-NCOA4 fusion and a probable basal cell carcinoma in situ: case report. Int J Surg Pathol. 2021;29(8):850–855.
  • Miyai K, Divatia MK, Shen SS, et al. Clinicopathological analysis of intraductal proliferative lesions of prostate: intraductal carcinoma of prostate, high-grade prostatic intraepithelial neoplasia, and atypical cribriform lesion. Hum Pathol. 2014;45(8):1572–1581.
  • Khani F, Wobker SE, Hicks JL, et al. Intraductal carcinoma of the prostate in the absence of high-grade invasive carcinoma represents a molecularly distinct type of in situ carcinoma enriched with oncogenic driver mutations. J Pathol. 2019;249(1):79–89.
  • Kato M, Hirakawa A, Kobayashi Y, et al. Response of intraductal carcinoma of the prostate to androgen deprivation therapy predicts prostate cancer prognosis in radical prostatectomy patients. Prostate. 2020;80(3):284–290.
  • Unno K, Chalmers ZR, Pamarthy S, et al. Activated ALK cooperates with N-Myc via Wnt/beta-Catenin signaling to induce neuroendocrine prostate cancer. Cancer Res. 2021;81(8):2157–2170.
  • Singh N, Ramnarine VR, Song JH, et al. The long noncoding RNA H19 regulates tumor plasticity in neuroendocrine prostate cancer. Nat Commun. 2021;12(1). DOI:10.1038/s41467-021-26901-9.
  • Hsu EC, Shen M, Aslan M, et al. MCM2-7 complex is a novel druggable target for neuroendocrine prostate cancer. Sci Rep-Uk. 2021;11(1):13305.
  • Vlachostergios PJ, Karathanasis A, Tzortzis V. Expression of fibroblast activation protein is enriched in neuroendocrine prostate cancer and predicts worse survival. Genes (Basel). 2022;13(1):135.
  • Yoo YA, Vatapalli R, Lysy B, et al. The role of castration-resistant Bmi1+Sox2+Cells in driving recurrence in prostate cancer. J Natl Cancer Inst. 2019;111(3):311–321.
  • Yasumizu Y, Rajabi H, Jin CN, et al. MUC1-C regulates lineage plasticity driving progression to neuroendocrine prostate cancer. Nat Commun. 2020;11(1):1095.
  • Inoue K, Slaton JW, Eve BY, et al. Interleukin 8 expression regulates tumorigenicity and metastases in androgen-independent prostate cancer. Clin Cancer Res. 2000;6(5):2104–2119.
  • Ribas J, Ni XH, Haffner M, et al. miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res. 2009;69(18):7165–7169.
  • Mercatelli N, Coppola V, Bonci D, et al. The inhibition of the highly expressed Mir-221 and Mir-222 impairs the growth of prostate carcinoma xenografts in mice. Plos One. 2008;3(12):e4029.
  • Song XL, Huang B, Zhou BW, et al. miR-1301-3p promotes prostate cancer stem cell expansion by targeting SFRP1 and GSK3 beta. Biomed Pharmacother. 2018;99:369–374.
  • Hanahan D, Weinberg RA. Hallmarks of Cancer: the Next Generation. Cell. 2011;144(5):646–674.
  • Shiao SL, Chu GCY, Chung LWK. Regulation of prostate cancer progression by the tumor microenvironment. Cancer Lett. 2016;380(1):340–348.
  • Boxler S, Djonov V, Kessler TM, et al. Matrix metalloproteinases and angiogenic factors predictors of survival after radical prostatectomy for clinically organ-confined prostate cancer? Am J Pathol. 2010;177(5):2216–2224.
  • Qian YR, Liu XZ, Feng Y, et al. Tenascin C regulates cancer cell glycolysis and tumor progression in prostate cancer. Int J Urol. 2022;29(6):578–585.
  • Jung YH, Kim JK, Shiozawa Y, et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun. 2013;4(1). DOI:10.1038/ncomms2766.
  • Dahran N, Szewczyk-Bieda M, Vinnicombe S, et al. Periprostatic fat adipokine expression is correlated with prostate cancer aggressiveness in men undergoing radical prostatectomy for clinically localized disease. BJU Int. 2019;123(6):985–994.
  • Laurent V, Guerard A, Mazerolles C, et al. Periprostatic adipocytes act as a driving force for prostate cancer progression in obesity. Nat Commun. 2016;7(1). DOI:10.1038/ncomms10230.
  • Huang RL, Wang SQ, Wang N, et al. CCL5 derived from tumor-associated macrophages promotes prostate cancer stem cells and metastasis via activating beta-catenin/STAT3 signaling. Cell Death Dis. 2020;11(4). DOI:10.1038/s41419-020-2435-y.
  • Magnon C, Hall SJ, Lin J, et al. Autonomic nerve development contributes to prostate cancer progression. Science. 2013;341(6142):143.
  • Warrington RJ, Lewis KE. Natural antibodies against nerve growth factor inhibit in vitro prostate cancer cell metastasis. Cancer Immunol Immun. 2011;60(2):187–195.
  • Dobrenis K, Gauthier LR, Barroca V, et al. Granulocyte colony-stimulating factor off-target effect on nerve outgrowth promotes prostate cancer development. Int J Cancer. 2015;136(4):982–988.
  • Ban KC, Feng S, Shao LJ, et al. RET signaling in prostate cancer. Clin Cancer Res. 2017;23(16):4885–4896.
  • Shen TY, Li Y, Zhu SM, et al. YAP1 plays a key role of the conversion of normal fibroblasts into cancer-associated fibroblasts that contribute to prostate cancer progression. J Exp Clin Canc Res. 2020;39(1). DOI:10.1186/s13046-020-1542-z.
  • Hodolic M, Maffione AM, Fettich J, et al. Metastatic prostate cancer proven by F-18-FCH PET/CT staging scan in patient with normal PSA but high PSA doubling time. Clin Nucl Med. 2013;38(9):739–740.
  • Gjertson CK, Albertsen PC. Use and assessment of PSA in prostate cancer. Med Clin North Am. 2011;95(1):191–+.
  • Lorente D, Ravi P, Mehra N, et al. Interrogating metastatic prostate cancer treatment switch decisions: a multi-institutional survey. Eur Urol Focus. 2018;4(2):235–244.
  • Sabur V, Untan I, Tatlisen A. Role of PSA kinetics in hormone-refractory prostate cancer. Jcpsp-J Coll Physici. 2021;31(6):673–678.
  • Lonergan PE, Cowan JE, Washington SL, et al. Natural history of an immediately detectable PSA following radical prostatectomy in a contemporary cohort. Prostate. 2021;81(13):1009–1017.
  • Miszczyk M, Magrowski L, Masri O, et al. Prostate-specific antigen kinetics and metastasis-free survival in patients treated with external beam radiotherapy combined with high-dose-rate brachytherapy boost and androgen deprivation therapy for localized prostate cancer. J Contemp Brachytherapy. 2022;14(1):15–22.
  • Pellegrino F, Coghi A, Lavorgna G, et al. A mechanistic insight into the anti-metastatic role of the prostate specific antigen. Transl Oncol. 2021;14(11):101211.
  • Stikbakke E, Richardsen E, Knutsen T, et al. Inflammatory serum markers and risk and severity of prostate cancer: the PROCA-life study. Int J Cancer. 2020;147(1):84–92.
  • Yu MS, Yang CC, Wang S, et al. Serum ProGRP as a novel biomarker of bone metastasis in prostate cancer. Clin Chim Acta. 2020;510:437–441.
  • Xie GS, Li G, Li Y, et al. Clinical association between pre-treatment levels of plasma fibrinogen and bone metastatic burden in newly diagnosed prostate cancer patients. Chinese Med J-Peking. 2019;132(22):2684–2689.
  • Aufderklamm S, Hennenlotter J, Rausch S, et al. Oncological validation of bone turnover markers c-terminal telopeptide of type I collagen (1CTP) and peptides n-terminal propeptide of type I procollagen (P1NP) in patients with prostate cancer and bone metastases. Transl Androl Urol. 2021;10(10):4000–4008.
  • Liu SQ, Shen M, Hsu EC, et al. Discovery of PTN as a serum-based biomarker of pro-metastatic prostate cancer. Br J Cancer. 2021;124(5):896–900.
  • Wallis CJD, Shayegan B, Morgan SC, et al. Prognostic association between common laboratory tests and overall survival in elderly men with de novo metastatic castration sensitive prostate cancer: a population-based study in Canada. Cancers (Basel). 2021;13(11):2844.
  • Zhang M, Guan J, Huo YL, et al. Downregulation of serum CXCL4L1 predicts progression and poor prognosis in prostate cancer patients treated by radical prostatectomy. Asian J Androl. 2019;21(4):387–392.
  • Peng C, Juan C, Mao W, et al. Retrospective analysis of risk factors for bone metastasis in newly diagnosed prostate cancer patients. Eur Rev Med Pharmaco. 2022;26(11):3832–3839.
  • de la Piedra C, Alcaraz A, Bellmunt J, et al. Usefulness of bone turnover markers as predictors of mortality risk, disease progression and skeletal-related events appearance in patients with prostate cancer with bone metastases following treatment with zoledronic acid: TUGAMO study. Br J Cancer. 2013;108(12):2565–2572.
  • Une M, Takemura K, Inamura K, et al. Impact of serum gamma-glutamyltransferase on overall survival in men with metastatic castration-resistant prostate cancer treated with docetaxel. Cancers (Basel). 2021;13(21):5587.
  • Blas L, Shiota M, Yamada S, et al. Lactate dehydrogenase is a serum prognostic factor in clinically regional lymph node-positive prostate cancer. Anticancer Res. 2021;41(8):3885–3889.
  • Mak B, Lin HM, Kwan E, et al. Combined impact of lipidomic and genetic aberrations on clinical outcomes in metastatic castration-resistant prostate cancer. Asia-Pac J Clin Onco. 2021;17:48–49.
  • Lin HM, Huynh K, Kohli M, et al. Aberrations in circulating ceramide levels are associated with poor clinical outcomes across localised and metastatic prostate cancer. Prostate Cancer Prostatic Dis. 2021;24(3):860–870.
  • Lin HM, Yeung NCL, Hastings JF, et al. Relationship between circulating lipids and cytokines in metastatic castration-resistant prostate cancer. Cancers (Basel). 2021;13(19):4964.
  • Miro C, Di Giovanni A, Murolo M, et al. Thyroid hormone and androgen signals mutually interplay and enhance inflammation and tumorigenic activation of tumor microenvironment in prostate cancer. Cancer Lett. 2022;532:215581.
  • Lucien F, Kim Y, Qian J, et al. Tumor-derived extracellular vesicles predict clinical outcomes in oligometastatic prostate cancer and suppress antitumor immunity. Int J Radiat Oncol Biol Phys. 2022;114(4):725–737.
  • Wang C, Zhang ZC, Chong WL, et al. Improved prognostic stratification using circulating tumor cell clusters in patients with metastatic castration-resistant prostate cancer. Cancers (Basel). 2021;13(2):268.
  • Antonarakis ES, Lu CX, Luber B, et al. Clinical significance of androgen receptor splice variant-7 mRNA detection in circulating tumor cells of men with metastatic castration- resistant prostate cancer treated with first- and second-line abiraterone and enzalutamide. J clin oncol. 2017;35(19):2149–+.
  • Di Lorenzo G, Zappavigna S, Crocetto F, et al. Assessment of total, PTEN-, and AR-V7(+) circulating tumor cell count by flow cytometry in patients with metastatic castration-resistant prostate cancer receiving enzalutamide. Clin Genitourin Canc. 2021;19(5):E286–E298.
  • Yang YJ, Liu Z, Wang QF, et al. Presence of CD133-positive circulating tumor cells predicts worse progression-free survival in patients with metastatic castration-sensitive prostate cancer. Int J Urol. 2022;29(5):383–389.
  • De Laere B, Oeyen S, Mayrhofer M, et al. TP53 outperforms other androgen receptor biomarkers to predict abiraterone or enzalutamide outcome in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2019;25(6):1766–1773.
  • Chen Z, Wang J, Lu YB, et al. Ezrin expression in circulating tumor cells is a predictor of prostate cancer metastasis. Bioengineered. 2022;13(2):4076–4084.
  • Day KC, Hiles GL, Kozminsky M, et al. HER2 and EGFR overexpression support metastatic progression of prostate cancer to bone. Cancer Res. 2017;77(1):74–85.
  • Belic J, Graf R, Bauernhofer T, et al. Genomic alterations in plasma DNA from patients with metastasized prostate cancer receiving Abiraterone or enzalutamide. Int J Cancer. 2018;143(5):1236–1248.
  • Gong YM, Fan LC, Fei XC, et al. Targeted next-generation sequencing reveals heterogenous genomic features in viscerally metastatic prostate cancer. J Urol. 2021;206(2):280–288.
  • Fettke H, Kwan EM, Bukczynska P, et al. Prognostic impact of total plasma cell-free DNA concentration in androgen receptor pathway inhibitor-treated metastatic castration-resistant prostate cancer. Eur Urol Focus. 2021;7(6):1287–1291.
  • Vandekerkhove G, Struss WJ, Annala M, et al. Circulating tumor DNA abundance and potential utility in de novo metastatic prostate cancer. Eur Urol. 2019;75(4):667–675.
  • Conteduca V, Casadei C, Scarpi E, et al. Baseline plasma tumor DNA (ctDNA) correlates with PSA kinetics in Metastatic Castration-Resistant Prostate Cancer (mCRPC) treated with abiraterone or enzalutamide. Cancers (Basel). 2022;14(9):2219.
  • Wyatt AW, Annala M, Aggarwal R, et al. Concordance of circulating tumor DNA and matched metastatic tissue biopsy in prostate cancer. J Natl Cancer Inst. 2018;110(1):djx118.
  • Tukachinsky H, Madison R, Chung J, et al. Genomic analysis of circulating tumor DNA in 3,334 patients with advanced prostate cancer to identify targetable BRCA alterations and AR resistance mechanisms. J clin oncol. 2021;39(6_suppl):6.
  • Cheng HH, Mitchell PS, Kroh EM, et al. Circulating microRNA profiling identifies a subset of metastatic prostate cancer patients with evidence of cancer-associated hypoxia. Plos One. 2013;8(7):e69239.
  • Brase JC, Johannes M, Schlomm T, et al. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer. 2011;128(3):608–616.
  • Bryant RJ, Pawlowski T, Catto JWF, et al. Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer. 2012;106(4):768–774.
  • Nguyen HCN, Xie WL, Yang M, et al. Expression differences of circulating microRNAs in metastatic castration resistant prostate cancer and low-risk, localized prostate cancer. Prostate. 2013;73(4):346–354.
  • Gonzales JC, Fink LM, Goodman OB, et al. Comparison of circulating microRNA 141 to circulating tumor cells, lactate dehydrogenase, and prostate-specific antigen for determining treatment response in patients with metastatic prostate cancer. Clin Genitourin Canc. 2011;9(1):39–45.
  • Zhang HL, Qin XJ, Cao DL, et al. An elevated serum miR-141 level in patients with bone-metastatic prostate cancer is correlated with more bone lesions. Asian J Androl. 2013;15(2):231–235.
  • Bhagirath D, Yang TL, Bucay N, et al. microRNA-1246 is an exosomal biomarker for aggressive prostate cancer. Cancer Res. 2018;78(7):1833–1844.
  • Sharova E, Maruzzo M, Del Bianco P, et al. Prognostic stratification of metastatic prostate cancer patients treated with abiraterone and enzalutamide through an integrated analysis of circulating free microRNAs and clinical parameters. Front Oncol. 2021;11. DOI:10.3389/fonc.2021.626104.
  • Jiang YM, Zhao H, Chen YX, et al. Exosomal long noncoding RNA HOXD-AS1 promotes prostate cancer metastasis via miR-361-5p/FOXM1 axis. Cell Death Dis. 2021;12(12). DOI:10.1038/s41419-021-04421-0.
  • Chen LZ, Zhang EC, Guan J, et al. A combined CRISP3 and SPINK1 prognostic grade in eps-urine and establishment of models to predict prognosis of patients with prostate cancer. Front Med-Lausanne. 2022;9: 832415.
  • Gomez-Cebrian N, Garcia-Flores M, Rubio-Briones J, et al. Targeted metabolomics analyses reveal specific metabolic alterations in high-grade prostate cancer patients. J Proteome Res. 2020;19(10):4082–4092.
  • Martinez-Pineiro L, Schalken JA, Cabri P, et al. Evaluation of urinary prostate cancer antigen-3 (PCA3) and TMPRSS2-ERG score changes when starting androgen-deprivation therapy with triptorelin 6-month formulation in patients with locally advanced and metastatic prostate cancer. BJU Int. 2014;114(4):608–616.
  • Kwon HJ, Yoon CE, Shin D, et al. Urinary exosome microRNA signatures as a noninvasive prognostic biomarker for prostate cancer. Eur Urol. 2022;81:S1371–S1372.
  • Li Z, Li LX, Diao YJ, et al. Identification of urinary exosomal miRNAs for the non-invasive diagnosis of prostate cancer. Cancer Manag Res. 2021;13:25–35.
  • Wilkinson KA, Merino EJ, Weeks KM. Selective 2 ‘-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat Protoc. 2006;1(3):1610–1616.
  • Ramanathan M, Majzoub K, Rao DS, et al. RNA-protein interaction detection in living cells. Nat Methods. 2018;15(3):207–+.
  • Kirk JM, Kim SO, Inoue K, et al. Functional classification of long non-coding RNAs by k-mer content. Nat Genet. 2018;50(10):1474–+.
  • Zhong WB, Wu KH, Long ZN, et al. Gut dysbiosis promotes prostate cancer progression and docetaxel resistance via activating NF-kappa B-IL6-STAT3 axis. Microbiome. 2022;10(1). DOI:10.1186/s40168-022-01289-w.
  • Van Poppel H, Roobol MJ, Chapple CR, et al. Prostate-specific antigen testing as part of a risk-adapted early detection strategy for prostate cancer: European Association of urology position and recommendations for 2021. Eur Urol. 2021;80(6):703–711.
  • Wong MC, Goggins WB, Wang HH, et al. Global incidence and mortality for prostate cancer: analysis of temporal patterns and trends in 36 countries. Eur Urol. 2016;70(5):862–874.
  • Li J, Xu C, Lee HJ, et al. A genomic and epigenomic atlas of prostate cancer in Asian populations. Nature. 2020;580(7801):93–99.
  • Reichert ZR, Morgan TM, Li G, et al. Prognostic value of plasma circulating tumor DNA fraction across four common cancer types: a real-world outcomes study. Ann Oncol. 2023;34(1):111–120.
  • Rasul S, Hartenbach M, Wollenweber T, et al. Prediction of response and survival after standardized treatment with 7400 MBq (177) Lu-PSMA-617 every 4 weeks in patients with metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2021;48(5):1650–1657.
  • Loehr A, Hussain A, Patnaik A, et al. Emergence of BRCA reversion mutations in patients with metastatic castration-resistant prostate cancer after treatment with rucaparib. Eur Urol. 2022;83(3):200–209.
  • Chung V, Guthrie KA, Pishvaian MJ, et al. Randomized phase II trial of olaparib + pembrolizumab versus olaparib alone as maintenance therapy in metastatic pancreatic cancer patients with germline BRCA1 or BRCA2 (g BRCA 1/2+) mutations: SWOG S2001. J clin oncol. 2021;39(3):447–447.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.