280
Views
3
CrossRef citations to date
0
Altmetric
Review

Radiomics and theranostics with molecular and metabolic probes in prostate cancer: toward a personalized approach

ORCID Icon, , , , , & ORCID Icon show all
Pages 243-255 | Received 29 Jan 2023, Accepted 14 Mar 2023, Published online: 24 Mar 2023

References

  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021. CA A Cancer J Clin. 2021;71(1):7–33.
  • Wade C, Kyprianou N. Profiling prostate cancer therapeutic resistance. Int J Mol Sci. 2018;19(3):904.
  • Mitsiades N, Kaochar S. Androgen receptor signaling inhibitors: post-chemotherapy, pre-chemotherapy and now in castration-sensitive prostate cancer. Endocr Relat Cancer. 2021;28(8):T19–38.
  • Fay EK, Graff JN. Immunotherapy in prostate cancer. Cancers (Basel). 2020;12(7):1752.
  • Parker C, Nilsson S, Heinrich D, et al. Alpha Emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369(3):213–223.
  • Poeppel TD, Handkiewicz-Junak D, Andreeff M, et al. EANM guideline for radionuclide therapy with radium-223 of metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2018;45(5):824–845.
  • Adnan A, Basu S, Receptor-Based PSMA. PET-CT: the basics and current status in clinical and research applications. Diagnostics. 2023;13(1):158.
  • Keam SJ, Lutetium L. 177 vipivotide tetraxetan: first approval. Mol Diagn Ther. 2022;26(4):467–475.
  • Aboagye EO, Barwick TD, Haberkorn U. Radiotheranostics in oncology: making precision medicine possible. CA A Cancer J Clinicians. 2023. DOI:10.3322/caac.21768
  • Cimini A, Ricci M, Chiaravalloti A, et al. Theragnostic aspects and radioimmunotherapy in pediatric tumors. Int J Mol Sci. 2020;21(11):3849.
  • Scialpi M, Bianconi F, Cantisani V, et al. Radiomic machine learning: is it really a useful method for the characterization of prostate cancer? Radiology. 2019;291(1):269–270.
  • Rowe SP, Pomper MG. Molecular imaging in oncology: current impact and future directions. CA A Cancer J Clinicians. 2022;72(4):333–352.
  • Filippi L, Schillaci O. SPECT/CT with a hybrid camera: a new imaging modality for the functional anatomical mapping of infections. Expert Rev Med Devices. 2006;3(6):699–703.
  • Chen Z, Long Y, Zhang Y, et al. Detection efficacy of analog [18F]FDG PET/CT, digital [18F]FDG, and [13N]NH3 PET/CT: a prospective, comparative study of patients with lung adenocarcinoma featuring ground glass nodules. Eur Radiol. 2023;33(3):2118–2127.
  • Filippi L, Bagni O, Digital SO. PET/CT with 18 F-FACBC in early castration-resistant prostate cancer: our preliminary results. Expert Rev Med Devices. 2022;19(7):591–598.
  • Sachpekidis C, Pan L, Kopp-Schneider A, et al. Application of the long axial field-of-view PET/CT with low-dose [18F]FDG in melanoma. Eur J Nucl Med Mol Imaging. Eur J Nucl Med Mol Imaging. 2023 Mar;50(4):1158–1167.
  • Bodei L, Herrmann K, Schöder H, et al. Radiotheranostics in oncology: current challenges and emerging opportunities. Nat Rev Clin Oncol. 2022;19(8):534–550.
  • Filippi L, Bagni O, Nervi C. Aptamer-based technology for radionuclide targeted imaging and therapy: a promising weapon against cancer. Expert Rev Med Devices. 2020;17(8):751–758.
  • Lee ST, Kulkarni HR, Singh A, et al. Theranostics of neuroendocrine tumors. Visc Med. 2017;33(5):358–366.
  • Filippi L, Valentini FB, Gossetti B, et al. Intraoperative gamma probe detection of head and neck paragangliomas with 111In-pentetreotide: a pilot study. Tumori. 2005;91(2):173–176.
  • Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 trial of 177 Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–135.
  • Filippi L, Scopinaro F, Pelle G, et al. Molecular response assessed by (68) Ga-DOTANOCand survival after (90)Y microsphere therapy in patients with liver metastases from neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2016;43(3):432–440.
  • Uccelli L, Boschi A, Cittanti C, et al. 90Y/177Lu-DOTATOC: from preclinical studies to application in humans. Pharmaceutics. 2021;13(9):1463.
  • Bettinelli A, Marturano F, Sarnelli A, et al. The ImSURE phantoms: a digital dataset for radiomic software benchmarking and investigation. Sci Data. 2022;9(1):695.
  • Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–446.
  • Bianconi F, Palumbo I, Spanu A, et al. PET/CT Radiomics in Lung Cancer: an Overview. Appl Sci. 2020;10(5):1718.
  • Ferro M, de Cobelli O, Musi G, et al. Radiomics in prostate cancer: an up-to-date review. Ther Adv Urol. 2022;14:175628722211090.
  • Kendrick J, Francis R, Hassan GM, et al. Radiomics for identification and prediction in metastatic prostate cancer: a review of studies. Front Oncol. 2021;11:771787.
  • Wu S, Jiao Y, Zhang Y, et al. Imaging-based individualized response prediction of carbon ion radiotherapy for prostate cancer patients. Cmar. 2019;11:9121–9131.
  • Shaikh FA, Kolowitz BJ, Awan O, et al. Technical challenges in the clinical application of radiomics. In: JCO clinical cancer informatics. 2017;1:1–8.
  • Dai J, Hall CL, Escara-Wilke J, et al. Prostate cancer induces bone metastasis through wnt-induced bone morphogenetic protein-dependent and independent mechanisms. Cancer Res. 2008;68(14):5785–5794.
  • Boopathi E, Birbe R, Shoyele SA, et al. Bone health management in the continuum of prostate cancer disease. Cancers (Basel). 2022;14(17):4305.
  • Kurosaka S, Satoh T, Chow E, et al. EORTC QLQ-BM22 and QLQ-C30 quality of life scores in patients with painful bone metastases of prostate cancer treated with strontium-89 radionuclide therapy. Ann Nucl Med. 2012;26(6):485–491.
  • Iagaru AH, Mittra E, Colletti PM, et al. Bone-Targeted imaging and radionuclide therapy in prostate cancer. J Nucl Med. 2016;57(S3):19S–24S.
  • Filippi L, Schillaci O, Cianni R, et al. Yttrium-90 resin microspheres and their use in the treatment of intrahepatic cholangiocarcinoma. Future Oncol. 2018;14(9):809–818.
  • Frantellizzi V, Cosma L, Brunotti G, et al. Targeted alpha therapy with thorium-227. Cancer Biother Radiopharm. 2020;14(9):809–818.
  • Filippi L, Chiaravalloti A, Schillaci O, et al. The potential of PSMA-targeted alpha therapy in the management of prostate cancer. Expert Rev Anticancer Ther. 2020;20(10):823–829.
  • Alongi P, Laudicella R, Lanzafame H, et al. PSMA and choline PET for the assessment of response to therapy and survival outcomes in prostate cancer patients: a systematic review from the literature. Cancers (Basel). 2022;14(7):1770.
  • Urso L, Lancia F, Ortolan N, et al. 18F-Choline PET/CT or PET/MR and the evaluation of response to systemic therapy in prostate cancer: are we ready? Clin Transl Imaging. 2022;10(6):687–695.
  • Filippi L, Spinelli GP, Chiaravalloti A, et al. Prognostic Value of 18F-choline PET/CT in patients with metastatic castration-resistant prostate cancer treated with radium-223. Biomedicines. 2020;8(12):555.
  • Bauckneht M, Capitanio S, Donegani MI, et al. Role of Baseline and post-therapy 18F-FDG PET in the prognostic stratification of metastatic castration-resistant prostate cancer (mCRPC) patients treated with radium-223. Cancers (Basel). 2019;12(1):31.
  • Suominen MI, Wilson T, Käkönen S-M SA. The mode-of-action of targeted alpha therapy radium-223 as an enabler for novel combinations to treat patients with bone metastasis. Int J Mol Sci. 2019;20(16):3899.
  • Salmon PL, Onischuk YN, Bondarenko OA, et al. Alpha-particle doses to cells of the bone remodeling cycle from alpha-particle-emitting bone-seekers: indications of an antiresorptive effect of actinides. Radiat Res. 1999;152(S6):S43–S47.
  • Skeletal KT. SPECT/CT: a review. Clin Transl Imaging. 2014;2:505–517.
  • Kanishi D. 99mTc-MDP accumulation mechanisms in bone. Oral Surg Oral Med Oral Pathol. 1993;75(2):239–246.
  • Grant FD, Fahey FH, Packard AB, et al. Skeletal PET with 18 F-fluoride: applying new technology to an old tracer. J Nucl Med. 2008;49(1):68–78.
  • Pacilio M, Ventroni G, De Vincentis G, et al. Dosimetry of bone metastases in targeted radionuclide therapy with alpha-emitting 223Ra-dichloride. Eur J Nucl Med Mol Imaging. 2016;43(1):21–33.
  • Etchebehere EC, Araujo JC, Milton DR, et al. Skeletal tumor burden on baseline 18F-fluoride PET/CT predicts bone marrow failure after 223RA therapy. Clin Nucl Med. 2016;41(4):268–273.
  • Kairemo K, Milton DR, Etchebehere E, et al. Final Outcome of 223Ra-therapy and the role of 18F-fluoride-PET in response evaluation in metastatic castration-resistant prostate cancer–a single institution experience. CRP. 2018;11(2):147–152.
  • Murray I, Chittenden SJ, Denis-Bacelar AM, et al. The potential of 223Ra and 18F-fluoride imaging to predict bone lesion response to treatment with 223Ra-dichloride in castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2017;44(11):1832–1844.
  • Letellier A, Johnson AC, Kit NH, et al. Uptake of Radium-223 dichloride and early [18F]NaF PET response are driven by baseline [18f]naf parameters: a pilot study in castration-resistant prostate cancer patients. Mol Imaging Biol. 2018;20(3):482–491.
  • Kairemo K, Joensuu T. Radium-223-dichloride in castration resistant metastatic prostate cancer—preliminary results of the response evaluation using F-18-fluoride PET/CT. Diagnostics. 2015;5(4):413–427.
  • Lin C, Bradshaw T, Perk T, et al. Repeatability of quantitative 18 F-NaF PET: a multicenter study. J Nucl Med. 2016;57(12):1872–1879.
  • Kao Y-S, Huang C-P, Tsai W-W YJ. A systematic review for using deep learning in bone scan classification. Clin Transl Imaging. 2023. DOI: 10.1007/s40336-023-00539-7.
  • Kairemo K, Roszik J, Anderson P, et al. 18F-sodium fluoride positron emission tomography (NaF-18-PET/CT) radiomic signatures to evaluate responses to alpha-particle Radium-223 dichloride therapy in osteosarcoma metastases. Curr Probl Cancer. 2021;45(5):100797.
  • Horoszewicz JS, Leong SS, Kawinski E, et al. LNCaP model of human prostatic carcinoma. Cancer Res. 1983;43(4):1809–1818.
  • O’Keefe DS, Bacich DJ, Huang SS, et al. A perspective on the evolving story of PSMA biology, PSMA-based imaging, and endoradiotherapeutic strategies. J Nucl Med. 2018;59(7):1007–1013.
  • Fendler WP, Eiber M, Beheshti M, et al. PSMA PET/CT: joint EANM procedure guideline/SNMMI procedure standard for prostate cancer imaging 2.0. Eur J Nucl Med Mol Imaging. 2023. DOI: 10.1007/s00259-022-06089-w.
  • Zhang H, Koumna S, Pouliot F, et al. PSMA theranostics: current landscape and future outlook. Cancers (Basel). 2021;13(16):4023.
  • Rahbar K, Weckesser M, Ahmadzadehfar H, et al. Advantage of 18F-PSMA-1007 over 68Ga-PSMA-11 PET imaging for differentiation of local recurrence vs. urinary tracer excretion. Eur J Nucl Med Mol Imaging. 2018;45(6):1076–1077.
  • Grünig H, Maurer A, Thali Y, et al. Focal unspecific bone uptake on [18F]-PSMA-1007 PET: a multicenter retrospective evaluation of the distribution, frequency, and quantitative parameters of a potential pitfall in prostate cancer imaging. Eur J Nucl Med Mol Imaging. 2021;48(13):4483–4494.
  • Evangelista L, Maurer T, van der Poel H, et al. [68Ga]Ga-PSMA Versus [18F]PSMA positron emission tomography/computed tomography in the staging of primary and recurrent prostate cancer. A systematic review of the literature. European Urology Oncology. 2022;5(3):273–282.
  • Hofman MS, Violet J, Hicks RJ, et al. [177 Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 2018;19(6):825–833.
  • Sartor O, de Bono J, Chi KN, et al. Lutetium-177–PSMA-617 for metastatic castration-resistant prostate cancer. N Engl J Med. 2021;385(12):1091–1103.
  • Srinivas S, Iagaru A. To scan or not to scan: an unnecessary dilemma for PSMA radioligand therapy. J Nucl Med. 2021;62(11):1487–1488.
  • Kratochwil C, Bruchertseifer F, Rathke H, et al. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225 Ac-PSMA-617: dosimetry Estimate and Empiric dose finding. J Nucl Med. 2017;58(10):1624–1631.
  • Feuerecker B, Tauber R, Knorr K, et al. Activity and adverse events of actinium-225-PSMA-617 in advanced metastatic castration-resistant prostate cancer after failure of lutetium-177-PSMA. Eur Urol. 2021;79(3):343–350.
  • Paganelli G, Sarnelli A, Severi S, et al. Dosimetry and safety of 177Lu PSMA-617 along with polyglutamate parotid gland protector: preliminary results in metastatic castration-resistant prostate cancer patients. Eur J Nucl Med Mol Imaging. 2020;47(13):3008–3017.
  • Rizzo A, Dall’Armellina S, Pizzuto DA, et al. PSMA radioligand uptake as a biomarker of neoangiogenesis in solid tumours: diagnostic or theragnostic factor? Cancers (Basel). 2022;14(16):4039.
  • Urso L, Castello A, Rocca GC, et al. Role of PSMA-ligands imaging in renal cell carcinoma management: current status and future perspectives. J Cancer Res Clin Oncol. 2022;148(6):1299–1311.
  • Lauri C, Chiurchioni L, Russo VM, et al. PSMA expression in solid tumors beyond the prostate gland: ready for theranostic applications? JCM. 2022;11(21):6590.
  • Toyama Y, Werner RA, Ruiz-Bedoya CA, et al. Current and future perspectives on functional molecular imaging in nephro-urology: theranostics on the horizon. Theranostics. 2021;11(12):6105–6119.
  • Ferdinandus J, Eppard E, Gaertner FC, et al. Predictors of response to radioligand therapy of metastatic castrate-resistant prostate cancer with 177Lu-PSMA-617. J Nucl Med. 2017;58(2):312–319.
  • Emmett L, Crumbaker M, Ho B, et al. Results of a prospective Phase 2 Pilot Trial of 177Lu–PSMA-617 therapy for metastatic castration-resistant prostate cancer including imaging predictors of treatment response and patterns of progression. Clin Genitourin Cancer. 2019;17(1):15–22.
  • van der Sar ECA, Ajs K, Ebbers SC, et al. Baseline Imaging derived predictive factors of response following [177Lu]Lu-PSMA-617 therapy in salvage metastatic castration-resistant prostate cancer: a lesion- and patient-based analysis. Biomedicines. 2022;10(7):1575.
  • Ahmadzadehfar H, Wegen S, Yordanova A, et al. Overall survival and response pattern of castration-resistant metastatic prostate cancer to multiple cycles of radioligand therapy using [177Lu]Lu-PSMA-617. Eur J Nucl Med Mol Imaging. 2017;44(9):1448–1454.
  • Wang HT, Yao YH, Li BG, et al. Neuroendocrine prostate cancer (NEPC) progressing from conventional prostatic adenocarcinoma: factors associated with time to development of NEPC and survival from NEPC diagnosis—a systematic review and pooled analysis. JCO. 2014;32(30):3383–3390.
  • Bauckneht M, Marini C, Cossu V, et al. Gene’s expression underpinning the divergent predictive value of [18F]F-fluorodeoxyglucose and prostate-specific membrane antigen positron emission tomography in primary prostate cancer: a bioinformatic and experimental study. J Transl Med. 2023;21(1):3.
  • Bakht MK, Derecichei I, Li Y, et al. Neuroendocrine differentiation of prostate cancer leads to PSMA suppression. Endocr Relat Cancer. 2019;26(2):131–146.
  • Hofman MS, Emmett L, Sandhu S, et al. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet. 2021;397(10276):797–804.
  • Michalski K, Ruf J, Goetz C, et al. Prognostic implications of dual tracer PET/CT: PSMA ligand and [18F]FDG PET/CT in patients undergoing [177Lu]PSMA radioligand therapy. Eur J Nucl Med Mol Imaging. 2021;48(6):2024–2030.
  • Beltran H, Antonarakis ES, Morris MJ, et al. Emerging molecular biomarkers in advanced prostate cancer: translation to the clinic. In: American society of clinical oncology educational book. 2016. p. 131–141. DOI: 10.1200/EDBK_159248.
  • Seifert R, Telli T, Hadaschik B, et al. 18 F-FDG PET needed to assess 177 Lu-PSMA therapy eligibility? A VISION-like, single-center analysis. J Nucl Med. 2022. DOI:10.2967/jnumed.122.264741
  • Pouliot F, Beauregard J, Saad F, et al. The triple‐tracer strategy against metastatic PrOstate cancer (3TMPO) study protocol. BJU Int. 2022;130(3):314–322.
  • Buteau JP, Martin AJ, Emmett L, et al. PSMA and FDG-PET as predictive and prognostic biomarkers in patients given [177Lu]Lu-PSMA-617 versus cabazitaxel for metastatic castration-resistant prostate cancer (TheraP): a biomarker analysis from a randomised, open-label, phase 2 trial. Lancet Oncol. 2022;23(11):1389–1397.
  • Chen R, Wang Y, Zhu Y, et al. The added value of 18 F-FDG PET/CT compared with 68 Ga-PSMA PET/CT in patients with castration-resistant prostate cancer. J Nucl Med. 2022;63(1):69–75.
  • Assadi M, Manafi-Farid R, Jafari E, et al. Predictive and prognostic potential of pretreatment 68Ga-PSMA PET tumor heterogeneity index in patients with metastatic castration-resistant prostate cancer treated with 177Lu-PSMA. Front Oncol. 2022;12:1066926.
  • Roll W, Schindler P, Masthoff M, et al. Evaluation of 68Ga-PSMA-11 PET-MRI in patients with advanced prostate cancer receiving 177Lu-PSMA-617 therapy: a radiomics analysis. Cancers (Basel). 2021;13(15):3849.
  • Moazemi S, Erle A, Khurshid Z, et al. Decision-support for treatment with 177Lu-PSMA: machine learning predicts response with high accuracy based on PSMA-PET/CT and clinical parameters. Ann Transl Med. 2021;9(9):818.
  • Moazemi S, Erle A, Essler M, et al. Analyzing the potential of radiomics features and radiomics signature from pretherapeutic PSMA-PET-CT scans and clinical data for prediction of overall survival when treated with Lu[177]-PSMA. Digital. 2021. DOI:10.1055/s-0041-1726854
  • Yadav MP, Ballal S, Bal C, et al. Efficacy and safety of 177Lu-PSMA-617 radioligand therapy in metastatic castration-resistant prostate cancer patients. Clin Nucl Med. 2020;45(1):19–31.
  • Binderup T, Knigge U, Loft A, et al. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res. 2010;16(3):978–985.
  • Sansovini M, Severi S, Ianniello A, et al. Long-term follow-up and role of FDG PET in advanced pancreatic neuroendocrine patients treated with 177Lu-D OTATATE. Eur J Nucl Med Mol Imaging. 2017;44(3):490–499.
  • Urso L, Panareo S, Castello A, et al. Glucose metabolism modification induced by radioligand therapy with [177Lu]Lu/[90Y]Y-DOTATOC in advanced neuroendocrine neoplasms: a prospective pilot study within FENET-2016 Trial. Pharmaceutics. 2022;14(10):2009.
  • Alberts I, Schepers R, Zeimpekis K, et al. [68 Ga]Ga-PSMA-11 and low-dose 2-[18F]FDG PET/CT using a long-axial field of view scanner for patients referred for [177Lu]-PSMA-radioligand therapy. Eur J Nucl Med Mol Imaging. 2023;50(3):951–956.
  • Filippi L, Evangelista L, Sathekge MM, et al. ImmunoPET for prostate cancer in the PSMA era: do we need other targets? Clin Transl Imaging. 2022;10:587–596.
  • Tsai W-TK, Zettlitz KA, Dahlbom M, et al. Evaluation of [131I]I- and [177Lu]Lu-DTPA-A11 minibody for radioimmunotherapy in a preclinical model of PSCA-expressing prostate cancer. Mol Imaging Biol. 2020;22(5):1380–1391.
  • Chakravarty R, Chakraborty S, Dash A. 64 Cu 2+ ions as PET probe: an emerging paradigm in molecular imaging of cancer. Mol Pharm. 2016;13(11):3601–3612.
  • Chhabra A, Thakur ML. Theragnostic radionuclide pairs for prostate cancer management: 64Cu/67Cu, can be a budding hot duo. Biomedicines. 2022;10(11):2787.
  • Tripathi S, Trabulsi EJ, Gomella L, et al. VPAC1 targeted 64Cu-TP3805 positron emission tomography imaging of prostate cancer: preliminary evaluation in man. Urology. 2016;88:111–118.
  • Thakur ML, Tripathi SK, Gomella LG, et al. Imaging urothelial bladder cancer: a VPAC PET targeted approach. Can J Urol. 2021;28(2):10596–10602.
  • Urso L, Manco L, Castello A, et al. PET-derived radiomics and artificial intelligence in breast cancer: a systematic review. Int J Mol Sci. 2022;23(21):13409.
  • Abouelmehdi K, Beni-Hessane A, Khaloufi H. Big healthcare data: preserving security and privacy. J Big Data. 2018;5:1.
  • Guglielmo P, Marturano F, Bettinelli A, et al. Additional value of PET radiomic features for the initial staging of prostate cancer: a systematic review from the literature. Cancers (Basel). 2021;13(23):6026.
  • Ghezzo S, Bezzi C, Presotto L, et al. State of the art of radiomic analysis in the clinical management of prostate cancer: a systematic review. Crit Rev Oncol Hematol. 2022;169:103544.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.