251
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Cost analyses for malaria molecular diagnosis for research planners in India and beyond

, , & ORCID Icon
Pages 549-559 | Received 17 Jul 2023, Accepted 23 Mar 2024, Published online: 20 May 2024

References

  • World Health Organization. World malaria report: 20 years of global progress and challenges. 2020. ISBN 978-92-4-001579-1.
  • World Health Organization. World malaria report. 2018. ISBN 978-92-4-156565-3.
  • Sinha A, Anvikar AR. Malaria. In: Arinaminpathy N, Sinha A, Anvikar AR, et al, editors. Infectious Diseases in the South-East Asia Region. Washington, USA: The Center For Disease Dynamics, Economics & Policy; 2021. p. 29–50.
  • Azikiwe CC, Ifezulike CC, Siminialayi IM, et al. A comparative laboratory diagnosis of malaria: microscopy versus rapid diagnostic test kits. Asian Pac J Trop Biomed. 2012;2(4):307–310. doi: 10.1016/S2221-1691(12)60029-X
  • Berzosa P, de Lucio A, Romay-Barja M, et al. Comparison of three diagnostic methods (microscopy, RDT, and PCR) for the detection of malaria parasites in representative samples from equatorial guinea. Malar J. 2018;17(1):333. doi: 10.1186/s12936-018-2481-4
  • Tran TM, Aghili A, Li S, et al. A nested real-time PCR assay for the quantification of Plasmodium falciparum DNA extracted from dried blood spots. Malaria j. 2014;13(1):1–8. doi: 10.1186/1475-2875-13-393
  • Sy M, Deme AB, Warren JL, et al. Plasmodium falciparum genomic surveillance reveals spatial and temporal trends, association of genetic and physical distance, and household clustering. Sci Rep. 2022;12(1):938. doi: 10.1038/s41598-021-04572-2
  • Mayor A, Ishengoma DS, Proctor JL, et al. Sampling for malaria molecular surveillance. Trends Parasitol. 2023;39(11):954–968. doi: 10.1016/j.pt.2023.08.007
  • Mensah BA, Akyea-Bobi NE, Ghansah A. Genomic approaches for monitoring transmission dynamics of malaria: A case for malaria molecular surveillance in Sub–Saharan Africa. Front Epidemiol. 2022;2:939291. doi: 10.3389/fepid.2022.939291
  • Noviyanti R, Miotto O, Barry A, et al. Implementing parasite genotyping into national surveillance frameworks: feedback from control programmes and researchers in the Asia–Pacific region. Malaria j. 2020;19(1):271. doi: 10.1186/s12936-020-03330-5
  • Schaffner SF, Badiane A, Khorgade A, et al. Malaria surveillance reveals parasite relatedness, signatures of selection, and correlates of transmission across Senegal. Nature Commun. 2023;14(1):7268. doi: 10.1038/s41467-023-43087-4
  • Sambrook J, Russell DW. Purification of nucleic acids by extraction with phenol: chloroform. Cold Spring Harb Protoc. 2006;2006(1):db–rot4455. doi: 10.1101/pdb.prot4455
  • Siwal N, Singh US, Dash M, et al. Malaria diagnosis by PCR revealed differential distribution of mono and mixed species infections by Plasmodium falciparum and P. vivax in India. PLOS ONE. 2018;13(3):13. doi: 10.1371/journal.pone.0193046
  • Indian Council of Medical Research (ICMR). Guidelines for recruitment of staff for short-term research projects. 2016. Available from: https://main.icmr.nic.in/sites/default/files/basic_page/Guidelines_for_recruitment.pdf
  • Indian Council of Medical Research (ICMR). Revision of emoluments and guidelines on service condition for research personnel employees in R& D programme of the central governments/departments/agencies, 2019. Available from: https://main.icmr.nic.in/sites/default/files/upload_documents/Revision_of_emoluments.pdf
  • Hashimoto M, Bando M, Kido JI, et al. Nucleic acid purification from dried blood spot on FTA Elute Card provides template for polymerase chain reaction for highly sensitive plasmodium detection. Parasitol Int. 2019;73:101941. doi: 10.1016/j.parint.2019.101941
  • Schwartz A, Baidjoe A, Rosenthal PJ, et al. The effect of storage and extraction methods on amplification of Plasmodium falciparum DNA from dried blood spots. Am J Trop Med Hyg. 2015;92(5):922. doi: 10.4269/ajtmh.14-0602
  • Strøm GE, Tellevik MG, Hanevik K, et al. Comparison of four methods for extracting DNA from dried blood on filter paper for PCR targeting the mitochondrial Plasmodium genome. Trans R Soc Trop Med Hyg. 2014;108(8):488–494. doi: 10.1093/trstmh/tru084
  • Panda BB, Meher AS, Hazra RK. Comparison between different methods of DNA isolation from dried blood spots for determination of malaria to determine specificity and cost effectiveness. J Parasit Dis. 2019;43(3):337–342. doi: 10.1007/s12639-019-01136-0
  • Mahittikorn A, Masangkay FR, Kotepui KU, et al. Comparative performance of PCR using DNA extracted from dried blood spots and whole blood samples for malaria diagnosis: a meta-analysis. Sci Rep. 2021;11(1):4845. doi: 10.1038/s41598-021-83977-5
  • Deora N, Kar S, Sinha A. Multiplexing for Plasmodium spp.? Think Again! Comment on Bhowmick et al. Dry post wintertime mass surveillance unearths a huge burden of P. vivax, and mixed infection with P. vivax P. falciparum, a threat to malaria elimination, in Dhalai, Tripura, India. Pathogens 2021, 10, 1259”. Pathogens. 2022;11(7):737. doi: 10.3390/pathogens11070737
  • Pal-Bhowmick I, Nirmolia T, Pandey A, et al. Reply to Deora et al. Multiplexing for Plasmodium spp.? Think Again! Comment on “Bhowmick et al. dry post wintertime mass surveillance unearths a huge burden of P. vivax, and Mixed Infection with P. vivax P. falciparum, a Threat to Malaria Elimination, in Dhalai, Tripura, India. Pathogens 2021, 10, 1259. Pathogens. 2022;11(8):832.
  • Whittaker C, Slater H, Nash R, et al. Global patterns of submicroscopic Plasmodium falciparum malaria infection: insights from a systematic review and meta-analysis of population surveys. Lancet Microbe. 2021;2(8):e366–74. doi: 10.1016/S2666-5247(21)00055-0
  • Schlatter RP, Matte U, Polanczyk CA, et al. Costs of genetic testing: Supporting Brazilian public policies for the incorporating of molecular diagnostic technologies. Genet Mol Biol. 2015;38(3):332–337. doi: 10.1590/S1415-475738320140204
  • Labarca C, Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7
  • Dragan AI, Casas-Finet JR, Bishop ES, et al. Characterization of PicoGreen interaction with dsDNA and the origin of its fluorescence enhancement upon binding. Biophys J. 2010;99(9):3010–3019. doi: 10.1016/j.bpj.2010.09.012
  • Sazed SA, Kibria MG, Alam MS. An optimized real-time qpcr method for the effective detection of human malaria infections. Diagnostics. 2021;11(5):736. doi: 10.3390/diagnostics11050736
  • Zelman BW, Baral R, Zarlinda I, et al. Costs and cost-effectiveness of malaria reactive case detection using loop-mediated isothermal amplification compared to microscopy in the low transmission setting of Aceh Province, Indonesia. Malaria j. 2018;17(1):1–2. doi: 10.1186/s12936-018-2361-y
  • Najafzadeh M, Marra CA, Lynd LD, et al. Cost-effectiveness of using a molecular diagnostic test to improve preoperative diagnosis of thyroid cancer. Value Health. 2012;15(8):1005–1013. doi: 10.1016/j.jval.2012.06.017
  • de Alava E, Pareja MJ, Carcedo D, et al. Cost-effectiveness analysis of molecular diagnosis by next-generation sequencing versus sequential single testing in metastatic non-small cell lung cancer patients from a south Spanish hospital perspective. Expert Rev Pharmacoecon Outcomes Res. 2022;22(6):1033–1042. doi: 10.1080/14737167.2022.2078310
  • Shah M, Chihota V, Coetzee G, et al. Comparison of laboratory costs of rapid molecular tests and conventional diagnostics for detection of tuberculosis and drug-resistant tuberculosis in South Africa. BMC Infect Dis. 2013;13(1):1–7. doi: 10.1186/1471-2334-13-352