3,120
Views
0
CrossRef citations to date
0
Altmetric
Review

Systematic reviews of machine learning in healthcare: a literature review

, , , , &
Pages 63-115 | Received 17 Jul 2023, Accepted 31 Oct 2023, Published online: 24 Nov 2023

References

  • OECD. Health at a glance 2021: OECD Indicators: Digital health. 2021.
  • Enad H, Mohammed M. A Review on Artificial Intelligence and Quantum Machine Learning for Heart Disease Diagnosis: Current Techniques, Challenges and Issues. Recent Dev Fut Directions. 2023;11(1):08–25. doi: 10.54216/FPA.110101
  • Mohammed MA, Lakhan A, Abdulkareem KH, et al. Federated auto-encoder and XGBoost schemes for multi-omics cancer detection in distributed fog computing paradigm. Chemometr Intell Lab Syst. 2023;241:104932. doi: 10.1016/j.chemolab.2023.104932
  • Abdulmajeed NQ, Al-Khateeb B, Mohammed MA. Voice pathology identification system using a deep learning approach based on unique feature selection sets. Expert Syst. 2023;3:e13327.
  • Arif ZH, Cengiz K. Severity classification for COVID-19 infections based on lasso-logistic regression model. Int J Math Stat Comput Sci. 2023;1:25–32. doi: 10.59543/ijmscs.v1i.7715
  • Salman AO, Geman O. Evaluating three Machine learning classification methods for effective COVID-19 diagnosis. Int J Math Stat Comput Sci. 2023;1:1–14. doi: 10.59543/ijmscs.v1i.7693
  • Zeng Z, Zhan J, Zhang K, et al. Global, regional, and national burden of urinary tract infections from 1990 to 2019: an analysis of the global burden of disease study 2019. World J Urol. 2022;40(3):755–763. doi: 10.1007/s00345-021-03913-0
  • Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535. jul21 1. doi: 10.1136/bmj.b2535.
  • Loftus TJ, Tighe PJ, Ozrazgat-Baslanti T, et al. Ideal algorithms in healthcare: explainable, dynamic, precise, autonomous, fair, and reproducible. PLOS Digit Health. 2022;1(1):e0000006. doi: 10.1371/journal.pdig.0000006
  • Padula WV, Kreif N, Vanness DJ, et al. Machine learning methods in Health Economics and outcomes research-the PALISADE checklist: a good practices report of an ISPOR task force. Value Health. 2022;25(7):1063–1080. doi: 10.1016/j.jval.2022.03.022
  • Abu Bakar AR, Lai KW, Hamzaid NA. The emergence of machine learning in auditory neural impairment: a systematic review. Neurosci Lett. 2021;765:136250. doi: 10.1016/j.neulet.2021.136250
  • Adamidi ES, Mitsis K, Nikita KS. Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review. Comput Struct Biotechnol J. 2021;19:2833–2850. doi: 10.1016/j.csbj.2021.05.010
  • Adeoye J, Tan JY, Choi SW, et al. Prediction models applying machine learning to oral cavity cancer outcomes: a systematic review. Int J Med Inform. 2021;154:154. doi: 10.1016/j.ijmedinf.2021.104557
  • Ahsan MM, Siddique Z. Machine learning-based heart disease diagnosis: a systematic literature review. Artif Intell Med. 2022;128:102289. doi: 10.1016/j.artmed.2022.102289
  • Akazawa M, Hashimoto K. Artificial intelligence in gynecologic cancers: current status and future challenges – a systematic review. Artif Intell Med. 2021;120:102164. doi: 10.1016/j.artmed.2021.102164
  • Al Hinai G, Jammoul S, Vajihi Z, et al. Deep learning analysis of resting electrocardiograms for the detection of myocardial dysfunction, hypertrophy, and ischaemia: a systematic review. Eur Heart J Digit Health. 2021;2(3):416–423. doi: 10.1093/ehjdh/ztab048
  • Alabi RO, Youssef O, Pirinen M, et al. Machine learning in oral squamous cell carcinoma: Current status, clinical concerns and prospects for future—A systematic review. Artif Intell Med. 2021;115:102060. doi: 10.1016/j.artmed.2021.102060
  • Albahri AS, Hamid RA, Alwan J, et al. Role of biological data mining and Machine learning techniques in detecting and diagnosing the Novel coronavirus (COVID-19): a systematic review. J Med Syst. 2020;44(7). doi: 10.1007/s10916-020-01582-x
  • Alballa N, Al-Turaiki I. Machine learning approaches in COVID-19 diagnosis, mortality, and severity risk prediction: a review. IMU. 2021;24:100564. doi: 10.1016/j.imu.2021.100564
  • Alharbi ET, Nadeem F, Cherif A. Predictive models for personalized asthma attacks based on patient’s biosignals and environmental factors: a systematic review. BMC Med Inform Decis Mak. 2021;21(1). doi: 10.1186/s12911-021-01704-6
  • Alhasan AS. Clinical applications of Artificial intelligence, Machine learning, and Deep learning in the imaging of Gliomas: a systematic review. Cureus. 2021;13(11). doi: 10.7759/cureus.19580
  • Alsolai H, Qureshi S, Iqbal SMZ, et al. A systematic review of literature on Automated sleep Scoring. IEEE Access. 2022;10:79419–79443. doi: 10.1109/ACCESS.2022.3194145
  • Anteby R, Klang E, Horesh N, et al. Deep learning for noninvasive liver fibrosis classification: a systematic review. Liver Int. 2021;41(10):2269–2278. doi: 10.1111/liv.14966
  • Bang CS, Lee JJ, Baik GH. Computer-aided diagnosis of Gastrointestinal ulcer and hemorrhage using wireless capsule endoscopy: systematic review and diagnostic test accuracy meta-analysis. J Med Internet Res. 2021;23(12):e33267. doi: 10.2196/33267
  • Bang CS, Lee JJ, Baik GH. Computer-aided diagnosis of esophageal cancer and neoplasms in endoscopic images: a systematic review and meta-analysis of diagnostic test accuracy. Gastrointest Endosc. 2021;93(5):1006–1015.e1013. doi: 10.1016/j.gie.2020.11.025
  • Barrett L, Hu J, Howell P. Systematic review of Machine learning approaches for detecting developmental stuttering. IEEE/ACM Trans Audio Speech Lang Process. 2022;30:1160–1172. doi: 10.1109/TASLP.2022.3155295
  • Bazoukis G, Stavrakis S, Zhou J, et al. Machine learning versus conventional clinical methods in guiding management of heart failure patients—a systematic review. Heart Fail Rev. 2021;26(1):23–34. doi: 10.1007/s10741-020-10007-3
  • Bedrikovetski S, Dudi-Venkata NN, Kroon HM, et al. Artificial intelligence for pre-operative lymph node staging in colorectal cancer: a systematic review and meta-analysis. BMC Cancer. 2021;21(1):1058. doi: 10.1186/s12885-021-08773-w
  • Bedrikovetski S, Dudi-Venkata NN, Maicas G, et al. Artificial intelligence for the diagnosis of lymph node metastases in patients with abdominopelvic malignancy: a systematic review and meta-analysis. Artif Intell Med. 2021;113:102022. doi: 10.1016/j.artmed.2021.102022
  • Benoit J, Onyeaka H, Keshavan M, et al. Systematic review of digital phenotyping and machine learning in psychosis spectrum illnesses. Harv Rev Psychiatry. 2020;28(5):296–304. doi: 10.1097/HRP.0000000000000268
  • Bernert RA, Hilberg AM, Melia R, et al. Artificial intelligence and suicide prevention: a systematic review of Machine learning investigations. Int J Environ Res Public Health. 2020;17(16):5929. doi: 10.3390/ijerph17165929
  • Bertl M, Metsallik J, Ross P. A systematic literature review of AI-based digital decision support systems for post-traumatic stress disorder. Front Psychiatry. 2022;13: doi: 10.3389/fpsyt.2022.923613
  • Binvignat M, Pedoia V, Butte AJ, et al. Use of machine learning in osteoarthritis research: a systematic literature review. RMD Open. 2022;8(1):e001998. doi: 10.1136/rmdopen-2021-001998
  • Boonstra A, Laven M. Influence of artificial intelligence on the work design of emergency department clinicians a systematic literature review. BMC Health Serv Res. 2022;22(1). doi: 10.1186/s12913-022-08070-7
  • Boyd C, Brown G, Kleinig T, et al. Machine learning quantitation of cardiovascular and cerebrovascular disease: a systematic review of clinical applications. Diagnostics. 2021;11(3):551. doi: 10.3390/diagnostics11030551
  • Bracher-Smith M, Crawford K, Escott-Price V. Machine learning for genetic prediction of psychiatric disorders: a systematic review. Mol Psychiatry. 2021;26(1):70–79. doi: 10.1038/s41380-020-0825-2
  • Buchlak QD, Esmaili N, Leveque JC, et al. Machine learning applications to clinical decision support in neurosurgery: an artificial intelligence augmented systematic review. Neurosurg Rev. 2020;43(5):1235–1253. doi: 10.1007/s10143-019-01163-8
  • Buisson M, Navel V, Labbe A, et al. Deep learning versus ophthalmologists for screening for glaucoma on fundus examination: a systematic review and meta-analysis. Clin Exp Ophthalmol. 2021;49(9):1027–1038. doi: 10.1111/ceo.14000
  • Cabitza F, Locoro A, Banfi G. Machine learning in orthopedics: a literature review. Front Bioeng Biotechnol. 2018;6:75. doi: 10.3389/fbioe.2018.00075
  • Castaldo R, Cavaliere C, Soricelli A, et al. Radiomic and genomic machine learning method performance for prostate cancer diagnosis: systematic literature review. J Med Internet Res. 2021;23(4):e22394. doi: 10.2196/22394
  • Cavus N, Lawan AA, Ibrahim Z, et al. A systematic literature review on the application of machine-learning models in behavioral assessment of Autism spectrum disorder. J Pers Med. 2021;11(4):299. doi: 10.3390/jpm11040299
  • Celtikci E. A systematic review on machine learning in neurosurgery: the future of decision-making in patient care. Turk Neurosurg. 2018;28(2):167–173. doi: 10.5137/1019-5149.JTN.20059-17.1
  • Chandra G, Irisha KD, Vica VI, et al. Systematic literature review on application of artificial intelligence in cancer detection using image processing. In: 2022 3rd International Conference on Artificial Intelligence and Data Sciences (AiDAS); Ipoh, Malaysia; 2022. p. 273–277.
  • Chee ML, Ong MEH, Siddiqui FJ, et al. Artificial intelligence applications for COVID-19 in intensive care and emergency settings: a systematic review. Int J Environ Res Public Health. 2021;18(9):4749. doi: 10.3390/ijerph18094749
  • Chiesa-Estomba CM, Graña M, Medela A, et al. Machine learning algorithms as a computer-assisted decision tool for Oral cancer prognosis and management decisions: a systematic review. ORL J Otorhinolaryngol Relat Spec. 2022;84(4):1–11. doi: 10.1159/000520672
  • Cho SJ, Sunwoo L, Baik SH, et al. Brain metastasis detection using machine learning: a systematic review and meta-analysis. Neuro Oncol. 2021;23(2):214–225. doi: 10.1093/neuonc/noaa232
  • Choudhury A, Asan O. Role of Artificial intelligence in patient safety outcomes: systematic literature review. JMIR Med Inform. 2020;8(7):e18599. doi: 10.2196/18599
  • Choudhury A, Renjilian E, Asan O. Use of machine learning in geriatric clinical care for chronic diseases: a systematic literature review. JAMIA Open. 2020;3(3):459–471. doi: 10.1093/jamiaopen/ooaa034
  • da Silva Neto SR, Tabosa Oliveira T, Teixeira IV, et al. Machine learning and deep learning techniques to support clinical diagnosis of arboviral diseases: a systematic review. PLoS Negl Trop Dis. 2022;16(1):e0010061. doi: 10.1371/journal.pntd.0010061
  • Dallora AL, Eivazzadeh S, Mendes E, et al. Machine learning and microsimulation techniques on the prognosis of dementia: a systematic literature review. PLoS One. 2017;12(6):e0179804. doi: 10.1371/journal.pone.0179804
  • Dallora AL, Anderberg P, Kvist O, et al. Bone age assessment with various machine learning techniques: a systematic literature review and meta-analysis. PLoS One. 2019;14(7):e0220242. doi: 10.1371/journal.pone.0220242
  • Daniel, Cenggoro TW, Pardamean B. A systematic literature review of machine learning application in COVID-19 medical image classification. Procedia Comput Sci. 2023;216:749–756. doi: 10.1016/j.procs.2022.12.192
  • D’Antoni F, Russo F, Ambrosio L, et al. Artificial intelligence and Computer vision in low back Pain: a systematic review. Int J Environ Res Public Health. 2021;18(20):10909. doi: 10.3390/ijerph182010909
  • Das PK, V A D, Meher S, et al. A systematic review on recent advancements in deep and machine learning based detection and classification of acute lymphoblastic leukemia. IEEE Access. 2022;10:81741–81763. doi: 10.1109/ACCESS.2022.3196037
  • Das T, Kaur H, Gour P, et al. Intersection of network medicine and machine learning towards investigating the key biomarkers and pathways underlying amyotrophic lateral sclerosis: a systematic review. Brief Bioinform. 2022;23(6). doi: 10.1093/bib/bbac442
  • de Bardeci M, Ip CT, Olbrich S. Deep learning applied to electroencephalogram data in mental disorders: a systematic review. Biol Psychol. 2021;162:108117. doi: 10.1016/j.biopsycho.2021.108117
  • Decharatanachart P, Chaiteerakij R, Tiyarattanachai T, et al. Application of artificial intelligence in chronic liver diseases: a systematic review and meta-analysis. BMC Gastroenterol. 2021;21(1):10. doi: 10.1186/s12876-020-01585-5
  • Decharatanachart P, Chaiteerakij R, Tiyarattanachai T, et al. Application of artificial intelligence in non-alcoholic fatty liver disease and liver fibrosis: a systematic review and meta-analysis. Therap Adv Gastroenterol. 2021;14:17562848211062807. doi: 10.1177/17562848211062807
  • DelSole EM, Keck WL, Patel AA. The state of machine learning in spine surgery: a systematic review. Clin Spine Surg. 2021;35(2):80–89. doi: 10.1097/BSD.0000000000001208
  • Dogan O, Tiwari S, Jabbar MA, et al. A systematic review on AI/ML approaches against COVID-19 outbreak. Complex Intell Systems. 2021;7(5):1–24. doi: 10.1007/s40747-021-00424-8
  • Dudchenko A, Kopanitsa G. Decision support systems in cardiology: a systematic review. Stud Health Technol Inform. 2017;237:209–214.
  • Ebrahimi A, Wiil UK, Schmidt T, et al. Predicting the risk of alcohol use disorder using machine learning: a systematic literature review. IEEE Access. 2021;9:151697–151712. doi: 10.1109/ACCESS.2021.3126777
  • Ebrahimighahnavieh MA, Luo S, Chiong R. Deep learning to detect Alzheimer’s disease from neuroimaging: a systematic literature review. Comput Methods Programs Biomed. 2020;187:105242. doi: 10.1016/j.cmpb.2019.105242
  • El-Daw S, El-Tantawy A, Aly T, et al. Role of machine learning in management of degenerative spondylolisthesis: a systematic review. Curr Orthop Pract. 2021;32(3):302–308. doi: 10.1097/BCO.0000000000000992
  • Falconer N, Abdel-Hafez A, Scott IA, et al. Systematic review of machine learning models for personalised dosing of heparin. Br J Clin Pharmacol. 2021;87(11):4124–4139. doi: 10.1111/bcp.14852
  • Farook TH, Jamayet NB, Abdullah JY, et al. Machine learning and intelligent Diagnostics in Dental and orofacial pain management: a systematic review. Pain Res Manag. 2021;2021:1–9. doi: 10.1155/2021/6659133
  • Fernandes F, Barbalho I, Barros D, et al. Biomedical signals and machine learning in amyotrophic lateral sclerosis: a systematic review. Biomed Eng Online. 2021;20(1). doi: 10.1186/s12938-021-00896-2
  • Fregoso-Aparicio L, Noguez J, Montesinos L, et al. Machine learning and deep learning predictive models for type 2 diabetes: a systematic review. Diabetol Metab Syndr. 2021;13(1):148. doi: 10.1186/s13098-021-00767-9
  • Frondelius T, Atkova I, Miettunen J, et al. Diagnostic and prognostic prediction models in ventilator-associated pneumonia: systematic review and meta-analysis of prediction modelling studies. J Crit Care. 2022;67:44–56. doi: 10.1016/j.jcrc.2021.10.001
  • Fusco R, Grassi R, Granata V, et al. Artificial intelligence and COVID-19 using chest ct scan and chest x-ray images: machine learning and deep learning approaches for diagnosis and treatment. J Pers Med. 2021;11(10):993. doi: 10.3390/jpm11100993
  • Garrow CR, Kowalewski KF, Li L, et al. Machine learning for surgical phase recognition: a systematic review. Ann Surg. 2021;273(4):684–693. doi: 10.1097/SLA.0000000000004425
  • Ghaderzadeh M, Asadi F. Deep learning in the detection and diagnosis of COVID-19 using radiology modalities: a systematic review. J Healthc Eng. 2021;2021,:6677314. doi: 10.1155/2021/6677314
  • Grueso S, Viejo-Sobera R. Machine learning methods for predicting progression from mild cognitive impairment to Alzheimer’s disease dementia: a systematic review. Alzheimers Res Ther. 2021;13(1):162. doi: 10.1186/s13195-021-00900-w
  • Gutiérrez-Tobal GC, Álvarez D, Kheirandish-Gozal L, et al. Reliability of machine learning to diagnose pediatric obstructive sleep apnea: systematic review and meta-analysis. Pediatr Pulmonol. 2021;57(8):1931–1943. doi: 10.1002/ppul.25423
  • Haggenmüller S, Maron RC, Hekler A, et al. Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts. Eur J Cancer. 2021;156:202–216. doi: 10.1016/j.ejca.2021.06.049
  • Hameed BMZ, Shah M, Naik N, et al. The ascent of artificial intelligence in endourology: a systematic review over the last 2 decades. Curr Urol Rep. 2021;22(10):53. doi: 10.1007/s11934-021-01069-3
  • Hasan N, Bao YKK. Understanding current states of machine learning approaches in medical informatics: a systematic literature review. Health Technol. 2021;11(3):471–482. doi: 10.1007/s12553-021-00538-6
  • Hassan N, Slight R, Weiand D, et al. Preventing sepsis; how can artificial intelligence inform the clinical decision-making process? a systematic review. Int J Med Inform. 2021;150:104457. doi: 10.1016/j.ijmedinf.2021.104457
  • Henn J, Buness A, Schmid M, et al. Machine learning to guide clinical decision-making in abdominal surgery—a systematic literature review. Langenbecks Arch Surg. 2021;407(1):51–61. doi: 10.1007/s00423-021-02348-w
  • Hickman SE, Woitek R, Le EPV, et al. Machine learning for workflow applications in screening Mammography: systematic review and meta-analysis. Radiology. 2022;302(1):88–104. doi: 10.1148/radiol.2021210391
  • Hinterwimmer F, Lazic I, Suren C, et al. Machine learning in knee arthroplasty: specific data are key—a systematic review. Knee Surg Sports Traumatol Arthrosc. 2022;30(2):376–388. doi: 10.1007/s00167-021-06848-6
  • Hoekstra O, Hurst W, Tummers J. Healthcare related event prediction from textual data with machine learning: a systematic literature review. Healthc Anal. 2022;2:100107. doi: 10.1016/j.health.2022.100107
  • Hoodbhoy Z, Masroor Jeelani S, Aziz A, et al. Machine learning for child and adolescent health: a systematic review. Pediatrics. 2021;147(1):e2020011833. doi: 10.1542/peds.2020-011833
  • Hosni M, Abnane I, Idri A, et al. Reviewing ensemble classification methods in breast cancer. Comput Methods Programs Biomed. 2019;177:89–112. doi: 10.1016/j.cmpb.2019.05.019
  • Hoyos W, Aguilar J, Toro M. Dengue models based on machine learning techniques: A systematic literature review. Artif Intell Med. 2021;119:102157. doi: 10.1016/j.artmed.2021.102157
  • Huang J, Shlobin NA, DeCuypere M, et al. Deep learning for outcome prediction in Neurosurgery: a systematic review of design, reporting, and reproducibility. Neurosurgery. 2022;90(1):16–38. doi: 10.1227/NEU.0000000000001736
  • Huang S, Dang J, Sheckter CC, et al. A systematic review of machine learning and automation in burn wound evaluation: a promising but developing frontier. Burns. 2021;47(8):1691–1704. doi: 10.1016/j.burns.2021.07.007
  • Huang Z, Aarab G, Ravesloot MJL, et al. Prediction of the obstruction sites in the upper airway in sleep-disordered breathing based on snoring sound parameters: a systematic review. Sleep Med. 2021;88:116–133. doi: 10.1016/j.sleep.2021.10.015
  • Ibrahim B, Suppiah S, Ibrahim N, et al. Diagnostic power of resting-state fMRI for detection of network connectivity in Alzheimer’s disease and mild cognitive impairment: a systematic review. Hum Brain Mapp. 2021;42(9):2941–2968. doi: 10.1002/hbm.25369
  • Infante T, Cavaliere C, Punzo B, et al. Radiogenomics and artificial intelligence approaches applied to cardiac computed tomography angiography and cardiac magnetic resonance for precision medicine in coronary heart disease: a systematic review. Circ Cardiovasc Imaging. 2021;14(12):1133–1146. doi: 10.1161/CIRCIMAGING.121.013025
  • Irgang L, Barth H, Holmén M. Data-driven technologies as enablers for value Creation in the prevention of surgical site infections: a systematic review. J Healthc Informatics Res. 2023;7(1):1–41. doi: 10.1007/s41666-023-00129-2
  • Islam MN, Mustafina SN, Mahmud T, et al. Machine learning to predict pregnancy outcomes: a systematic review, synthesizing framework and future research agenda. Bmc Pregnancy Childbirth. 2022;22(1). doi: 10.1186/s12884-022-04594-2
  • Jiang K, Jiang X, Pan J, et al. Current evidence and future perspective of accuracy of Artificial intelligence Application for early gastric cancer diagnosis with endoscopy: a systematic and meta-analysis. Front Med. 2021;8:629080. doi: 10.3389/fmed.2021.629080
  • Jiang MY, Ma YX, Guo SY, et al. Using Machine learning technologies in pressure injury management: systematic review. JMIR Med Inform. 2021;9(3):e25704. doi: 10.2196/25704
  • Jones OT, Calanzani N, Saji S, et al. Artificial intelligence techniques that may be applied to primary care data to facilitate earlier diagnosis of cancer: systematic review. J Med Internet Res. 2021;23(3):N.PAG–N.PAG. doi: 10.2196/23483
  • Kalhori SRN, Tanhapour M, Gholamzadeh M. Enhanced childhood diseases treatment using computational models: systematic review of intelligent experiments heading to precision medicine. J Biomed Informat. 2021;115:115. doi: 10.1016/j.jbi.2021.103687
  • Kareemi H, Vaillancourt C, Rosenberg H, et al. Machine learning versus usual care for diagnostic and prognostic prediction in the emergency department: a systematic review. Acad Emerg Med. 2021;28(2):184–196. doi: 10.1111/acem.14190
  • Karwath A, Bunting KV, Gill SK, et al. Redefining β-blocker response in heart failure patients with sinus rhythm and atrial fibrillation: a machine learning cluster analysis. Lancet. 2021;398(10309):1427–1435. doi: 10.1016/S0140-6736(21)01638-X
  • Kassem MA, Hosny KM, Damaševičius R, et al. Machine learning and Deep learning methods for skin lesion classification and diagnosis: a systematic review. Diagnostics. 2021;11(8):1390. doi: 10.3390/diagnostics11081390
  • Kausch SL, Moorman JR, Lake DE, et al. Physiological machine learning models for prediction of sepsis in hospitalized adults: an integrative review. Intensive Crit Care Nurs. 2021;65:103035. doi: 10.1016/j.iccn.2021.103035
  • Kawamoto A, Takenaka K, Okamoto R, et al. Systematic review of artificial intelligence-based image diagnosis for inflammatory bowel disease. Dig Endosc. 2022;34(7):1311–1319. doi: 10.1111/den.14334
  • Kedra J, Radstake T, Pandit A, et al. Current status of use of big data and artificial intelligence in RMDs: a systematic literature review informing EULAR recommendations. RMD Open. 2019;5(2):e001004. doi: 10.1136/rmdopen-2019-001004
  • Kennedy EE, Bowles KH, Aryal S. Systematic review of prediction models for postacute care destination decision-making. J Am Med Informatics Assoc. 2022;29(1):176–186. doi: 10.1093/jamia/ocab197
  • Khanagar SB, Naik S, Al Kheraif AA, et al. Application and performance of Artificial intelligence technology in Oral cancer diagnosis and prediction of prognosis: a systematic review. Diagnostics. 2021;11(6):1004. doi: 10.3390/diagnostics11061004
  • Kim HR, Sung M, Park JA, et al. Analyzing adverse drug reaction using statistical and machine learning methods: a systematic review. Medicine. 2022;101(25):E29387. doi: 10.1097/MD.0000000000029387
  • Kim SS. Recent trends of artificial intelligence and machine learning for insomnia research. Chronobiol Med. 2021;3(1):16–19. doi: 10.33069/cim.2021.0008
  • Kodama S, Fujihara K, Shiozaki H, et al. Ability of current machine learning algorithms to predict and detect hypoglycemia in patients with diabetes mellitus: meta-analysis. JMIR Diabetes. 2021;6(1):e22458. doi: 10.2196/22458
  • Komolafe TE, Cao Y, Nguchu BA, et al. Diagnostic test accuracy of deep learning detection of COVID-19: a systematic review and meta-analysis. Acad Radiol. 2021;28(11):1507–1523. doi: 10.1016/j.acra.2021.08.008
  • Kourou K, Exarchos KP, Papaloukas C, et al. Applied machine learning in cancer research: a systematic review for patient diagnosis, classification and prognosis. Comput Struct Biotechnol J. 2021;19:5546–5555. doi: 10.1016/j.csbj.2021.10.006
  • Kozikowski M, Suarez-Ibarrola R, Osiecki R, et al. Role of radiomics in the prediction of muscle-invasive bladder cancer: a systematic review and meta-analysis. Eur Urol Focus. 2021;8(3):728–738. doi: 10.1016/j.euf.2021.05.005
  • Kumar S, Oh I, Schindler S, et al. Machine learning for modeling the progression of Alzheimer disease dementia using clinical data: a systematic literature review. JAMIA Open. 2021;4(3):ooab052. doi: 10.1093/jamiaopen/ooab052
  • Kumar Y, Gupta S, Singla R, et al. A systematic review of artificial intelligence techniques in cancer prediction and diagnosis. Archiv Comput Methods Eng. 2022;29(4):2043–2070.
  • Kuntz S, Krieghoff-Henning E, Kather JN, et al. Gastrointestinal cancer classification and prognostication from histology using deep learning: systematic review. Eur J Cancer. 2021;155:200–215. doi: 10.1016/j.ejca.2021.07.012
  • La Greca Saint-Esteven A, Vuong D, Tschanz F, et al. Systematic review on the association of radiomics with tumor biological endpoints. Cancers (Basel). 2021;13(12). doi: 10.3390/cancers13123015
  • Langarizadeh M, Sayadi M. Machine learning techniques for diagnosis of lower gastrointestinal cancer: a systematic review. Iran Red Crescent Med J. 2021;23(7):e436.
  • Le Glaz A, Haralambous Y, Kim-Dufor DH, et al. Machine learning and natural language processing in mental health: systematic review. J Med Internet Res. 2021;23(5):e15708. doi: 10.2196/15708
  • Lecointre L, Dana J, Lodi M, et al. Artificial intelligence-based radiomics models in endometrial cancer: a systematic review. Eur J Surg Oncol. 2021;47(11):2734–2741. doi: 10.1016/j.ejso.2021.06.023
  • Lequertier V, Wang T, Fondrevelle J, et al. Hospital length of stay prediction methods: a systematic review. Med Care. 2021;59(10):929–938. doi: 10.1097/MLR.0000000000001596
  • Li JX, Zhou ZJ, Dong JY, et al. Predicting breast cancer 5-year survival using machine learning: a systematic review. PLoS One. 2021;16(4):e0250370. doi: 10.1371/journal.pone.0250370
  • Li MD, Ahmed SR, Choy E, et al. Artificial intelligence applied to musculoskeletal oncology: a systematic review. Skeletal Radiol. 2022;51(2):245–256. doi: 10.1007/s00256-021-03820-w
  • Li Y, Wang X, Zhang J, et al. Applications of artificial intelligence (AI) in researches on non-alcoholic fatty liver disease(NAFLD): a systematic review. Rev Endocr Metab Disord. 2021;23(3):387–400. doi: 10.1007/s11154-021-09681-x
  • Librenza-Garcia D, Kotzian BJ, Yang J, et al. The impact of machine learning techniques in the study of bipolar disorder: a systematic review. Neuroscience & Biobehavioral Reviews. 2017;80:538–554. doi: 10.1016/j.neubiorev.2017.07.004
  • Lima CLD, da Silva ACG, Moreno GMM, et al. Temporal and spatiotemporal arboviruses forecasting by machine learning: a systematic review. Front Public Health. 2022;10: doi: 10.3389/fpubh.2022.900077
  • Locquet M, Diep AN, Beaudart C, et al. A systematic review of prediction models to diagnose COVID-19 in adults admitted to healthcare centers. Arch Public Health. 2021;79(1):105. doi: 10.1186/s13690-021-00630-3
  • Lopez CD, Gazgalis A, Boddapati V, et al. Artificial learning and Machine learning decision guidance applications in total hip and nnee arthroplasty: a systematic review. Arthroplast Today. 2021;11:103–112. doi: 10.1016/j.artd.2021.07.012
  • Lubelski D, Hersh A, Azad TD, et al. Prediction models in degenerative spine surgery: a systematic review. Global Spine J. 2021;11(1_suppl):79s–88s. doi: 10.1177/2192568220959037
  • Maile H, JPO L, Gore D, et al. Machine learning algorithms to detect subclinical keratoconus: systematic review. JMIR Med Inform. 2021;9(12):e27363. doi: 10.2196/27363
  • Mangold C, Zoretic S, Thallapureddy K, et al. Machine learning models for predicting neonatal mortality: a systematic review. Neonatology. 2021;118(4):394–405. doi: 10.1159/000516891
  • Mari T, Henderson J, Maden M, et al. Systematic review of the effectiveness of machine learning algorithms for classifying pain intensity, phenotype or treatment outcomes using electroencephalogram data. J Pain. 2021;23(3):349–369. doi: 10.1016/j.jpain.2021.07.011
  • Matsangidou M, Liampas A, Pittara M, et al. Machine learning in pain medicine: an up-to-date systematic review. Pain Ther. 2021;10(2):1067–1084. doi: 10.1007/s40122-021-00324-2
  • Mawdsley E, Reynolds B, Cullen B. A systematic review of the effectiveness of machine learning for predicting psychosocial outcomes in acquired brain injury: which algorithms are used and why? J Neuropsychol. 2021;15(3):319–339. doi: 10.1111/jnp.12244
  • Medic G, Kosaner Kließ M, Atallah L, et al. Evidence-based clinical decision support systems for the prediction and detection of three disease states in critical care: a systematic literature review. F1000Res. 2019;8:1728. doi: 10.12688/f1000research.20498.2
  • Mei J, Desrosiers C, Frasnelli J. Machine learning for the diagnosis of Parkinson’s disease: a review of literature. Front Aging Neurosci. 2021;13:633752. doi: 10.3389/fnagi.2021.633752
  • Mellia JA, Basta MN, Toyoda Y, et al. Natural language processing in surgery a systematic review and meta-analysis. Ann Surg. 2021;273(5):900–908. doi: 10.1097/SLA.0000000000004419
  • Miltiadous A, Tzimourta KD, Giannakeas N, et al. Machine learning algorithms for epilepsy detection based on published EEG databases: a systematic review. IEEE Access. 2023;11:564–594. doi: 10.1109/ACCESS.2022.3232563
  • Minissi ME, Chicchi Giglioli IA, Mantovani F, et al. Assessment of the autism spectrum disorder based on machine learning and social visual attention: a systematic review. J Autism Dev Disord. 2021;52(5):2187–2202. doi: 10.1007/s10803-021-05106-5
  • Miranda L, Paul R, Pütz B, et al. Systematic review of functional MRI applications for psychiatric disease subtyping. Front Psychiatry. 2021;12:665536. doi: 10.3389/fpsyt.2021.665536
  • Mirzania D, Thompson AC, Muir KW. Applications of deep learning in detection of glaucoma: a systematic review. Eur J Ophthalmol. 2021;31(4):1618–1642. doi: 10.1177/1120672120977346
  • Moezzi M, Shirbandi K, Shahvandi HK, et al. The diagnostic accuracy of Artificial intelligence-assisted CT imaging in COVID-19 disease: a systematic review and meta-analysis. Inform Med Unlocked. 2021;24:100591. doi: 10.1016/j.imu.2021.100591
  • Moglia A, Georgiou K, Georgiou E, et al. A systematic review on artificial intelligence in robot-assisted surgery. Int J Surg. 2021;95:106151. doi: 10.1016/j.ijsu.2021.106151
  • Mohan BP, Khan SR, Kassab LL, et al. High pooled performance of convolutional neural networks in computer-aided diagnosis of GI ulcers and/or hemorrhage on wireless capsule endoscopy images: a systematic review and meta-analysis. Gastrointest Endosc. 2021;93(2):356–364.e354. doi: 10.1016/j.gie.2020.07.038
  • Mondal MRH, Bharati S, Podder P. Diagnosis of COVID-19 using machine learning and deep learning: a review. Curr Med Imaging. 2021;17(12):1403–1418. doi: 10.2174/1573405617666210713113439
  • Montazeri M, ZahediNasab R, Farahani A, et al. Machine learning models for image-based diagnosis and prognosis of COVID-19: systematic review. JMIR Med Inform. 2021;9(4):e25181. doi: 10.2196/25181
  • Moor M, Rieck B, Horn M, et al. Early prediction of sepsis in the ICU using Machine learning: a systematic review. Front Med. 2021;8:607952. doi: 10.3389/fmed.2021.607952
  • Moshawrab M, Adda M, Bouzouane A, et al. Smart wearables for the detection of Cardiovascular diseases: a systematic literature review. Sensors. 2023;23(2):828. doi: 10.3390/s23020828
  • Moura FSE, Amin K, Ekwobi C. Artificial intelligence in the management and treatment of burns: a systematic review. Burns Rauma. 2021;9: doi: 10.1093/burnst/tkab022
  • Mpanya D, Celik T, Klug E, et al. Predicting mortality and hospitalization in heart failure using machine learning: a systematic literature review. Int J Cardiol Heart Vasc. 2021;34:100773. doi: 10.1016/j.ijcha.2021.100773
  • Mughal H, Javed AR, Rizwan M, et al. Parkinson’s disease management via Wearable sensors: a systematic review. IEEE Access. 2022;10:35219–35237. doi: 10.1109/ACCESS.2022.3162844
  • Musa N, AYu G, Aljojo N, et al. A systematic review and meta-data analysis on the applications of Deep learning in electrocardiogram. J Ambient Intell Humaniz Comput. 2022;14(7):1–74.
  • Musulin J, Baressi Šegota S, Štifanić D, et al. Application of Artificial intelligence-based regression methods in the problem of COVID-19 spread prediction: a systematic review. Int J Environ Res Public Health. 2021;18(8):4287. doi: 10.3390/ijerph18084287
  • Nadarajah R, Alsaeed E, Hurdus B, et al. Prediction of incident atrial fibrillation in community-based electronic health records: a systematic review with meta-analysis. Heart. 2021;108(13):1020–1029. doi: 10.1136/heartjnl-2021-320036
  • Naemi A, Schmidt T, Mansourvar M, et al. Machine learning techniques for mortality prediction in emergency departments: a systematic review. BMJ Open. 2021;11(11):e052663. doi: 10.1136/bmjopen-2021-052663
  • Nafea MS, Ismail ZH. Supervised machine learning and Deep learning techniques for epileptic seizure recognition using EEG signals—A systematic literature review. Bioeng. 2022;9(12):781. doi: 10.3390/bioengineering9120781
  • Nasser M, Yusof UK. Deep learning based methods for breast cancer diagnosis: a systematic review and future direction. Diagnostics. 2023;13(1). doi: 10.3390/diagnostics13010161
  • Nazarian S, Glover B, Ashrafian H, et al. Diagnostic accuracy of Artificial intelligence and Computer-aided diagnosis for the detection and characterization of colorectal polyps: systematic review and meta-analysis. J Med Internet Res. 2021;23(7):e27370. doi: 10.2196/27370
  • Nguyen AV, Blears EE, Ross E, et al. Machine learning applications for the differentiation of primary central nervous system lymphoma from glioblastoma on imaging: a systematic review and meta-analysis. Neurosurg Focus. 2018;45(5):E5. doi: 10.3171/2018.8.FOCUS18325
  • Ogink PT, Groot OQ, Bindels BJJ, et al. The use of machine learning prediction models in spinal surgical outcome: an overview of current development and external validation studies. Semin Spine Surg. 2021;33(2):100872. doi: 10.1016/j.semss.2021.100872
  • Ogink PT, Groot OQ, Karhade AV, et al. Wide range of applications for machine-learning prediction models in orthopedic surgical outcome: a systematic review. Acta Orthop. 2021;92(5):526–531. doi: 10.1080/17453674.2021.1932928
  • Ortíz-Barrios MA, Coba-Blanco DM, Alfaro-Saíz JJ, et al. Process improvement approaches for increasing the response of emergency departments against the COVID-19 pandemic: a systematic review. Int J Environ Res Public Health. 2021;18(16):8814. doi: 10.3390/ijerph18168814
  • Ossai CI, Wickramasinghe N. Intelligent decision support with machine learning for efficient management of mechanical ventilation in the intensive care unit – a critical overview. Int J Med Inform. 2021;150:104469. doi: 10.1016/j.ijmedinf.2021.104469
  • Paganelli AI, Mondéjar AG, da Silva AC, et al. Real-time data analysis in health monitoring systems: a comprehensive systematic literature review. J Biomed Informat. 2022;127:104009. doi: 10.1016/j.jbi.2022.104009
  • Pahwa B, Bali O, Goyal S, et al. APplications of machine learning in pediatric hydrocephalus: a systematic review. Neurol India. 2021;69(8):S568–S577. doi: 10.4103/0028-3886.332287
  • Patil S, Habib Awan K, Arakeri G, et al. Machine learning and its potential applications to the genomic study of head and neck cancer—A systematic review. J Oral Pathol Med. 2019;48(9):773–779. doi: 10.1111/jop.12854
  • Peralta M, Jannin P, Baxter JSH. Machine learning in deep brain stimulation: a systematic review*. Artif Intell Med. 2021;122:122. doi: 10.1016/j.artmed.2021.102198
  • Persad E, Jost K, Honoré A, et al. Neonatal sepsis prediction through clinical decision support algorithms: a systematic review. Acta Paediatr. 2021;110(12):3201–3226. doi: 10.1111/apa.16083
  • Popa SL, Ismaiel A, Cristina P, et al. Non-alcoholic fatty liver disease: implementing complete automated diagnosis and staging. a systematic review. Diagnostics. 2021;11(6):1078. doi: 10.3390/diagnostics11061078
  • Prasoppokakorn T, Tiyarattanachai T, Chaiteerakij R, et al. Application of artificial intelligence for diagnosis of pancreatic ductal adenocarcinoma by EUS: a systematic review and meta-analysis. Endosc Ultrasound. 2021;11(1):17–26.
  • Quaak M, van de Mortel L, Thomas RM, et al. Deep learning applications for the classification of psychiatric disorders using neuroimaging data: systematic review and meta-analysis. NeuroImage Clin. 2021;30:102584. doi: 10.1016/j.nicl.2021.102584
  • Quartuccio N, Marrale M, Laudicella R, et al. The role of PET radiomic features in prostate cancer: a systematic review. Clin Transl Imaging. 2021;9(6):579–588. doi: 10.1007/s40336-021-00436-x
  • Ramesh S, Chokkara S, Shen T, et al. Applications of artificial intelligence in pediatric oncology: a systematic review. JCO Clin Cancer Inform. 2021;5(5):1208–1219. doi: 10.1200/CCI.21.00102
  • Ramos-Lima LF, Waikamp V, Antonelli-Salgado T, et al. The use of machine learning techniques in trauma-related disorders: a systematic review. J Psychiatr Res. 2020;121:159–172. doi: 10.1016/j.jpsychires.2019.12.001
  • Ravegnini G, Ferioli M, Morganti AG, et al. Radiomics and artificial intelligence in uterine sarcomas: a systematic review. J Pers Med. 2021;11(11):1179. doi: 10.3390/jpm11111179
  • Ren M, Yi PH. Artificial intelligence in orthopedic implant model classification: a systematic review. Skeletal Radiol. 2022;51(2):407–416. doi: 10.1007/s00256-021-03884-8
  • Rice P, Pugh M, Geraghty R, et al. Machine learning models for predicting stone-free status after shockwave lithotripsy: a systematic review and meta-analysis. Urology. 2021;156:16–22. doi: 10.1016/j.urology.2021.04.006
  • Rowe TW, Katzourou IK, Stevenson-Hoare JO, et al. Machine learning for the life-time risk prediction of Alzheimer’s disease: a systematic review. Brain Commun. 2021;3(4):fcab246. doi: 10.1093/braincomms/fcab246
  • Safaei M, Sundararajan EA, Driss M, et al. A systematic literature review on obesity: understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Comput Biol Med. 2021;136:104754. doi: 10.1016/j.compbiomed.2021.104754
  • Sajjadian M, Lam RW, Milev R, et al. Machine learning in the prediction of depression treatment outcomes: a systematic review and meta-analysis. Psychol Med. 2021;51(16):2742–2751. doi: 10.1017/S0033291721003871
  • Salas-Zárate R, Alor-Hernández G, Salas-Zárate MDP, et al. Detecting depression signs on social media: a systematic literature review. Healthcare. 2022;10(2):291. doi: 10.3390/healthcare10020291
  • Salem H, Soria D, Lund JN, et al. A systematic review of the applications of expert systems (ES) and machine learning (ML) in clinical urology. BMC Med Inform Decis Mak. 2021;21(1):223. doi: 10.1186/s12911-021-01585-9
  • Sanmarchi F, Fanconi C, Golinelli D, et al. Predict, diagnose, and treat chronic kidney disease with machine learning: a systematic literature review. J Nephrol. 2023;36(4):1101–1117. doi: 10.1007/s40620-023-01573-4
  • Sanmarchi F, Fanconi C, Golinelli D, et al. Correction to: predict, diagnose, and treat chronic kidney disease with machine learning: a systematic literature review (journal of nephrology. J Nephrol. 2023;2023(4):1219–1219. doi: 10.1007/s40620-023-01573-4
  • Saputro SA, Pattanaprateep O, Pattanateepapon A, et al. Prognostic models of diabetic microvascular complications: a systematic review and meta-analysis. Syst Rev. 2021;10(1):288. doi: 10.1186/s13643-021-01841-z
  • Sardar SK, Kumar N, Lee SC. A systematic literature review on machine learning algorithms for human status detection. IEEE Access. 2022;10:74366–74382. doi: 10.1109/ACCESS.2022.3190967
  • Scardoni A, Balzarini F, Signorelli C, et al. Artificial intelligence-based tools to control healthcare associated infections: a systematic review of the literature. J Infect Public Health. 2020;13(8):1061–1077. doi: 10.1016/j.jiph.2020.06.006
  • Segato A, Marzullo A, Calimeri F, et al. Artificial intelligence for brain diseases: a systematic review. APL Bioeng. 2020;4(4):041503. doi: 10.1063/5.0011697
  • Senanayake S, White N, Graves N, et al. Machine learning in predicting graft failure following kidney transplantation: a systematic review of published predictive models. Int J Med Inform. 2019;130:130. doi: 10.1016/j.ijmedinf.2019.103957
  • Senders JT, Arnaout O, Karhade AV, et al. Natural and artificial intelligence in neurosurgery: a systematic review. Neurosurgery. 2018;83(2):181–192. doi: 10.1093/neuros/nyx384
  • Shi Z, Zhang Z, Liu Z, et al. Methodological quality of machine learning-based quantitative imaging analysis studies in esophageal cancer: a systematic review of clinical outcome prediction after concurrent chemoradiotherapy. Eur J Nucl Med Mol Imaging. 2021;49(8):2462–2481. doi: 10.1007/s00259-021-05658-9
  • Shillan D, Sterne JAC, Champneys A, et al. Use of machine learning to analyse routinely collected intensive care unit data: a systematic review. Crit Care. 2019;23(1):284. doi: 10.1186/s13054-019-2564-9
  • Shin S, Austin PC, Ross HJ, et al. Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality. ESC Heart Fail. 2021;8(1):106–115. doi: 10.1002/ehf2.13073
  • Shlobin NA, Baig AA, Waqas M, et al. Artificial intelligence for large-vessel occlusion stroke: a systematic review. World Neurosurg. 2021 Mar;159:207–220.
  • Siddiqui S, Arifeen M, Hopgood A, et al. Deep learning models for the diagnosis and screening of COVID-19: a systematic review. SN Comput Sci. 2022;3(5):397. doi: 10.1007/s42979-022-01326-3
  • Smets J, Shevroja E, Hügle T, et al. Machine learning solutions for osteoporosis—a review. J Bone Mineral Res. 2021;36(5):833–851. doi: 10.1002/jbmr.4292
  • Soffer S, Klang E, Shimon O, et al. Deep learning for pulmonary embolism detection on computed tomography pulmonary angiogram: a systematic review and meta-analysis. Sci Rep. 2021;11(1):15814. doi: 10.1038/s41598-021-95249-3
  • Song DY, Topriceanu CC, Ilie-Ablachim DC, et al. Machine learning with neuroimaging data to identify autism spectrum disorder: a systematic review and meta-analysis. Neuroradiology. 2021;63(12):2057–2072. doi: 10.1007/s00234-021-02774-z
  • Song X, Liu X, Liu F, et al. Comparison of machine learning and logistic regression models in predicting acute kidney injury: a systematic review and meta-analysis. Int J Med Inform. 2021;151:104484. doi: 10.1016/j.ijmedinf.2021.104484
  • Sorin V, Barash Y, Konen E, et al. Deep learning for natural language processing in radiology-fundamentals and a systematic review. J Am Coll Radiol. 2020;17(5):639–648. doi: 10.1016/j.jacr.2019.12.026
  • Srivani M, Murugappan A, Mala T. Cognitive computing technological trends and future research directions in healthcare — a systematic literature review. Artif Intell Med. 2023;138:102513. doi: 10.1016/j.artmed.2023.102513
  • Stephens ME, O’Neal CM, Westrup AM, et al. Utility of machine learning algorithms in degenerative cervical and lumbar spine disease: a systematic review. Neurosurg Rev. 2021;45(2):965–978. doi: 10.1007/s10143-021-01624-z
  • Stewart J, Lu J, Goudie A, et al. Applications of machine learning to undifferentiated chest pain in the emergency department: a systematic review. PLoS One. 2021;16(8):e0252612. doi: 10.1371/journal.pone.0252612
  • Stokes K, Castaldo R, Federici C, et al. The use of artificial intelligence systems in diagnosis of pneumonia via signs and symptoms: a systematic review. Biomedical Signal Processing And Control. 2022;72:103325. doi: 10.1016/j.bspc.2021.103325
  • Subramanian H, Dey R, Brim WR, et al. Trends in development of Novel Machine learning methods for the identification of Gliomas in datasets that include non-glioma images: a systematic review. Front Oncol. 2021;11:788819. doi: 10.3389/fonc.2021.788819
  • Syeda HB, Syed M, Sexton KW, et al. Role of machine learning techniques to tackle the covid-19 crisis: systematic review. JMIR Med Inform. 2021;9(1):e23811. doi: 10.2196/23811
  • Syer T, Mehta P, Antonelli M, et al. Artificial intelligence compared to Radiologists for the initial diagnosis of prostate cancer on magnetic resonance imaging: a systematic review and recommendations for future studies. Cancers (Basel). 2021;13(13):3318. doi: 10.3390/cancers13133318
  • Tabatabaei M, Razaei A, Sarrami AH, et al. Current status and quality of machine learning-based radiomics studies for glioma grading: a systematic review. Oncology. 2021;99(7):433–443. doi: 10.1159/000515597
  • Tan KR, Seng JJB, Kwan YH, et al. Evaluation of machine learning methods developed for prediction of Diabetes complications: a systematic review. J Diabetes Sci Technol. 2021;17(2):474–489. doi: 10.1177/19322968211056917
  • Teo YH, Lim ICZY, Tseng FS, et al. Predicting clinical outcomes in acute ischemic stroke patients undergoing endovascular thrombectomy with machine learning: a systematic review and meta-analysis. Clin Neuroradiol. 2021;31(4):1121–1130. doi: 10.1007/s00062-020-00990-3
  • Tewarie IA, Senders JT, Kremer S, et al. Survival prediction of glioblastoma patients-are we there yet? a systematic review of prognostic modeling for glioblastoma and its clinical potential. Neurosurg Rev. 2021;44(4):2047–2057. doi: 10.1007/s10143-020-01430-z
  • Triantafyllidis A, Polychronidou E, Alexiadis A, et al. Computerized decision support and machine learning applications for the prevention and treatment of childhood obesity: a systematic review of the literature. Artif Intell Med. 2020;104:101844. doi: 10.1016/j.artmed.2020.101844
  • Ugga L, Perillo T, Cuocolo R, et al. Meningioma MRI radiomics and machine learning: systematic review, quality score assessment, and meta-analysis. Neuroradiology. 2021;63(8):1293–1304. doi: 10.1007/s00234-021-02668-0
  • van Kempen EJ, Post M, Mannil M, et al. Accuracy of machine learning algorithms for the classification of molecular features of gliomas on MRI: a systematic literature review and meta-analysis. Cancers (Basel). 2021;13(11):2606. doi: 10.3390/cancers13112606
  • van Kempen EJ, Post M, Mannil M, et al. Performance of machine learning algorithms for glioma segmentation of brain MRI: a systematic literature review and meta-analysis. Eur Radiol. 2021;31(12):9638–9653. doi: 10.1007/s00330-021-08035-0
  • Volpe S, Pepa M, Zaffaroni M, et al. Machine learning for head and neck cancer: a safe bet?-a clinically oriented systematic review for the radiation oncologist. Front Oncol. 2021;11:772663. doi: 10.3389/fonc.2021.772663
  • Wang W, Kiik M, Peek N, et al. A systematic review of machine learning models for predicting outcomes of stroke with structured data. PLoS One. 2020;15(6):e0234722. doi: 10.1371/journal.pone.0234722
  • Wesselius FJ, van Schie MS, De Groot NMS, et al. Digital biomarkers and algorithms for detection of atrial fibrillation using surface electrocardiograms: a systematic review. Comput Biol Med. 2021;133:104404. doi: 10.1016/j.compbiomed.2021.104404
  • Wongkoblap A, Vadillo MA, Curcin V. Researching mental Health disorders in the era of social media: systematic review. J Med Internet Res. 2017;19(6):e228. doi: 10.2196/jmir.7215
  • Wu JH, Liu TYA, Hsu WT, et al. Performance and limitation of machine learning algorithms for diabetic retinopathy screening: meta-analysis. J Med Internet Res. 2021;23(7):e23863. doi: 10.2196/23863
  • Xu L, He B, Zhang Y, et al. Prognostic models for amyotrophic lateral sclerosis: a systematic review. J Neurol. 2021;268(9):3361–3370. doi: 10.1007/s00415-021-10508-7
  • Yan MY, Gustad LT, Ø N. Sepsis prediction, early detection, and identification using clinical text for machine learning: a systematic review. J Am Med Inform Assoc. 2021;29(3):559–575. doi: 10.1093/jamia/ocab236
  • Yeo M, Tahayori B, Kok HK, et al. Review of deep learning algorithms for the automatic detection of intracranial hemorrhages on computed tomography head imaging. J Neurointerv Surg. 2021;13(4):369–378. doi: 10.1136/neurintsurg-2020-017099
  • Yin J, Ngiam KY, Teo HH. Role of Artificial intelligence applications in Real-life clinical practice: systematic review. J Med Internet Res. 2021;23(4):e25759. doi: 10.2196/25759
  • Yu K, Syed MN, Bernardis E, et al. Machine learning applications in the evaluation and management of Psoriasis: a systematic review. J Psoriasis Psoriatic Arthritis. 2020;5(4):147–159. doi: 10.1177/2475530320950267
  • Zakhem GA, Fakhoury JW, Motosko CC, et al. Characterizing the role of dermatologists in developing artificial intelligence for assessment of skin cancer. J Am Acad Dermatol. 2021;85(6):1544–1556. doi: 10.1016/j.jaad.2020.01.028
  • Zaunseder E, Haupt S, Mütze U, et al. Opportunities and challenges in machine learning-based newborn screening-a systematic literature review. JIMD Rep. 2022;63(3):250–261. doi: 10.1002/jmd2.12285
  • Zeiser FA, da Costa CA, Roehe AV, et al. Breast cancer intelligent analysis of histopathological data: a systematic review. Appl Soft Comput. 2021;113:113. doi: 10.1016/j.asoc.2021.107886
  • Zhang L, Sun JQ, Jiang BB, et al. Development of artificial intelligence in epicardial and pericoronary adipose tissue imaging: a systematic review. Eur J Hybrid Imaging. 2021;5(1). doi: 10.1186/s41824-021-00107-0
  • Zhao Y, Wood EP, Mirin N, et al. Social determinants in machine learning Cardiovascular disease prediction models: a systematic review. Am J Prev Med. 2021;61(4):596–605. doi: 10.1016/j.amepre.2021.04.016
  • Zheng QH, Yang L, Zeng B, et al. Artificial intelligence performance in detecting tumor metastasis from medical radiology imaging: a systematic review and meta-analysis. ECLINICALMEDICINE. 2021;31:100669. doi: 10.1016/j.eclinm.2020.100669
  • Zheng Y, Dickson VV, Blecker S, et al. Identifying patients with hypoglycemia using natural language processing: systematic literature review. JMIR Diabetes. 2022;7(2):e34681. doi: 10.2196/34681
  • Zhou Y, Ge YT, Shi XL, et al. Machine learning predictive models for acute pancreatitis: a systematic review. Int J Med Inform. 2022;157:104641. doi: 10.1016/j.ijmedinf.2021.104641
  • Zhu T, Li K, Herrero P, et al. Deep learning for diabetes: a systematic review. IEEE J Biomed Health Inform. 2021;25(7):2744–2757. doi: 10.1109/JBHI.2020.3040225
  • Maniah, Soewito B, Lumban Gaol F, et al. A systematic literature review: Risk analysis in cloud migration. J King Saud Univ Comput Inf Sci. 2022;34(6, Part B):3111–3120. doi: 10.1016/j.jksuci.2021.01.008
  • Kitchenham B, Pearl Brereton O, Budgen D, et al. Systematic literature reviews in software engineering – a systematic literature review. Inf Software Technol. 2009;51(1):7–15. doi: 10.1016/j.infsof.2008.09.009
  • Kitchenham B, Charters S Guidelines for performing systematic literature reviews in software engineering, Technical Report EBSE 2007-001. (2007).
  • Brereton P, Kitchenham BA, Budgen D, et al. Lessons from applying the systematic literature review process within the software engineering domain. J Syst Software. 2007;80(4):571–583. doi: 10.1016/j.jss.2006.07.009
  • Luo W, Phung D, Tran T, et al. Guidelines for developing and reporting machine learning predictive models in Biomedical research: a Multidisciplinary View. J Med Internet Res. 2016;18(12):e323. doi: 10.2196/jmir.5870
  • Zeng X, Zhang Y, Kwong JS, et al. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: a systematic review. J Evid Based Med. 2015;8(1):2–10. doi: 10.1111/jebm.12141
  • Kable AK, Pich J, Maslin-Prothero SE. A structured approach to documenting a search strategy for publication: a 12 step guideline for authors. Nurse Educ Today. 2012;32(8):878–886. doi: 10.1016/j.nedt.2012.02.022
  • Kim HR, Sung M, Park JA, et al. Analyzing adverse drug reaction using statistical and machine learning methods: a systematic review. Medicine. 2022;101(25):e29387. doi: 10.1097/MD.0000000000029387
  • Paganelli AI, Mondéjar AG, da Silva AC, et al. Real-time data analysis in health monitoring systems: a comprehensive systematic literature review. J Biomed Informatics. 2022;127:104009. doi: 10.1016/j.jbi.2022.104009
  • Ariji Y, Fukuda M, Kise Y, et al. Contrast-enhanced computed tomography image assessment of cervical lymph node metastasis in patients with oral cancer by using a deep learning system of artificial intelligence. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;127(5):458–463. doi: 10.1016/j.oooo.2018.10.002
  • Ariji Y, Sugita Y, Nagao T, et al. CT evaluation of extranodal extension of cervical lymph node metastases in patients with oral squamous cell carcinoma using deep learning classification. Oral Radiol. 2020;36(2):148–155. doi: 10.1007/s11282-019-00391-4
  • Kwon JM, Jeon KH, Kim HM, et al. Comparing the performance of artificial intelligence and conventional diagnosis criteria for detecting left ventricular hypertrophy using electrocardiography. EP Europace. 2020;22(3):412–419. doi: 10.1093/europace/euz324
  • Nakajima K, Kudo T, Nakata T, et al. Diagnostic accuracy of an artificial neural network compared with statistical quantitation of myocardial perfusion images: a Japanese multicenter study. Eur J Nucl Med Mol Imaging. 2017;44(13):2280–2289. doi: 10.1007/s00259-017-3834-x
  • Al-Aswad LA, Kapoor R, Chu CK, et al. Evaluation of a deep learning system for identifying glaucomatous optic neuropathy based on color fundus photographs. J Glaucoma. 2019;28(12):1029–1034. doi: 10.1097/IJG.0000000000001319
  • Liu S, Graham SL, Schulz A, et al. A Deep Learning-Based Algorithm Identifies Glaucomatous Discs Using Monoscopic Fundus Photographs. Ophthalmol Glaucoma. 2018;1(1):15–22. doi: 10.1016/j.ogla.2018.04.002
  • Phene S, Dunn RC, Hammel N, et al. Deep learning and glaucoma specialists: the relative importance of optic disc features to predict glaucoma referral in fundus photographs. Ophthalmol. 2019;126(12):1627–1639. doi: 10.1016/j.ophtha.2019.07.024
  • Shibata N, Tanito M, Mitsuhashi K, et al. Development of a deep residual learning algorithm to screen for glaucoma from fundus photography. Sci Rep. 2018;8(1):14665. doi: 10.1038/s41598-018-33013-w
  • Seo E, Jaccard N, Trikha S, et al. Automated evaluation of optic disc images for manifest glaucoma detection using a deep-learning, neural network-based algorithm. Invest Ophthalmol Visual Sci. 2018;59(9):2080–2080.
  • Jammal AA, Thompson AC, Mariottoni EB, et al. Human versus Machine: comparing a Deep learning algorithm to human gradings for detecting glaucoma on fundus photographs. Am J Ophthalmol. 2020;211:123–131. doi: 10.1016/j.ajo.2019.11.006
  • Brinker TJ, Hekler A, Enk AH, et al. Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. Eur J Cancer. 2019;113:47–54. doi: 10.1016/j.ejca.2019.04.001
  • Brinker TJ, Hekler A, Enk AH, et al. Deep neural networks are superior to dermatologists in melanoma image classification. Eur J Cancer. 2019;119:11–17. doi: 10.1016/j.ejca.2019.05.023
  • Yu C, Yang S, Kim W, et al. Acral melanoma detection using a convolutional neural network for dermoscopy images. PLoS One. 2018;13(3):e0193321. doi: 10.1371/journal.pone.0193321
  • Marchetti MA, Codella NCF, Dusza SW, et al. Results of the 2016 international skin imaging collaboration international symposium on biomedical imaging challenge: comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. J Am Acad Dermatol. 2018;78(2):270–277.e271. doi: 10.1016/j.jaad.2017.08.016
  • Marchetti MA, Liopyris K, Dusza SW, et al. Computer algorithms show potential for improving dermatologists’ accuracy to diagnose cutaneous melanoma: results of the international skin imaging collaboration 2017. J Am Acad Dermatol. 2020;82(3):622–627. doi: 10.1016/j.jaad.2019.07.016
  • Haenssle HA, Fink C, Schneiderbauer R, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29(8):1836–1842. doi: 10.1093/annonc/mdy166
  • Haenssle HA, Fink C, Toberer F, et al. Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions. Ann Oncol. 2020;31(1):137–143. doi: 10.1016/j.annonc.2019.10.013
  • Haenssle HA, Winkler JK, Fink C, et al. Skin lesions of face and scalp - classification by a market-approved convolutional neural network in comparison with 64 dermatologists. Eur J Cancer. 2021;144:192–199. doi: 10.1016/j.ejca.2020.11.034
  • Tschandl P, Codella N, Akay BN, et al. Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. Lancet Oncol. 2019;20(7):938–947. doi: 10.1016/S1470-2045(19)30333-X
  • Maron RC, Weichenthal M, Utikal JS, et al. Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks. Eur J Cancer. 2019;119:57–65. doi: 10.1016/j.ejca.2019.06.013
  • Tschandl P, Rosendahl C, Akay BN, et al. Expert-level diagnosis of nonpigmented skin cancer by combined convolutional neural networks. JAMA Dermatol. 2019;155(1):58–65. doi: 10.1001/jamadermatol.2018.4378
  • Fujisawa Y, Otomo Y, Ogata Y, et al. Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. Br J Dermatol. 2019;180(2):373–381. doi: 10.1111/bjd.16924
  • Jinnai S, Yamazaki N, Hirano Y, et al. The development of a skin cancer classification system for pigmented skin lesions using Deep learning. Biomolecules. 2020;10(8):1123. doi: 10.3390/biom10081123
  • Han SS, Park I, Eun Chang S, et al. Augmented intelligence Dermatology: deep neural networks empower medical professionals in diagnosing skin cancer and predicting treatment options for 134 skin disorders. J Invest Dermatol. 2020;140(9):1753–1761. doi: 10.1016/j.jid.2020.01.019
  • Han SS, Kim MS, Lim W, et al. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J Invest Dermatol. 2018;138(7):1529–1538. doi: 10.1016/j.jid.2018.01.028
  • Brinker TJ, Hekler A, Enk AH, et al. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. Eur J Cancer. 2019;111:148–154. doi: 10.1016/j.ejca.2019.02.005
  • Han SS, Moon IJ, Kim SH, et al. Assessment of deep neural networks for the diagnosis of benign and malignant skin neoplasms in comparison with dermatologists: a retrospective validation study. PLOS Med. 2020;17(11):e1003381. doi: 10.1371/journal.pmed.1003381
  • Brinker TJ, Schmitt M, Krieghoff-Henning EI, et al. Diagnostic performance of artificial intelligence for histologic melanoma recognition compared to 18 international expert pathologists. J Am Acad Dermatol. 2022;86(3):640–642. doi: 10.1016/j.jaad.2021.02.009
  • Brennan M, Puri S, Ozrazgat-Baslanti T, et al. Comparing clinical judgment with the MySurgeryRisk algorithm for preoperative risk assessment: a pilot usability study. Surgery. 2019;165(5):1035–1045. doi: 10.1016/j.surg.2019.01.002
  • Kambakamba P, Mannil M, Herrera PE, et al. The potential of machine learning to predict postoperative pancreatic fistula based on preoperative, non-contrast-enhanced CT: a proof-of-principle study. Surgery. 2020;167(2):448–454. doi: 10.1016/j.surg.2019.09.019
  • Yala A, Schuster T, Miles R, et al. A Deep learning model to triage screening mammograms: a simulation study. Radiology. 2019;293(1):38–46. doi: 10.1148/radiol.2019182908
  • McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89–94. doi: 10.1038/s41586-019-1799-6
  • Balta C, Rodríguez-Ruiz A, Mieskes C, et al. Going from double to single reading for screening exams labeled as likely normal by AI: what is the impact? In: 15th International Workshop on Breast Imaging; Leuven, Belgium; 2020.
  • Dembrower K, Wåhlin E, Liu Y, et al. Effect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: a retrospective simulation study. Lancet Digit Health. 2020;2(9):e468–e474. doi: 10.1016/S2589-7500(20)30185-0
  • Kyono T, Gilbert FJ, van der Schaar M. Improving workflow efficiency for mammography using machine learning. J Am Coll Radiol. 2020;17(1 Pt A):56–63. doi: 10.1016/j.jacr.2019.05.012
  • Rodriguez-Ruiz A, Lång K, Gubern-Merida A, et al. Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility study. Eur Radiol. 2019;29(9):4825–4832. doi: 10.1007/s00330-019-06186-9
  • Geras KJ, Wolfson S, Kim SG, et al. High-resolution breast cancer screening with multi-view deep convolutional neural networks. ArXiv. 2017. abs/1703.07047.
  • Lotter W, Diab AR, Haslam B, et al. Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach. Nat Med. 2021;27(2):244–249. doi: 10.1038/s41591-020-01174-9
  • Rodríguez-Ruiz A, Krupinski E, Mordang JJ, et al. Detection of breast cancer with Mammography: effect of an Artificial intelligence support system. Radiology. 2019;290(2):305–314. doi: 10.1148/radiol.2018181371
  • Schaffter T, Buist DSM, Lee CI, et al. Evaluation of combined Artificial intelligence and radiologist assessment to Interpret screening mammograms. JAMA Netw Open. 2020;3(3):e200265. doi: 10.1001/jamanetworkopen.2020.0265
  • Salim M, Wåhlin E, Dembrower K, et al. External evaluation of 3 commercial artificial intelligence algorithms for independent assessment of screening mammograms. JAMA Oncol. 2020;6(10):1581–1588. doi: 10.1001/jamaoncol.2020.3321
  • Cowley JB The use of knowledge discovery databases in the identification of patients with colorectal cancer. (Ed.^(Eds) (2012)
  • Wei JW, Suriawinata AA, Vaickus LJ, et al. Evaluation of a deep neural network for automated classification of colorectal polyps on histopathologic slides. JAMA Netw Open. 2020;3(4):e203398. doi: 10.1001/jamanetworkopen.2020.3398
  • Song Z, Yu C, Zou S, et al. Automatic deep learning-based colorectal adenoma detection system and its similarities with pathologists. BMJ Open. 2020;10(9):e036423. doi: 10.1136/bmjopen-2019-036423
  • Bychkov D, Linder N, Turkki R, et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci Rep. 2018;8(1):3395. doi: 10.1038/s41598-018-21758-3
  • Geessink OGF, Baidoshvili A, Klaase JM, et al. Computer aided quantification of intratumoral stroma yields an independent prognosticator in rectal cancer. Cell Oncol. 2019;42(3):331–341. doi: 10.1007/s13402-019-00429-z
  • Kather JN, Krisam J, Charoentong P, et al. Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study. PLOS Med. 2019;16(1):e1002730. doi: 10.1371/journal.pmed.1002730
  • Zhao K, Li Z, Yao S, et al. Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer. EBioMedicine. 2020;61:103054. doi: 10.1016/j.ebiom.2020.103054
  • Suh HB, Choi YS, Bae S, et al. Primary central nervous system lymphoma and atypical glioblastoma: differentiation using radiomics approach. Eur Radiol. 2018;28(9):3832–3839. doi: 10.1007/s00330-018-5368-4
  • Kang D, Park JE, Kim YH, et al. Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation. Neuro Oncol. 2018;20(9):1251–1261. doi: 10.1093/neuonc/noy021
  • Alcaide-Leon P, Dufort P, Geraldo AF, et al. Differentiation of enhancing glioma and primary Central nervous system lymphoma by texture-based Machine learning. AJNR Am J Neuroradiol. 2017;38(6):1145–1150. doi: 10.3174/ajnr.A5173
  • Yamashita K, Yoshiura T, Arimura H, et al. Performance evaluation of radiologists with artificial neural network for differential diagnosis of intra-axial cerebral tumors on MR images. AJNR Am J Neuroradiol. 2008;29(6):1153–1158. doi: 10.3174/ajnr.A1037
  • Rehm GB, Han J, Kuhn BT, et al. Creation of a robust and generalizable Machine learning classifier for patient ventilator asynchrony. Methods Inf Med. 2018;57(4):208–219. doi: 10.3414/ME17-02-0012
  • Bakkes T, Montree RJH, Mischi M, et al. A machine learning method for automatic detection and classification of patient-ventilator asynchrony. Annu Int Conf IEEE Eng Med Biol Soc; Montreal, QC, Canada; 2020. p. 150–153.
  • Mulqueeny Q, Redmond SJ, Tassaux D, et al. Automated detection of asynchrony in patient-ventilator interaction. Annu Int Conf IEEE Eng Med Biol Soc; Minneapolis, Minnesota; 2009. p. 5324–5327.
  • Aghdam MA, Sharifi A, Pedram MM. Diagnosis of Autism spectrum disorders in young children based on resting-state functional magnetic resonance imaging data using convolutional neural networks. J Digit Imaging. 2019;32(6):899–918. doi: 10.1007/s10278-019-00196-1
  • Petrucci K, Petrucci P, Canfield K, et al. Evaluation of UNIS: urological Nursing information systems. Proc Annu Symp Comput Appl Med Care. 1991;1:43–47.
  • Gorman R. Expert system for management of urinary incontinence in women. Proc Annu Symp Comput Appl Med Care. 1995;1:527–531.
  • Chang PL, Li YC, Wang TM, et al. Evaluation of a decision-support system for preoperative staging of prostate cancer. Med Decis Making. 1999;19(4):419–427. doi: 10.1177/0272989X9901900410
  • Koutsojannis C, Hatzilygeroudis I. FESMI: A Fuzzy Expert System for Diagnosis and Treatment of Male Impotence. In: International Conference on Knowledge-Based Intelligent Information & Engineering Systems; Athens, Greece; 2004.
  • Koutsojannis C, Nabil E, Tsimara M, et al. Using machine learning techniques to improve the behaviour of a medical decision support system for prostate diseases (2009).
  • Altunay S, Telatar Z, Eroğul O, et al. A new approach to urinary system dynamics problems: evaluation and classification of uroflowmeter signals using artificial neural networks. Expert Syst Appl. 2009;36(3):4891–4895. doi: 10.1016/j.eswa.2008.05.051
  • Koutsojannis C, Lithari C, Hatzilygeroudis I. Managing urinary incontinence through hand-held real-time decision support aid. Comput Methods Programs Biomed. 2012;107(1):84–89. doi: 10.1016/j.cmpb.2012.02.012
  • Hassanien AE, Alqaheri H, El-Dahshan E-S. Prostate boundary detection in ultrasound images using biologically-inspired spiking neural network. Appl Soft Comput. 2011;11(2):2035–2041. doi: 10.1016/j.asoc.2010.07.001
  • Torshizi AD, Zarandi MH, Torshizi GD, et al. A hybrid fuzzy-ontology based intelligent system to determine level of severity and treatment recommendation for benign prostatic hyperplasia. Comput Methods Programs Biomed. 2014;113(1):301–313. doi: 10.1016/j.cmpb.2013.09.021
  • Xiao D, Zhang G, Liu Y, et al. 3D detection and extraction of bladder tumors via MR virtual cystoscopy. Int J Comput Assist Radiol Surg. 2016;11(1):89–97. doi: 10.1007/s11548-015-1234-x
  • Hurst RE, Bonner RB, Ashenayi K, et al. Neural net-based identification of cells expressing the p300 tumor-related antigen using fluorescence image analysis. Cytometry. 1997;27(1):36–42. 3rd. doi: 10.1002/(SICI)1097-0320(19970101)27:1<36:AID-CYTO5>3.0.CO;2-J
  • Hao AT, Wu LP, Kumar A, et al. Nursing process decision support system for urology ward. Int J Med Inform. 2013;82(7):604–612. doi: 10.1016/j.ijmedinf.2013.02.006
  • Lopes MH, Ortega NR, Silveira PS, et al. Fuzzy cognitive map in differential diagnosis of alterations in urinary elimination: a nursing approach. Int J Med Inform. 2013;82(3):201–208. doi: 10.1016/j.ijmedinf.2012.05.012
  • Koutsojannis C, Tsimara M, Nabil E. HIROFILOS: a medical expert system for prostate diseases. 7th WSEAS international conference on Computational intelligence, man-machine systems and cybernetics; 2007; Venice, Italy; 2008.
  • Qiu W, Kuang H, Teleg E, et al. Machine learning for detecting early infarction in acute stroke with non-contrast-enhanced CT. Radiology. 2020;294(3):638–644. doi: 10.1148/radiol.2020191193
  • Ni Q, Sun ZY, Qi L, et al. A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images. Eur Radiol. 2020;30(12):6517–6527. doi: 10.1007/s00330-020-07044-9
  • Tomita N, Cheung YY, Hassanpour S. Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans. Comput Biol Med. 2018;98:8–15. doi: 10.1016/j.compbiomed.2018.05.011
  • Murata K, Endo K, Aihara T, et al. Artificial intelligence for the detection of vertebral fractures on plain spinal radiography. Sci Rep. 2020;10(1):20031. doi: 10.1038/s41598-020-76866-w
  • Cheng CT, Ho TY, Lee TY, et al. Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs. Eur Radiol. 2019;29(10):5469–5477. doi: 10.1007/s00330-019-06167-y
  • Yu JS, Yu SM, Erdal BS, et al. Detection and localisation of hip fractures on anteroposterior radiographs with artificial intelligence: proof of concept. Clin Radiol. 2020;75(3):.e237.231–.e237.239. doi: 10.1016/j.crad.2019.10.022
  • Yamada Y, Maki S, Kishida S, et al. Automated classification of hip fractures using deep convolutional neural networks with orthopedic surgeon-level accuracy: ensemble decision-making with antero-posterior and lateral radiographs. Acta Orthop. 2020;91(6):699–704. doi: 10.1080/17453674.2020.1803664
  • Jiménez-Sánchez A, Kazi A, Albarqouni S, et al. Precise proximal femur fracture classification for interactive training and surgical planning. Int J Comput Assist Radiol Surg. 2020;15(5):847–857. doi: 10.1007/s11548-020-02150-x
  • Adams M, Chen W, Holcdorf D, et al. Computer vs human: deep learning versus perceptual training for the detection of neck of femur fractures. J Med Imaging Radiat Oncol. 2019;63(1):27–32. doi: 10.1111/1754-9485.12828
  • Mawatari T, Hayashida Y, Katsuragawa S, et al. The effect of deep convolutional neural networks on radiologists’ performance in the detection of hip fractures on digital pelvic radiographs. Eur J Radiol. 2020;130:109188. doi: 10.1016/j.ejrad.2020.109188
  • Urakawa T, Tanaka Y, Goto S, et al. Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network. Skeletal Radiol. 2019;48(2):239–244. doi: 10.1007/s00256-018-3016-3
  • Chung SW, Han SS, Lee JW, et al. Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop. 2018;89(4):468–473. doi: 10.1080/17453674.2018.1453714
  • Olczak J, Fahlberg N, Maki A, et al. Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthop. 2017;88(6):581–586. doi: 10.1080/17453674.2017.1344459
  • Lindsey R, Daluiski A, Chopra S, et al. Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci U S A. 2018;115(45):11591–11596. doi: 10.1073/pnas.1806905115
  • Qazi AA, Pekar V, Kim J, et al. Auto-segmentation of normal and target structures in head and neck CT images: a feature-driven model-based approach. Med Phys. 2011;38(11):6160–6170. doi: 10.1118/1.3654160
  • Misra-Hebert AD, Milinovich A, Zajichek A, et al. Natural language processing improves detection of nonsevere hypoglycemia in medical records versus coding alone in patients with type 2 diabetes but does not improve prediction of severe hypoglycemia events: an analysis using the electronic medical record in a large health system. Diabetes Care. 2020;43(8):1937–1940. doi: 10.2337/dc19-1791
  • Hekler A, Utikal JS, Enk AH, et al. Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. Eur J Cancer. 2019;118:91–96. doi: 10.1016/j.ejca.2019.06.012
  • Kim HE, Kim HH, Han BK, et al. Changes in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader study. Lancet Digit Health. 2020;2(3):e138–e148. doi: 10.1016/S2589-7500(20)30003-0
  • European Patent Office. (Ed.^(Eds)
  • FDA. Artificial intelligence and Machine learning (AI/ML)-enabled medical devices. (Ed.^(Eds) (2022)
  • Muehlematter UJ, Daniore P, Vokinger KN. Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015–20): a comparative analysis. Lancet Digital Health. 2021;3(3):e195–e203. doi: 10.1016/S2589-7500(20)30292-2
  • Varoquaux G. Cross-validation failure: Small sample sizes lead to large error bars. Neuroimage. 2018;180(Pt A):68–77. doi: 10.1016/j.neuroimage.2017.06.061
  • Vabalas A, Gowen E, Poliakoff E, et al. Machine learning algorithm validation with a limited sample size. PLoS One. 2019;14(11):e0224365. doi: 10.1371/journal.pone.0224365
  • Campello VM, Gkontra P, Izquierdo C, et al. Multi-centre, multi-vendor and multi-disease cardiac segmentation: the M&Ms challenge. IEEE Trans Med Imaging. 2021;40(12):3543–3554. doi: 10.1109/TMI.2021.3090082
  • De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018;24(9):1342–1350. doi: 10.1038/s41591-018-0107-6
  • Celi LA, Cellini J, Charpignon M-L, et al. Sources of bias in artificial intelligence that perpetuate healthcare disparities—A global review. PLOS Digital Health. 2022;1(3):e0000022. doi: 10.1371/journal.pdig.0000022
  • Khan SM, Liu X, Nath S, et al. A global review of publicly available datasets for ophthalmological imaging: barriers to access, usability, and generalisability. Lancet Digit Health. 2021;3(1):e51–e66. doi: 10.1016/S2589-7500(20)30240-5
  • de Groof AJ, Struyvenberg MR, van der Putten J, et al. Deep-learning system detects neoplasia in patients with barrett’s esophagus with higher accuracy than endoscopists in a multistep training and validation study with benchmarking. Gastroenterology. 2020;158(4):915–929.e914. doi: 10.1053/j.gastro.2019.11.030
  • Nagendran M, Chen Y, Lovejoy CA, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ. 2020;368:m689. doi: 10.1136/bmj.m689
  • Liu X, Faes L, Kale AU, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digital Health. 2019;1(6):e271–e297. doi: 10.1016/S2589-7500(19)30123-2
  • Congress. CBONaftUS. Research and development in the Pharmaceutical Industry. (Ed.^(Eds) (2023)
  • Associations. EFooPIa. The root cause of unavailability and delay to innovative medicines: reducing the time before patients have access to innovative medicines. (Ed.^(Eds) (2022)
  • de Hond AAH, Leeuwenberg AM, Hooft L, et al. Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review. NPJ Digit Med. 2022;5(1):2. doi: 10.1038/s41746-021-00549-7
  • Parikh RB, Helmchen LA. Paying for artificial intelligence in medicine. NPJ Digit Med. 2022;5(1):63. doi: 10.1038/s41746-022-00609-6
  • Abràmoff MD, Roehrenbeck C, Trujillo S, et al. A reimbursement framework for artificial intelligence in healthcare. NPJ Digit Med. 2022;5(1):72. doi: 10.1038/s41746-022-00621-w