396
Views
21
CrossRef citations to date
0
Altmetric
Review

How close are we to individualized medicine for Parkinson’s disease?

&
Pages 815-830 | Received 04 Feb 2016, Accepted 20 Apr 2016, Published online: 09 May 2016

References

  • Nussbaum R, Ellis C. Alzheimer’s disease and Parkinson’s disease. N Engl J Med. 2003;348(14):1356–1364.
  • Kempster PA, O’Sullivan SS, Holton JL, et al. Relationships between age and late progression of Parkinson’s disease: a clinico-pathological study. Brain. 2010;133(Pt 6):1755–1762.
  • Wickremaratchi M, Knipe M, Sastry B, et al. The motor phenotype of Parkinson’s disease in relation to age at onset. Mov Disord. 2011;26(3):457–463.
  • Sweet RD. Five years’ treatment of Parkinson’s disease with levodopa. Ann Intern Med. 1975;83(4):456.
  • Fahn S, Oakes D, Shoulson I, et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med. 2004;351(24):2498–2508.
  • Fahn S, Jankovic S, Hallett M. Principles and practice of movement disorders. 2nd ed. Philadelphia (PA): Saunders Elsevier; 2011.
  • Gerretsen P, Pollock BG. Pharmacogenetics and the serotonin transporter in late-life depression. Expert Opin Drug Metab Toxicol. 2008;4(12):1465–1478.
  • Personalized Medicine 101. [cited 2015 Dec 1]. Available from: http://www.personalizedmedicinecoalition.org/Education/Overview#sthash.Q7tEHNz4.dpuf
  • Moreau C, Meguig S, Corvol JC, et al. Polymorphism of the dopamine transporter type 1 gene modifies the treatment response in Parkinson’s disease. Brain. 2015;138(Pt 5):1271–1283.
  • Kalinderi K, Fidani L, Katsarou Z, et al. Pharmacological treatment and the prospect of pharmacogenetics in Parkinson’s disease. Int J Clin Pract. 2011;65(12):1289–1294.
  • Tai CH, Wu RM. Catechol-O-methvltransferase and Parkinson’s disease. Acta Med Okayama. 2002;56(1):1–6.
  • Winqvist R, Lundström K, Salminen M, et al. The human catechol-O-methyltransferase (COMT) gene maps to band q11.2 of chromosome 22 and shows a frequent RFLP with BglI. Cytogenet Cell Genet. 1992;59(4):253–257.
  • Hernán M, Checkoway H, O’Brien R, et al. MAOB intron 13 and COMT codon 158 polymorphisms, cigarette smoking, and the risk of PD. Neurology. 2002;58(9):1381–1387.
  • Kim JS, Kim J-Y, Kim J-M, et al. No correlation between COMT genotype and entacapone benefits in Parkinson’s disease. Neurology Asia. 2011;16(3):211–216.
  • Watanabe M, Harada S, Nakamura T, et al. Association between catechol-O-methyltransferase gene polymorphisms and wearing-off and dyskinesia in Parkinson’s disease. Neuropsychobiology. 2003;48(4):190–193.
  • Lee MS, Kim HS, Cho EK, et al. COMT genotype and effectiveness of entacapone in patients with fluctuating Parkinson’s disease. Neurology. 2002;58(4):564–567.
  • Lachman H, Papolos D, Saito T, et al. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics. 1996;6(3):243–250.
  • Lotta T, Vidgren J, Tilgmann C, et al. Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry. 1995;34(13):4202–4210.
  • Bialecka M, Kurzawski M, Klodowska-Duda G, et al. The association of functional catechol-O-methyltransferase haplotypes with risk of Parkinson’s disease, levodopa treatment response, and complications. Pharmacogenet Genomics. 2008;18(9):815–821.
  • Contin M, Martinelli P, Mochi M, et al. Genetic polymorphism of catechol-O-methyltransferase and levodopa pharmacokinetic-pharmacodynamic pattern in patients with Parkinson’s disease. Mov Disord. 2005;20(6):734–739.
  • Wu H, Dong F, Wang Y, et al. Catechol-O-methyltransferase Val158Met polymorphism: modulation of wearing-off susceptibility in a Chinese cohort of Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(10):1094–1096.
  • Lee MS, Lyoo CH, Ulmanen I, et al. Genotypes of catechol-O-methyltransferase and response to levodopa treatment in patients with Parkinson’s disease. Neurosci Lett. 2001;298(2):131–134.
  • Corvol JC, Bonnet C, Charbonnier-Beaupel F, et al. The COMT Val158Met polymorphism affects the response to entacapone in Parkinson’s disease: a randomized crossover clinical trial. Ann Neurol. 2011;69(1):111–118.
  • Chong DJ, Suchowersky O, Szumlanski C, et al. The relationship between COMT genotype and the clinical effectiveness of tolcapone, a COMT inhibitor, in patients with Parkinson’s disease. Clin Neuropharmacol. 2000;12(3):143–148.
  • Torkaman-Boutorabi A, Shahidi GA, Choopani S, et al. Association of monoamine oxidase B and catechol-O-methyltransferase polymorphisms with sporadic Parkinson’s disease in an Iranian population. Folia Neuropathologica. 2012;4:382–389.
  • Hsu Y, Powell J, Sims K, et al. Molecular genetics of the monoamine oxidases. J Neurochem. 1989;53(1):12–18.
  • Murphy D, Wright C, Buchsbaum M, et al. Platelet and plasma amine oxidase activity in 680 normals: sex and age differences and stability over time. Biochem Med. 1976;16(3):254–265.
  • Balciuniene J, Emilsson L, Oreland L, et al. Investigation of the functional effect of monoamine oxidase polymorphisms in human brain. Hum Genet. 2002;110(1):1–7.
  • Hao H, Shao M, An J, et al. Association of catechol-O-methyltransferase and monoamine oxidase B gene polymorphisms with motor complications in parkinson’s disease in a Chinese population. Parkinsonism Relat Disord. 2014;20(10):1041–1045.
  • Garpenstrand H, Ekblom J, Forslund K, et al. Platelet monoamine oxidase activity is related to MAOB intron 13 genotype. J Neural Transm (Vienna). 2000;107(5):523–530.
  • Costa-Mallen P, Kelada SN, Costa LG, et al. Characterization of the in vitro transcriptional activity of polymorphic alleles of the human monoamine oxidase-B gene. Neurosci Lett. 2005;383(1–2):171–175.
  • Pivac N, Knezevic J, Mustapic M, et al. The lack of association between monoamine oxidase (MAO) intron 13 polymorphism and platelet MAO-B activity among men. Life Sci. 2006;79(1):45–49.
  • Winblad B, Gottfries C, Oreland L, et al. Monoamine oxidase in platelets and brains of non-psychiatric and non-neurological geriatric patients. Med Biol. 1979;57(2):129–132.
  • Young WJ, Laws EJ, Sharbrough F, et al. Human monoamine oxidase. Lack of brain and platelet correlation. Arch Gen Psychiatry. 1986;43(6):604–609.
  • Ekblom J, Garpenstrand H, Damberg M, et al. Transcription factor binding to the core promoter of the human monoamine oxidase B gene in the cerebral cortex and in blood cells. Neurosci Lett. 1998;258(2):101–104.
  • Bialecka M, Drozdzik M, Klodowska-Duda G, et al. The effect of monoamine oxidase B (MAOB) and catechol-O-methyltransferase (COMT) polymorphisms on levodopa therapy in patients with sporadic Parkinson’s disease. Acta Neurol Scand. 2004;110(4):260–266.
  • Torkaman-Boutorabi A, Shahidi GA, Choopani S, et al. The catechol-O-methyltransferase and monoamine oxidase B polymorphisms and levodopa therapy in the Iranian patients with sporadic Parkinson’s disease. Acta Neurobiol Exp (Wars). 2012;72(3):272–282.
  • Flegontova OV, Khrunin AV, Lylova OI, et al. Haplotype frequencies at the DRD2 locus in populations of the East European plain. BMC Genet. 2009;10:62.
  • Jönsson E, Nöthen M, Grünhage F, et al. Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol Psychiatry. 1999;4(3):290–296.
  • Thompson J, Thomas N, Singleton A, et al. D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics. 1997;7(6):479–484.
  • Paus S, Grunewald A, Klein C, et al. The DRD2 TaqIA polymorphism and demand of dopaminergic medication in Parkinson’s disease. Mov Disord. 2008;23(4):599–602.
  • Liu YZ, Tang BS, Yan XX, et al. Association of the DRD2 and DRD3 polymorphisms with response to pramipexole in Parkinson’s disease patients. Eur J Clin Pharmacol. 2009;65(7):679–683.
  • Zhang F, Fan H, Xu Y, et al. Converging evidence implicates the dopamine D3 receptor gene in vulnerability to schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2011;156B(5):613–619.
  • Lundstrom K, Turpin M. Proposed schizophrenia-related gene polymorphism: expression of the Ser9Gly mutant human dopamine D3 receptor with the Semliki Forest virus system. Biochem Biophys Res Commun. 1996;225(3):1068–1072.
  • Jeanneteau F, Funalot B, Jankovic J, et al. A functional variant of the dopamine D3 receptor is associated with risk and age-at-onset of essential tremor. Proc Natl Acad Sci U S A. 2006;103(28):10753–10758.
  • Vallelunga A, Flaibani R, Formento-Dojot P, et al. Role of genetic polymorphisms of the dopaminergic system in Parkinson’s disease patients with impulse control disorders. Parkinsonism Relat Disord. 2012;18(4):397–399.
  • Gainetdinov R, Jones S, Fumagalli F, et al. Re-evaluation of the role of the dopamine transporter in dopamine system homeostasis. Brain Res Brain Res Rev. 1998;26(2–3):148–153.
  • Vandenbergh D, Persico A, Hawkins A, et al. Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics. 1992;14(4):1104–1106.
  • van Dyck C, Malison R, Jacobsen L, et al. Increased dopamine transporter availability associated with the 9-repeat allele of the SLC6A3 gene. J Nucl Med. 2005;46(5):745–751.
  • Jacobsen L, Staley J, Zoghbi S, et al. Prediction of dopamine transporter binding availability by genotype: a preliminary report. Am J Psychiatry. 2000;157(10):1700–1703.
  • Fuke S, Suo S, Takahashi N, et al. The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenomics J. 2001;1(2):152–156.
  • VanNess SH, Owens MJ, Kilts CD. The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density. BMC Genet. 2005;6:55.
  • Dreher JC, Kohn P, Kolachana B, et al. Variation in dopamine genes influences responsivity of the human reward system. Proc Natl Acad Sci U S A. 2009;106(2):617–622.
  • Forbes EE, Brown SM, Kimak M, et al. Genetic variation in components of dopamine neurotransmission impacts ventral striatal reactivity associated with impulsivity. Mol Psychiatry. 2009;14(1):60–70.
  • Martinez D, Gelernter J, Abi-Dargham A, et al. The variable number of tandem repeats polymorphism of the dopamine transporter gene is not associated with significant change in dopamine transporter phenotype in humans. Neuropsychopharmacology. 2001;24(5):553–560.
  • Lynch DR, Mozley PD, Sokol S, et al. Lack of effect of polymorphisms in dopamine metabolism related genes on imaging of TRODAT-1 in striatum of asymptomatic volunteers and patients with Parkinson’s disease. Mov Disord. 2003;18(7):804–812.
  • Schumacher-Schuh AF, Francisconi C, Altmann V, et al. Polymorphisms in the dopamine transporter gene are associated with visual hallucinations and levodopa equivalent dose in Brazilians with Parkinson’s disease. Int J Neuropsychopharmacol. 2013;16:1251–1258.
  • Jankovic J. Motor fluctuations and dyskinesias in Parkinson’s disease: clinical manifestations. Mov Disord. 2005;20(Suppl 11):S11–S16.
  • Fabbrini G, Brotchie JM, Grandas F, et al. Levodopa-induced dyskinesias. Mov Disord. 2007;22(10):1379–1389.
  • Zappia M, Annesi G, Nicoletti G, et al. Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson disease: an exploratory study. Arch Neurol. 2005;62(4):601–605.
  • Grandas F, Galiano M, Tabernero C. Risk factors for levodopa-induced dyskinesias in Parkinson’s disease. J Neurol. 1999;246(12):1127–1133.
  • Gottwald MD, Aminoff MJ. Therapies for dopaminergic-induced dyskinesias in Parkinson disease. Ann Neurol. 2011;69(6):919–927.
  • Brotchie JM. Nondopaminergic mechanisms in levodopa-induced dyskinesia. Mov Disord. 2005;20(8):919–931.
  • Cheshire PA, Williams DR. Serotonergic involvement in levodopa-induced dyskinesias in Parkinson’s disease. J Clin Neurosci. 2012;19(3):343–348.
  • Rylander D, Parent M, O’Sullivan SS, et al. Maladaptive plasticity of serotonin axon terminals in levodopa-induced dyskinesia. Ann Neurol. 2010;68(5):619–628.
  • Oliveri R, Annesi G, Zappia M, et al. Dopamine D2 receptor gene polymorphism and the risk of levodopa-induced dyskinesias in PD. Neurology. 1999;53(7):1425–1430.
  • Strong JA, Dalvi A, Revilla FJ, et al. Genotype and smoking history affect risk of levodopa-induced dyskinesias in Parkinson’s disease. Mov Disord. 2006;21(5):654–659.
  • Kaplan N, Vituri A, Korczyn A, et al. Sequence variants in SLC6A3, DRD2, and BDNF genes and time to levodopa-induced dyskinesias in Parkinson’s disease. J Mol Neurosci. 2014;53(2):183–188.
  • Lee JY, Cho J, Lee EK, et al. Differential genetic susceptibility in diphasic and peak-dose dyskinesias in Parkinson’s disease. Mov Disord. 2011;26(1):73–79.
  • Kaiser R, Hofer A, Grapengiesser A, et al. L -dopa-induced adverse effects in PD and dopamine transporter gene polymorphism. Neurology. 2003;60(11):1750–1755.
  • Rieck M, Schumacher-Schuh AF, Altmann V, et al. DRD2 haplotype is associated with dyskinesia induced by levodopa therapy in Parkinson’s disease patients. Pharmacogenomics. 2012;13(15):1701–1710.
  • Wang J, Liu Z, Chen B. Association study of dopamine D2, D3 receptor gene polymorphisms with motor fluctuations in PD. Neurology. 2001;56(12):1757–1759.
  • Paus S, Gadow F, Knapp M, et al. Motor complications in patients form the German competence network on Parkinson’s disease and the DRD3 Ser9Gly polymorphism. Mov Disord. 2009;24(7):1080–1084.
  • Cheshire P, Bertram K, Ling H, et al. Influence of single nucleotide polymorphisms in COMT, MAO-A and BDNF genes on dyskinesias and levodopa use in Parkinson’s disease. Neurodegener Dis. 2014;13(1):24–28.
  • de Lau LM, Verbaan D, Marinus J, et al. Catechol-O-methyltransferase Val158Met and the risk of dyskinesias in Parkinson’s disease. Mov Disord. 2012;27(1):132–135.
  • Papapetropoulos S, Farrer MJ, Stone JT, et al. Phenotypic associations of tau and APOE in Parkinson’s disease. Neurosci Lett. 2007;414(2):141–144.
  • Lin JJ, Yueh KC, Lin SZ, et al. Genetic polymorphism of the angiotensin converting enzyme and L-dopa-induced adverse effects in Parkinson’s disease. J Neurol Sci. 2007;252(2):130–134.
  • Pascale E, Purcaro C, Passarelli E, et al. Genetic polymorphism of angiotensin-converting enzyme is not associated with the development of Parkinson’s disease and of L-dopa-induced adverse effects. J Neurol Sci. 2009;276(1–2):18–21.
  • Foltynie T, Cheeran B, Williams-Gray CH, et al. BDNF val66met influences time to onset of levodopa induced dyskinesia in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2009;80(2):141–144.
  • Gao L, Diaz-Corrales FJ, Carrillo F, et al. Brain-derived neurotrophic factor G196A polymorphism and clinical features in Parkinson’s disease. Acta Neurol Scand. 2010;122(1):41–45.
  • Svetel M, Pekmezovic T, Markovic V, et al. No association between brain-derived neurotrophic factor G196A polymorphism and clinical features of Parkinson’s disease. Eur Neurol. 2013;70(5–6):257–262.
  • Molchadski I, Korczyn A, Cohen O, et al. The role of apolipoprotein E polymorphisms in levodopa-induced dyskinesia. Acta Neurol Scand. 2011;123(2):117–121.
  • Wang J, Liu Z, Chen B. Dopamine D5 receptor gene polymorphism and the risk of levodopa-induced motor fluctuations in patients with Parkinson’s disease. Neurosci Lett. 2001;308(1):21–24.
  • Baydyuk M, Russell T, Liao GY, et al. TrkB receptor controls striatal formation by regulating the number of newborn striatal neurons. Proc Natl Acad Sci U S A. 2011;108(4):1669–1674.
  • Hyman C, Hofer M, Barde Y, et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature. 1991;350(6315):230–232.
  • van der Kolk NM, Speelman AD, van Nimwegen M, et al. BDNF polymorphism associates with decline in set shifting in Parkinson’s disease. Neurobiol Aging. 2015;36(3):1605 e1–e6.
  • Weintraub D, Nirenberg MJ. Impulse control and related disorders in Parkinson’s disease. Neurodegener Dis. 2013;11(2):63–71.
  • Bares CB, Delva J, Grogan-Kaylor A, et al. Family and parenting characteristics associated with marijuana use by Chilean adolescents. Subst Abuse Rehabil. 2011;2011(2):1–11.
  • Weintraub D, Papay K, Siderowf A; Parkinson’s Progression Markers Initiative. Screening for impulse control symptoms in patients with de novo Parkinson disease: a case-control study. Neurology. 2013;80(2):176–180.
  • Weintraub D, Koester J, Potenza M, et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol. 2010;67(5):589–595.
  • Garcia-Ruiz PJ, Martinez Castrillo JC, Alonso-Canovas A, et al. Impulse control disorder in patients with Parkinson’s disease under dopamine agonist therapy: a multicentre study. J Neurol Neurosurg Psychiatry. 2014;85(8):840–844.
  • Lee JY, Kim JM, Kim JW, et al. Association between the dose of dopaminergic medication and the behavioral disturbances in Parkinson disease. Parkinsonism Relat Disord. 2010;16(3):202–207.
  • Ondo WG, Lai D. Predictors of impulsivity and reward seeking behavior with dopamine agonists. Parkinsonism Relat Disord. 2008;14(1):28–32.
  • Weintraub D, Siderowf A, Potenza M, et al. Association of dopamine agonist use with impulse control disorders in Parkinson disease. Arch Neurol. 2006;63(7):969–973.
  • Voon V, Thomsen T, Miyasaki J, et al. Factors associated with dopaminergic drug-related pathological gambling in Parkinson disease. Arch Neurol. 2007;64(2):212–216.
  • Voon V, Hassan K, Zurowski M, et al. Prevalence of repetitive and reward-seeking behaviors in Parkinson disease. Neurology. 2006;67(7):1254–47.
  • Isaias IU, Siri C, Cilia R, et al. The relationship between impulsivity and impulse control disorders in Parkinson’s disease. Mov Disord. 2008;23(3):411–415.
  • Weintraub D, David AS, Evans AH, et al. Clinical spectrum of impulse control disorders in Parkinson’s disease. Mov Disord. 2015;30(2):121–127.
  • Voon V, Potenza M, Thomsen T. Medication-related impulse control and repetitive behaviors in Parkinson’s disease. Curr Opin Neurol. 2007;20(4):484–492.
  • Napier TC, Corvol JC, Grace AA, et al. Linking neuroscience with modern concepts of impulse control disorders in Parkinson’s disease. Mov Disord. 2015;30(2):141–149.
  • Bezdjian S, Baker LA, Tuvblad C. Genetic and environmental influences on impulsivity: a meta-analysis of twin, family and adoption studies. Clin Psychol Rev. 2011;31(7):1209–1223.
  • Kim YE, Jeon BS. Genetic susceptibility of impulse control and related behavior in Parkinson’s disease. J Parkinsons Dis. 2014;4(2):261–272.
  • Le Foll B, Gallo A, Le Strat Y, et al. Genetics of dopamine receptors and drug addiction: a comprehensive review. Behav Pharmacol. 2009;20(1):1–17.
  • Sokoloff P, Giros B, Martres M, et al. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature. 1990;347(6289):146–151.
  • Lee JY, Lee EK, Park SS, et al. Association of DRD3 and GRIN2B with impulse control and related behaviors in Parkinson’s disease. Mov Disord. 2009;24(12):1803–1810.
  • Lee J-Y, Jeon BS, Kim H-J, et al. Genetic variant of HTR2A associates with risk of impulse control and repetitive behaviors in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18(1):76–78.
  • Zainal Abidin S, Tan EL, Chan SC, et al. DRD and GRIN2B polymorphisms and their association with the development of impulse control behaviour among Malaysian Parkinson’s disease patients. BMC Neurol. 2015;15:59.
  • Videnovic A, Golombek D. Circadian and sleep disorders in Parkinson’s disease. Exp Neurol. 2013;243:45–56.
  • Frucht S, Rogers J, Greene P, et al. Falling asleep at the wheel: motor vehicle mishaps in persons taking pramipexole and ropinirole. Neurology. 1999;52(9):1908–1910.
  • Paus S, Seeger G, Brecht HM, et al. Association study of dopamine D2, D3, D4 receptor and serotonin transporter gene polymorphisms with sleep attacks in Parkinson’s disease. Mov Disord. 2004;19(6):705–707.
  • Korner Y, Meindorfner C, Moller JC, et al. Predictors of sudden onset of sleep in Parkinson’s disease. Mov Disord. 2004;19(11):1298–1305.
  • Manni R, Terzaghi M, Sartori I, et al. Dopamine agonists and sleepiness in PD: review of the literature and personal findings. Sleep Med. 2004;5(2):189–193.
  • Montastruc J, Brefel-Courbon C, Senard J, et al. Sleep attacks and antiparkinsonian drugs: a pilot prospective pharmacoepidemiologic study. Clin Neuropharmacol. 2001;24(3):181–183.
  • Rissling I, Geller F, Bandmann O, et al. Dopamine receptor gene polymorphisms in Parkinson’s disease patients reporting “sleep attacks”. Mov Disord. 2004;19(11):1279–1284.
  • Frauscher B, Högl B, Maret S, et al. Association of daytime sleepiness with COMT polymorphism in patients with parkinson disease: a pilot study. Sleep. 2004;27(4):733–736.
  • Rissling I, Frauscher B, Kronenberg F, et al. Daytime sleepiness and the COMT val158met polymorphism in patients with Parkinson disease. Sleep. 2006;29(1):108–111.
  • Rissling I, Körner Y, Geller F, et al. Preprohypocretin polymorphisms in Parkinson disease patients reporting “sleep attacks”. Sleep. 2005;28:871–875.
  • Diederich NJ, McIntyre DJ. Sleep disorders in Parkinson’s disease: many causes, few therapeutic options. J Neurol Sci. 2012;314(1–2):12–19.
  • Factor SA, Steenland NK, Higgins DS, et al. Disease-related and genetic correlates of psychotic symptoms in Parkinson’s disease. Mov Disord. 2011;26(12):2190–2195.
  • Goldman J, Goetz C, Berry-Kravis E, et al. Genetic polymorphisms in Parkinson disease subjects with and without hallucinations: an analysis of the cholecystokinin system. Arch Neurol. 2004;61(8):1280–1284.
  • Goetz C, Burke P, Leurgans S, et al. Genetic variation analysis in Parkinson disease patients with and without hallucinations: case-control study. Arch Neurol. 2001;58(2):209–213.
  • Makoff A, Graham J, Arranz M, et al. Association study of dopamine receptor gene polymorphisms with drug-induced hallucinations in patients with idiopathic Parkinson’s disease. Pharmacogenetics. 2000;10(1):43–48.
  • Wang J, Zhao C, Chen B, et al. Polymorphisms of dopamine receptor and transporter genes and hallucinations in Parkinson’s disease. Neurosci Lett. 2004;355(3):193–196.
  • Kiferle L, Ceravolo R, Petrozzi L, et al. Visual hallucinations in Parkinson’s disease are not influenced by polymorphisms of serotonin 5-HT2A receptor and transporter genes. Neurosci Lett. 2007;422(3):228–231.
  • Camicioli R, Rajput A, Rajput M, et al. Apolipoprotein E epsilon4 and catechol-O-methyltransferase alleles in autopsy-proven Parkinson’s disease: relationship to dementia and hallucinations. Mov Disord. 2005;20(8):989–994.
  • Crawley J, Corwin R. Biological actions of cholecystokinin. Peptides. 1994;15(4):731–755.
  • Wang J, Si YM, Liu Z, et al. Cholecystokinin, cholecystokinin-A receptor and cholecystokinin-B receptor gene polymorphisms in Parkinson’s disease. Pharmacogenetics. 2003;13(6):365–369.
  • Fujii C, Harada S, Ohkoshi N, et al. Association between polymorphism of the cholecystokinin gene and idiopathic Parkinson’s disease. Clin Genet. 1999;56(5):394–399.
  • Feldman B, Chapman J, Korczyn AD. Apolipoprotein epsilon4 advances appearance of psychosis in patients with Parkinson’s disease. Acta Neurol Scand. 2006;113(1):14–17.
  • de la Fuente-Fernández R, Núñez M, López E. The apolipoprotein E epsilon 4 allele increases the risk of drug-induced hallucinations in Parkinson’s disease. Clin Neuropharmacol. 1999;22(4):226–230.
  • Pavlova R, Mehrabian S, Petrova M, et al. Cognitive, neuropsychiatric, and motor features associated with apolipoprotein E epsilon4 allele in a sample of Bulgarian patients with late-onset Parkinson’s disease. Am J Alzheimers Dis Other Demen. 2014;29(7):614–619.
  • Reijnders JS, Ehrt U, Weber WE, et al. A systematic review of prevalence studies of depression in Parkinson’s disease. Mov Disord. 2008;23(2):183–189.
  • Schrag A. Quality of life and depression in Parkinson’s disease. J Neurol Sci. 2006;248(1–2):151–157.
  • Barrero FJ, Ampuero I, Morales B, et al. Depression in Parkinson’s disease is related to a genetic polymorphism of the cannabinoid receptor gene (CNR1). Pharmacogenomics J. 2005;5(2):135–141.
  • Dissanayaka NN, Silburn PA, O’Sullivan JD, et al. Serotonin and dopamine transporter genes do not influence depression in Parkinson’s disease. Mov Disord. 2009;24(1):111–115.
  • Zhang JL, Yang JF, Chan P. No association between polymorphism of serotonin transporter gene and depression in Parkinson’s disease in Chinese. Neurosci Lett. 2009;455(3):155–158.
  • Lesch K, Bengel D, Heils A, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science. 1996;274(5292):1527–1531.
  • Mössner R, Henneberg A, Schmitt A, et al. Allelic variation of serotonin transporter expression is associated with depression in Parkinson’s disease. Mol Psychiatry. 2001;6(3):350–352.
  • Menza M, Palermo B, DiPaola R, et al. Depression and anxiety in Parkinson’s disease: possible effect of genetic variation in the serotonin transporter. J Geriatr Psychiatry Neurol. 1999;12(2):49–52.
  • Burn DJ, Tiangyou W, Allcock LM, et al. Allelic variation of a functional polymorphism in the serotonin transporter gene and depression in Parkinson’s disease. Parkinsonism Relat Disord. 2006;12(3):139–141.
  • Hua P, Liu W, Kuo SH, et al. Association of Tef polymorphism with depression in Parkinson disease. Mov Disord. 2012;27(13):1694–1697.
  • Soria V, Martinez-Amoros E, Escaramis G, et al. Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology. 2010;35(6):1279–1289.
  • Hua P, Liu W, Chen D, et al. Cry1 and Tef gene polymorphisms are associated with major depressive disorder in the Chinese population. J Affect Disord. 2014;157:100–103.
  • Lavebratt C, Sjöholm L, Soronen P, et al. CRY2 is associated with depression. PLoS One. 2010;5(2):e9407.
  • Kishi T, Yoshimura R, Kitajima T, et al. SIRT1 gene is associated with major depressive disorder in the Japanese population. J Affect Disord. 2010;126(1–2):167–173.
  • Aarsland D, Andersen K, Larsen J, et al. Prevalence and characteristics of dementia in Parkinson disease: an 8-year prospective study. Arch Neurol. 2003;60(3):387–392.
  • Hely MA, Reid WG, Adena MA, et al. The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord. 2008;23(6):837–844.
  • Alcalay RN, Caccappolo E, Mejia-Santana H, et al. Cognitive performance of GBA mutation carriers with early-onset PD: the CORE-PD study. Neurology. 2012;78(18):1434–1440.
  • Svenningsson P, Westman E, Ballard C, et al. Cognitive impairment in patients with Parkinson’s disease: diagnosis, biomarkers, and treatment. Lancet Neurol. 2012;11(8):697–707.
  • Marder K, Maestre G, Cote L, et al. The apolipoprotein epsilon 4 allele in Parkinson’s disease with and without dementia. Neurology. 1994;44(7):1330–1331.
  • Ezquerra M, Campdelacreu J, Gaig C, et al. Lack of association of APOE and tau polymorphisms with dementia in Parkinson’s disease. Neurosci Lett. 2008;448(1):20–23.
  • Kurz MW, Dekomien G, Nilsen OB, et al. APOE alleles in Parkinson disease and their relationship to cognitive decline: a population-based, longitudinal study. J Geriatr Psychiatry Neurol. 2009;22(3):166–170.
  • Ryu HG, Kwon OD. Apolipoprotein E epsilon 4 allele is not associated with age at onset or MMSE of Parkinson’s disease in a Korean study. Parkinsonism Relat Disord. 2010;16(9):615–617.
  • Meeus B, Verstraeten A, Crosiers D, et al. DLB and PDD: a role for mutations in dementia and Parkinson disease genes? Neurobiol Aging. 2012;33(3):629.e5–629.e18.
  • Williams-Gray CH, Goris A, Saiki M, et al. Apolipoprotein E genotype as a risk factor for susceptibility to and dementia in Parkinson’s disease. J Neurol. 2009;256(3):493–498.
  • Pankratz N, Byder L, Halter C, et al. Presence of an APOE4 allele results in significantly earlier onset of Parkinson’s disease and a higher risk with dementia. Mov Disord. 2006;21(1):45–49.
  • Morley JF, Xie SX, Hurtig HI, et al. Genetic influences on cognitive decline in Parkinson’s disease. Mov Disord. 2012;27(4):512–518.
  • Mata IF, Leverenz JB, Weintraub D, et al. APOE, MAPT, and SNCA genes and cognitive performance in Parkinson disease. JAMA Neurol. 2014;71(11):1405–1412.
  • Irwin DJ, White MT, Toledo JB, et al. Neuropathologic substrates of Parkinson disease dementia. Ann Neurol. 2012;72(4):587–598.
  • De Marchi F, Carecchio M, Cantello R, et al. Predicting cognitive decline in Parkinson’s disease: can we ask the genes? Front Neurol. 2014;5:224.
  • Halliday GM, Leverenz JB, Schneider JS, et al. The neurobiological basis of cognitive impairment in Parkinson’s disease. Mov Disord. 2014;29(5):634–650.
  • Zarranz J, Alegre J, Gómez-Esteban J, et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol. 2004;55(2):164–173.
  • Somme JH, Gomez-Esteban JC, Molano A, et al. Initial neuropsychological impairments in patients with the E46K mutation of the alpha-synuclein gene (PARK 1). J Neurol Sci. 2011;310(1–2):86–89.
  • Shin CW, Kim HJ, Park SS, et al. Two Parkinson’s disease patients with alpha-synuclein gene duplication and rapid cognitive decline. Mov Disord. 2010;25(7):957–959.
  • Ross OA, Braithwaite AT, Skipper LM, et al. Genomic investigation of alpha-synuclein multiplication and parkinsonism. Ann Neurol. 2008;63(6):743–750.
  • De Marco EV, Tarantino P, Rocca FE, et al. Alpha-synuclein promoter haplotypes and dementia in Parkinson’s disease. Am J Med Genet B Neuropsychiatr Genet. 2008;147(3):403–407.
  • Goris A, Williams-Gray CH, Clark GR, et al. Tau and alpha-synuclein in susceptibility to, and dementia in, Parkinson’s disease. Ann Neurol. 2007;62(2):145–153.
  • Foltynie T, Goldberg TE, Lewis SG, et al. Planning ability in Parkinson’s disease is influenced by the COMT val158met polymorphism. Mov Disord. 2004;19(8):885–891.
  • Williams-Gray CH, Hampshire A, Robbins TW, et al. Catechol O-methyltransferase Val158Met genotype influences frontoparietal activity during planning in patients with Parkinson’s disease. J Neurosci. 2007;27(18):4832–4838.
  • Williams-Gray CH, Evans JR, Goris A, et al. The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the CamPaIGN cohort. Brain. 2009;132(Pt 11):2958–2969.
  • Nombela C, Rowe J, Winder-Rhodes S, et al. Genetic impact on cognition and brain function in newly diagnosed Parkinson’s disease: ICICLE-PD study. Brain. 2014;137:2743–458.
  • Hoogland J, de Bie RM, Williams-Gray CH, et al. Catechol-O-methyltransferase val158met and cognitive function in Parkinson’s disease. Mov Disord. 2010;25(15):2550–2554.
  • Setó-Salvia N, Clarimón J, Pagonabarraga J, et al. Dementia risk in Parkinson disease: disentangling the role of MAPT haplotypes. Arch Neurol. 2011;68(3):359–364.
  • Sidransky E, Nalls M, Aasly J, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med. 2009;631(17):1651–1661.
  • Neumann J, Bras J, Deas E, et al. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain. 2009;132(Pt 7):1783–1794.
  • Brockmann K, Srulijes K, Hauser A, et al. GBA-associated PD presents with nonmotor characteristics. Neurology. 2011;77(3):276–280.
  • Chahine LM, Qiang J, Ashbridge E, et al. Clinical and biochemical differences in patients having Parkinson disease with vs without GBA mutations. JAMA Neurol. 2013;70(7):852–858.
  • Winder-Rhodes SE, Evans JR, Ban M, et al. Glucocerebrosidase mutations influence the natural history of Parkinson’s disease in a community-based incident cohort. Brain. 2013;136(Pt 2):392–399.
  • Brockmann K, Srulijes K, Pflederer S, et al. GBA-associated Parkinson’s disease: reduced survival and more rapid progression in a prospective longitudinal study. Mov Disord. 2015;30(3):407–411.
  • Foltynie T, Lewis SG, Goldberg TE, et al. The BDNF Val66Met polymorphism has a gender specific influence on planning ability in Parkinson’s disease. J Neurol. 2005;252(7):833–838.
  • Guerini FR, Beghi E, Riboldazzi G, et al. BDNF Val66Met polymorphism is associated with cognitive impairment in Italian patients with Parkinson’s disease. Eur J Neurol. 2009;16(11):1240–1245.
  • Bialecka M, Kurzawski M, Roszmann A, et al. BDNF G196A (Val66Met) polymorphism associated with cognitive impairment in Parkinson’s disease. Neurosci Lett. 2014;561:86–90.
  • Bertram L, McQueen MB, Mullin K, et al. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet. 2007;39(1):17–23.
  • Laumet G, Chouraki V, Grenier-Boley B, et al. Systematic analysis of candidate genes for Alzheimer’s disease in a French, genome-wide association study. J Alzheimers Dis. 2010;20(4):1181–1188.
  • Gatt AP, Jones EL, Francis PT, et al. Association of a polymorphism in mitochondrial transcription factor A (TFAM) with Parkinson’s disease dementia but not dementia with Lewy bodies. Neurosci Lett. 2013;557(Pt B):177–180.
  • Stocchi F. Neuroprotection in Parkinson’s disease: a difficult challenge. Lancet Neurol. 2015;14(8):780–781.
  • Olanow CW, Kieburtz K, Schapira AH. Why have we failed to achieve neuroprotection in Parkinson’s disease? Ann Neurol. 2008;64(Suppl 2):S101–S110.
  • Yacoubian TA, Standaert DG. Targets for neuroprotection in Parkinson’s disease. Biochim Biophys Acta. 2009;1792(7):676–687.
  • Racette B, Willis A. Time to change the blind men and the elephant approach to Parkinson disease? Neurology. 2015;85(2):190–196.
  • Espay AJ, Fasano A, Morgante F. The six gaps in the search of neuroprotection for Parkinson’s disease. Expert Rev Neurother. 2012;12(2):111–113.
  • Lang AE, Melamed E, Poewe W, et al. Trial designs used to study neuroprotective therapy in Parkinson’s disease. Mov Disord. 2013;28(1):86–95.
  • Schapira A, Olanow C. Neuroprotection in Parkinson disease: mysteries, myths, and misconceptions. JAMA. 2004 Jan 21;291(3):358–364.
  • Cooper O, Seo H, Andrabi S, et al. Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Sci Transl Med. 2012;4(141):141ra90.
  • Pacanowski M, Huang SM. Precision medicine. Clin Pharmacol Ther. 2016;99(2):124–129.
  • Hamburg M, Collins F. The path to personalized medicine. N Engl J Med. 2010;363(4):301–304.
  • Johnson JA, Weitzel KW. Advancing pharmacogenomics as a component of precision medicine: how, where, and who? Clin Pharmacol Ther. 2016;99(2):154–156.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.