823
Views
32
CrossRef citations to date
0
Altmetric
Review

Treatment of genetic defects of thiamine transport and metabolism

, , , , , & show all
Pages 755-763 | Received 11 Feb 2016, Accepted 05 May 2016, Published online: 23 May 2016

References

  • Hoyumpa AM Jr. Characterization of normal intestinal thiamin transport in animals and man. Ann N Y Acad Sci. 1982;378:337–343.
  • Ortigoza-Escobar JD, Molero-Luis M, Arias A, et al. Free-thiamine is a potential biomarker of thiamine transporter-2 deficiency: a treatable cause of Leigh syndrome. Brain. 2016;139(Pt 1):31–38.
  • Labay V, Raz T, Baron D, et al. Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness. Nat Genet. 1999;22(3):300–304.
  • Diaz GA, Banikazemi M, Oishi K, et al. Mutations in a new gene encoding a thiamine transporter cause thiamine-responsive megaloblastic anaemia syndrome. Nat Genet. 1999;22(3):309–312.
  • Fleming JC, Tartaglini E, Steinkamp MP, et al. The gene mutated in thiamine-responsive anaemia with diabetes and deafness (TRMA) encodes a functional thiamine transporter. Nat Genet. 1999 Jul;22(3):305–308.
  • Thameem F, Wolford JK, Bogardus C, et al. Analysis of slc19a2, on 1q23.3 encoding a thiamine transporter as a candidate gene for type 2 diabetes mellitus in pima indians. Mol Genet Metab. 2001 Apr;72(4):360–363.
  • Setoodeh A, Haghighi A, Saleh-Gohari N, et al. Identification of a SLC19A2 nonsense mutation in Persian families with thiamine-responsive megaloblastic anemia. Gene. 2013;519(2):295–297.
  • Tahir S, Leijssen LG, Sherif M, et al. A novel homozygous SLC19A2 mutation in a Portuguese patient with diabetes mellitus and thiamine-responsive megaloblastic anaemia. Int J Pediatr Endocrinol. 2015;2015(1):6.
  • Porter FS, Rogers LE, Sidbury JB Jr. Thiamine-responsive megaloblastic anemia. J Pediatr. 1969 Apr;74(4):494–504.
  • Banka S, de Goede C, Yue WW, et al. Expanding the clinical and molecular spectrum of thiamine pyrophosphokinase deficiency: a treatable neurological disorder caused by TPK1 mutations. Mol Genet Metab. 2014;113:301–306.
  • Bergmann AK, Sahai I, Falcone JF, et al. Thiamine-responsive megaloblastic anemia: identification of novel compound heterozygotes and mutation update. J Pediatr. 2009;155(6):888–892.e1.
  • Onal H, Bariş S, Ozdil M, et al. Thiamine-responsive megaloblastic anemia: early diagnosis may be effective in preventing deafness. Turk J Pediatr. 2009 May–Jun;51(3):301–304.
  • Liu G, Yang F, Han B, et al. Identification of four SLC19A2 mutations in four Chinese thiamine responsive megaloblastic anemia patients without diabetes. Blood Cells Mol Dis. 2014 Apr;52(4):203–204.
  • Agladioglu S, Aycan Z, Bas VN, et al. Thiamine-responsive megaloblastic anemia syndrome: a novel mutation. Genet Couns. 2012;23(2):149–156.
  • Mathews L, Narayanadas K, Sunil G. Thiamine responsive megaloblastic anemia. Indian Pediatr. 2009 Feb;46(2):172–174.
  • Shaw-Smith C, Flanagan SE, Patch AM, et al. Recessive SLC19A2 mutations are a cause of neonatal diabetes mellitus in thiamine-responsive megaloblastic anaemia. Pediatr Diabetes. 2012 Jun;13(4):314–321.
  • Aycan Z, Bas VN, Cetinkaya S, et al. Thiamine-responsive megaloblastic anemia syndrome with atrial standstill: a case report. J Pediatr Hematol Oncol. 2011;33(2):144–147.
  • Lagarde WH, Underwood LE, Moats-Staats BM, et al. Novel mutation in the SLC19A2 gene in an African-American female with thiamine-responsive megaloblastic anemia syndrome. Am J Med Genet A. 2004;125A(3):299–305.
  • Srikrupa NN, Meenakshi S, Arokiasamy T, et al. Leber’s congenital amaurosis as the retinal degenerative phenotype in thiamine responsive megaloblastic anemia: a case report. Ophthalmic Genet. 2014 Jun;35(2):119–124.
  • Pichler H, Zeitlhofer P, Dworzak MN, et al. Thiamine-responsive megaloblastic anemia (TRMA) in an Austrian boy with compound heterozygous SLC19A2 mutations. Eur J Pediatr. 2012;171(11):1711–1715.
  • Beshlawi I, Al Zadjali S, Bashir W, et al. Thiamine responsive megaloblastic anemia: the puzzling phenotype. Pediatr Blood Cancer. 2014;61(3):528–531.
  • Gritli S, Omar S, Tartaglini E, et al. A novel mutation in the SLC19A2 gene in a Tunisian family with thiamine-responsive megaloblastic anaemia, diabetes and deafness syndrome. Br J Haematol. 2001 May;113(2):508–513.
  • Manimaran P, Subramanian VS, Karthi S, et al. Novel nonsense mutation (p.Ile411Metfs*12) in the SLC19A2 gene causing thiamine responsive megaloblastic anemia in an Indian patient. Clin Chim Acta. 2016;452(15):44–49.
  • Mikstiene V, Songailiene J, Byckova J, et al. Thiamine responsive megaloblastic anemia syndrome: a novel homozygous SLC19A2 gene mutation identified. Am J Med Genet A. 2015;167(7):1605–1609.
  • Akbari MT, Zare Karizi S, Mirfakhraie R, et al. Thiamine-responsive megaloblastic anemia syndrome with Ebstein anomaly: a case report. Eur J Pediatr. 2014 Dec;173(12):1663–1665.
  • Mozzillo E, Melis D, Falco M, et al. Thiamine responsive megaloblastic anemia: a novel SLC19A2 compound heterozygous mutation in two siblings. Pediatr Diabetes. 2013 Aug;14(5):384–387.
  • Rajgopal A, Edmondnson A, Goldman ID, et al. SLC19A3 encodes a second thiamine transporter hTHTR2. Biochim Biophys Acta. 2001;1537:175–178.
  • Ozand PT, Gascon GG, Al Essa M, et al. Biotin-responsive basal ganglia disease: a novel entity. Brain. 1998;21:1267–1279.
  • Kevelam SH, Bugiani M, Salomons GS, et al. Exome sequencing reveals mutated SLC19A3 in patients with an early-infantile, lethal encephalopathy. Brain. 2013;136:1534–1543.
  • Gerards M, Kamps R, van Oevelen J, et al. Exome sequencing reveals a novel Moroccan founder mutation in SLC19A3 as a new cause of early childhood fatal Leigh syndrome. Brain. 2013;136:882–890.
  • Serrano M, Rebollo M, Depienne C, et al. Reversible generalized dystonia and encephalopathy from thiamine transporter 2 deficiency. Mov Disord. 2012;27:1295–1298.
  • Distelmaier F, Huppke P, Pieperhoff P, et al. Biotin-responsive basal ganglia disease: a treatable differential diagnosis of Leigh syndrome. JIMD Rep. 2014;13:53–57.
  • Haack TB, Klee D, Strom TM, et al. Infantile Leigh-like syndrome caused by SLC19A3 mutations is a treatable disease. Brain. 2014;137:e295.
  • Ortigoza-Escobar JD, Serrano M, Molero M, et al. Thiamine transporter-2 deficiency: outcome and treatment monitoring. Orphanet J Rare Dis. 2014;9:92.
  • Rosenberg MJ, Agarwala R, Bouffard G, et al. Mutant deoxynucleotide carrier is associated with congenital microcephaly. Nat Genet. 2002 Sep;32(1):175–179.
  • Kelley RI, Robinson D, Puffenberger EG, et al. Amish lethal microcephaly: a new metabolic disorder with severe congenital microcephaly and 2-ketoglutaric aciduria. Am J Med Genet. 2002;112:318–326.
  • Siu VM, Ratko S, Prasad AN, et al. Amish microcephaly: long-term survival and biochemical characterization. Am J Med Genet A. 2010;152A(7):1747–1751.
  • Spiegel R, Shaag A, Edvardson S, et al. SLC25A19 mutation as a cause of neuropathy and bilateral striatal necrosis. Ann Neurol. 2009 Sep;66(3):419–424.
  • Nosaka K, Onozuka M, Kakazu N, et al. Isolation and characterization of a human thiamine pyrophosphokinase cDNA. Biochim Biophys Acta. 2001 Jan 26;1517(2):293–297.
  • Zhao R, Gao F, Goldman ID. Molecular cloning of human thiamin pyrophosphokinase. Biochim Biophys Acta. 2001 Jan 26;1517(2):320–322.
  • Mayr JA, Freisinger P, Schlachter K, et al. Thiamine pyrophosphokinase deficiency in encephalopathic children with defects in the pyruvate oxidation pathway. Am J Hum Genet. 2011;89:806–812.
  • Fraser JL, Vanderver A, Yang S, et al. Thiamine pyrophosphokinase deficiency causes a Leigh disease like phenotype in a sibling pair: identification through whole exome sequencing and management strategies. Mol Genet Metabolism Rep. 2014;1:66–70.
  • Zhang K, Huentelman MJ, Rao F, et al. Genetic implication of a novel thiamine transporter in human hypertension. J Am Coll Cardiol. 2014 Apr 22;63(15):1542–1555.
  • Nabokina SM, Subramanian VS, Said HM. The human colonic thiamine pyrophosphate transporter (hTPPT) is a glycoprotein and N-linked glycosylation is important for its function. Biochim Biophys Acta. 2016 Apr;1858(4):866–871.
  • Ricketts CJ, Minton JA, Samuel J, et al. Thiamine-responsive megaloblastic anaemia syndrome: long-term follow-up and mutation analysis of seven families. Acta Paediatr. 2006 Jan;95(1):99–104.
  • Valerio G, Franzese A, Poggi V, et al. Long-term follow-up of diabetes in two patients with thiamine-responsive megaloblastic anemia syndrome. Diabetes Care. 1998 Jan;21(1):38–41.
  • Borgna-Pignatti C, Marradi P, Pinelli L, et al. Thiamine-responsive anemia in DIDMOAD syndrome. J Pediatr. 1989 Mar;114(3):405–410.
  • Kurtoglu S, Hatipoglu N, Keskin M, et al. Thiamine withdrawal can lead to diabetic ketoacidosis in thiamine responsive megaloblastic anemia: report of two siblings. J Pediatr Endocrinol Metab. 2008 Apr;21(4):393–397.
  • Viana MB, Carvalho RI. Thiamine-responsive megaloblastic anemia, sensorineural deafness, and diabetes mellitus: a new syndrome? J Pediatr. 1978 Aug;93(2):235–238.
  • Akın L, Kurtoğlu S, Kendirci M, et al. Does early treatment prevent deafness in thiamine-responsive megaloblastic anaemia syndrome? J Clin Res Pediatr Endocrinol. 2011;3(1):36–39.
  • Liberman MC, Tartaglini E, Fleming JC, et al. Deletion of SLC19A2, the high affinity thiamine transporter, causes selective inner hair cell loss and an auditory neuropathy phenotype. J Assoc Res Otolaryngol. 2006 Sep;7(3):211–217.
  • Stagg AR, Fleming JC, Baker MA, et al. Defective high-affinity thiamine transporter leads to cell death in thiamine-responsive megaloblastic anemia syndrome fibroblasts. J Clin Invest. 1999 Mar;103(5):723–729.
  • Hagr AA. Cochlear implant and thiamine-responsive megaloblastic anemia syndrome. Ann Saudi Med. 2014 Jan–Feb;34(1):78–80.
  • Wood MC, Tsiouris JA, Velinov M. Recurrent psychiatric manifestations in thiamine-responsive megaloblastic anemia syndrome due to a novel mutation c.63_71delACCGCTC in the gene SLC19A2. Psychiatry Clin Neurosci. 2014 Jun;68(6):487.
  • Zeng WQ, Al-Yamani E, Acierno JS Jr, et al. Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3. Am J Hum Genet. 2005;77:16–26.
  • Kono S, Miyajima H, Yoshida K, et al. Mutations in a thiamine-transporter gene and Wernicke’s-like encephalopathy. N Engl J Med. 2009;360:1792–1794.
  • Debs R, Depienne C, Rastetter A, et al. Biotin-responsive basal ganglia disease in ethnic Europeans with novel SLC19A3 mutations. Arch Neurol. 2010;671:126–130.
  • Alfadhel M, Almuntashri M, Jadah RH, et al. Biotin-responsive basal ganglia disease should be renamed biotin-thiamine-responsive basal ganglia disease: a retrospective review of the clinical, radiological and molecular findings of 18 new cases. Orphanet J Rare Dis. 2013;8:83.
  • Pérez-Dueñas B, Serrano M, Rebollo M, et al. Reversible lactic acidosis in a newborn with thiamine transporter-2 deficiency. Pediatrics. 2013;131:e1670.
  • Tabarki B, Al-Shafi S, Al-Shahwan S, et al. Biotin-responsive basal ganglia disease revisited: clinical, radiologic, and genetic findings. Neurology. 2013;80:261–267.
  • Brown G. Defects of thiamine transport and metabolism. J Inherit Metab Dis. 2014 Jul;37(4):577–585.
  • Kohrogi K, Imagawa E, Muto Y, et al. Biotin-responsive basal ganglia disease: a case diagnosed by whole exome sequencing. J Hum Genet. 2015 Jul;60(7):381–385.
  • Yamada K, Miura K, Hara K, et al. A wide spectrum of clinical and brain MRI findings in patients with SLC19A3 mutations. BMC Med Genet. 2010;11(22):171.
  • van der Knaap MS, Kevelam SH. Reply: infantile Leigh-like syndrome caused by SLC19A3 mutations is a treatable disease. Brain. 2014 Sep;137(9):e297.
  • Tabarki B, Alfadhel M, AlShahwan S, et al. Treatment of biotin-responsive basal ganglia disease: open comparative study between the combination of biotin plus thiamine versus thiamine alone. Eur J Paediatr Neurol. 2015;19(5):547–552.
  • Morinville V, Jeannet-Peter N, Hauser C. Anaphylaxis to parenteral thiamine (vitamin B1). Schweiz Med Wochenschr. 1998 Oct 31;128(44):1743–1744.
  • Stephen JM, Grant R, Yeh CS. Anaphylaxis from administration of intravenous thiamine. Am J Emerg Med. 1992 Jan;10(1):61–63.
  • Wrenn KD, Murphy F, Slovis CM. A toxicity study of parenteral thiamine hydrochloride. Ann Emerg Med. 1989 Aug;18(8):867–870.
  • Smithline HA, Donnino M, Greenblatt DJ. Pharmacokinetics of high-dose oral thiamine hydrochloride in healthy subjects. BMC Clin Pharmacol. 2012 Feb 4;12:4.
  • Sawamura H, Fukuwatari T, Shibata K. Effects of excess biotin administration on the growth and urinary excretion of water-soluble vitamins in young rats. Biosci Biotechnol Biochem. 2007 Dec;71(12):2977–2984.
  • Sedel F, Papeix C, Bellanger A, et al. High doses of biotin in chronic progressive multiple sclerosis: a pilot study. Mult Scler Relat Disord. 2015 Mar;4(2):159–169.
  • Sawamura H, Ikeda C, Shimada R, et al. Dietary intake of high-dose biotin inhibits spermatogenesis in young rats. Congenit Anom (Kyoto). 2015 Feb;55(1):31–36.
  • Schänzer A, Döring B, Ondrouschek M, et al. Stress-induced upregulation of SLC19A3 is impaired in biotin-thiamine-responsive basal ganglia disease. Brain Pathol. 2014;24:270–279.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.