696
Views
21
CrossRef citations to date
0
Altmetric
Review

Diagnostic and therapeutic strategies for management of autoimmune encephalopathies

, , , &
Pages 937-949 | Received 03 Mar 2016, Accepted 10 May 2016, Published online: 30 May 2016

References

  • Dubey D, Sawhney A, Greenberg B, et al. The spectrum of autoimmune encephalopathies. J Neuroimmunol. 2015;287:93–97.
  • Titulaer MJ, McCracken L, Gabilondo I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol. 2013;12:157–165.
  • Vincent A, Buckley C, Schott JM, et al. Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain. 2004;127:701–712.
  • Byun J-I, Lee S-T, Jung K-H, Effect of immunotherapy on seizure outcome in patients with autoimmune encephalitis: a prospective observational registry study. PLoS One. 2016;11:e0146455.
  • Dubey D, Konikkara J, Modur PN, et al. Effectiveness of multimodality treatment for autoimmune limbic epilepsy. Epileptic Disord. 2014;16:494–499.
  • Dubey D, Samudra N, Gupta P, et al. Retrospective case series of the clinical features, management and outcomes of patients with autoimmune epilepsy. Seizure. 2015;29:143–147.
  • Nosadini M, Mohammad SS, Ramanathan S, et al. Immune therapy in autoimmune encephalitis: a systematic review. Expert Rev Neurother. 2015;15:1391–1419.
  • Ramanathan S, Mohammad SS, Brilot F, et al. Autoimmune encephalitis: recent updates and emerging challenges. J Clin Neurosci. 2014;21:722–730.
  • Arellano B, Hussain R, Miller-Little WA, et al. A single amino acid substitution prevents recognition of a dominant human aquaporin-4 determinant in the context of HLA-DRB1*03:01 by a murine TCR. PLoS One. 2016;11:e0152720.
  • Benyahia B, Liblau R, Merle-Béral H, et al. Cell-mediated autoimmunity in paraneoplastic neurological syndromes with anti-Hu antibodies. Ann Neurol. 1999;45:162–167.
  • Boronat A, Sabater L, Saiz A, et al. GABA(B) receptor antibodies in limbic encephalitis and anti-GAD-associated neurologic disorders. Neurology. 2011;76:795–800.
  • Malter MP, Helmstaedter C, Urbach H, et al. Antibodies to glutamic acid decarboxylase define a form of limbic encephalitis. Ann Neurol. 2010;67:470–478.
  • Saiz A, Blanco Y, Sabater L, et al. Spectrum of neurological syndromes associated with glutamic acid decarboxylase antibodies: diagnostic clues for this association. Brain. 2008;131:2553–2563.
  • Sharma A, Dubey D, Sawhney A, et al. GAD65 positive autoimmune limbic encephalitis: a case report and review of literature. J Clin Med Res. 2012;4:424–428.
  • Vincent A. Stiff, twitchy or wobbly: are GAD antibodies pathogenic? Brain. 2008;131:2536–2537.
  • Chang T, Alexopoulos H, McMenamin M, et al. Neuronal surface and glutamic acid decarboxylase autoantibodies in nonparaneoplastic stiff person syndrome. JAMA Neurol. 2013;70:1140–1149.
  • McGinley J, McCabe DJ, Fraser A, et al. Hashimoto’s encephalopathy; an unusual cause of status epilepticus. Ir Med J. 2000;93:118.
  • McKeon A, McNamara B, Sweeney B. Hashimoto’s encephalopathy presenting with psychosis and generalized absence status. J Neurol. 2004;251:1025–1027.
  • Sinmaz N, Amatoury M, Merheb V, et al. Autoantibodies in movement and psychiatric disorders: updated concepts in detection methods, pathogenicity, and CNS entry. Ann N Y Acad Sci. 2015;1351:22–38.
  • Gultekin SH, Rosenfeld MR, Voltz R, et al. Paraneoplastic limbic encephalitis: neurological symptoms, immunological findings and tumour association in 50 patients. Brain. 2000;123(Pt 7):1481–1494.
  • Irani SR, Gelfand JM, Al-Diwani A, et al. Cell-surface central nervous system autoantibodies: clinical relevance and emerging paradigms. Ann Neurol. 2014;76:168–184.
  • Amatoury M, Merheb V, Langer J, et al. High-throughput flow cytometry cell-based assay to detect antibodies to N-methyl-D-aspartate receptor or dopamine-2 receptor in human serum. J Vis Exp. 2013;81:e50935.
  • Pröbstel AK, Dornmair K, Bittner R, et al. Antibodies to MOG are transient in childhood acute disseminated encephalomyelitis. Neurology. 2011;77:580–588.
  • Waters PJ, McKeon A, Leite MI, et al. Serologic diagnosis of NMO: a multicenter comparison of aquaporin-4-IgG assays. Neurology. 2012;78:665–671.
  • Schubert RD, Wilson MR. A tale of two approaches: how metagenomics and proteomics are shaping the future of encephalitis diagnostics. Curr Opin Neurol. 2015;28:283–287.
  • Larman HB, Zhao Z, Laserson U, et al. Autoantigen discovery with a synthetic human peptidome. Nat Biotechnol. 2011;29:535–541.
  • Zhu J, Larman HB, Gao G, et al. Protein interaction discovery using parallel analysis of translated ORFs (PLATO). Nat Biotechnol. 2013;31:331–334.
  • Bauer J, Bien CG. Neuropathology of autoimmune encephalitides. Handb Clin Neurol. 2016;133:107–120.
  • Ramanathan S, Bleasel A, Parratt J, et al. Characterisation of a syndrome of autoimmune adult onset focal epilepsy and encephalitis. J Clin Neurosci. 2014;21:1169–1175.
  • Irani SR, Bera K, Waters P, et al. N-methyl-D-aspartate antibody encephalitis: temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain. 2010;133:1655–1667.
  • Dalmau J, Lancaster E, Martinez-Hernandez E, et al. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol. 2011;10:63–74.
  • Heine J, Prüss H, Bartsch T, et al. Imaging of autoimmune encephalitis – relevance for clinical practice and hippocampal function. Neuroscience. 2015;309:68–83.
  • Titulaer MJ, Höftberger R, Iizuka T, et al. Overlapping demyelinating syndromes and anti-N-methyl-D-aspartate receptor encephalitis. Ann Neurol. 2014;75:411–428.
  • Iizuka T, Yoshii S, Kan S, et al. Reversible brain atrophy in anti-NMDA receptor encephalitis: a long-term observational study. J Neurol. 2010;257:1686–1691.
  • Finke C, Kopp UA, Scheel M, et al. Functional and structural brain changes in anti-N-methyl-D-aspartate receptor encephalitis. Ann Neurol. 2013;74:284–296.
  • Leypoldt F, Buchert R, Kleiter I, et al. Fluorodeoxyglucose positron emission tomography in anti-N-methyl-D-aspartate receptor encephalitis: distinct pattern of disease. J Neurol Neurosurg Psychiatry. 2012;83:681–686.
  • Wegner F, Wilke F, Raab P, et al. Anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis show distinct patterns of brain glucose metabolism in 18F-fluoro-2-deoxy-d-glucose positron emission tomography. BMC Neurol. 2014;14:136.
  • Maeder-Ingvar M, Prior JO, Irani SR, et al. FDG-PET hyperactivity in basal ganglia correlating with clinical course in anti-NDMA-R antibodies encephalitis. J Neurol Neurosurg Psychiatry. 2011;82:235–236.
  • Kotsenas AL, Watson RE, Pittock SJ, et al. MRI findings in autoimmune voltage-gated potassium channel complex encephalitis with seizures: one potential etiology for mesial temporal sclerosis. AJNR Am J Neuroradiol. 2014;35:84–89.
  • Flanagan EP, Kotsenas AL, Britton JW, et al. Basal ganglia T1 hyperintensity in LGI1-autoantibody faciobrachial dystonic seizures. Neurol Neuroimmunol Neuroinflamm. 2015;2:e161.
  • Irani SR, Stagg CJ, Schott JM, et al. Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain. 2013;136:3151–3162.
  • Boesebeck F, Schwarz O, Dohmen B, et al. Faciobrachial dystonic seizures arise from cortico-subcortical abnormal brain areas. J Neurol. 2013;260:1684–1686.
  • Irani SR, Michell AW, Lang B, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol. 2011;69:892–900.
  • Kunze A, Drescher R, Kaiser K, et al. Serial FDG PET/CT in autoimmune encephalitis with faciobrachial dystonic seizures. Clin Nucl Med. 2014;39:e436–e438.
  • Park S, Choi H, Cheon GJ, et al. 18F-FDG PET/CT in anti-LGI1 encephalitis: initial and follow-up findings. Clin Nucl Med. 2015;40:156–158.
  • Irani SR, Pettingill P, Kleopa KA, et al. Morvan syndrome: clinical and serological observations in 29 cases. Ann Neurol. 2012;72:241–255.
  • Malter MP, Frisch C, Schoene-Bake JC, et al. Outcome of limbic encephalitis with VGKC-complex antibodies: relation to antigenic specificity. J Neurol. 2014;261:1695–1705.
  • Wagner J, Schoene-Bake J-C, Malter MP, et al. Quantitative FLAIR analysis indicates predominant affection of the amygdala in antibody-associated limbic encephalitis. Epilepsia. 2013;54:1679–1687.
  • Wagner J, Weber B, Elger CE. Early and chronic gray matter volume changes in limbic encephalitis revealed by voxel-based morphometry. Epilepsia. 2015;56:754–761.
  • Wagner J, Schoene-Bake J-C, Witt J-A, et al. Distinct white matter integrity in glutamic acid decarboxylase and voltage-gated potassium channel-complex antibody-associated limbic encephalitis. Epilepsia. 2016;57(3):475–483.
  • Basu S, Alavi A. Role of FDG-PET in the clinical management of paraneoplastic neurological syndrome: detection of the underlying malignancy and the brain PET-MRI correlates. Mol Imaging Biol. 2008;10:131–137.
  • Linke R, Schroeder M, Helmberger T, et al. Antibody-positive paraneoplastic neurologic syndromes: value of CT and PET for tumor diagnosis. Neurology. 2004;63:282–286.
  • Mathew RM, Cohen AB, Galetta SL, et al. Paraneoplastic cerebellar degeneration: Yo-expressing tumor revealed after a 5-year follow-up with FDG-PET. J Neurol Sci. 2006;250:153–155.
  • Dalmau J, Gleichman AJ, Hughes EG, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 2008;7:1091–1098.
  • Saba L, Guerriero S, Sulcis R, et al. Mature and immature ovarian teratomas: CT, US and MR imaging characteristics. Eur J Radiol. 2009;72:454–463.
  • Link H, Huang Y-M. Oligoclonal bands in multiple sclerosis cerebrospinal fluid: an update on methodology and clinical usefulness. J Neuroimmunol. 2006;180:17–28.
  • Lancaster E, Lai M, Peng X, et al. Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol. 2010;9:67–76.
  • Gresa-Arribas N, Titulaer MJ, Torrents A, et al. Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study. Lancet Neurol. 2014;13:167–177.
  • Schmitt SE, Pargeon K, Frechette ES, et al. Extreme delta brush: a unique EEG pattern in adults with anti-NMDA receptor encephalitis. Neurology. 2012;79:1094–1100.
  • Veciana M, Becerra JL, Fossas P, et al. EEG extreme delta brush: an ictal pattern in patients with anti-NMDA receptor encephalitis. Epilepsy Behav. 2015;49:280–285.
  • Cramer JA, De RK, Devinsky O, et al. A systematic review of the behavioral effects of levetiracetam in adults with epilepsy, cognitive disorders, or an anxiety disorder during clinical trials. Epilepsy Behav. 2003;4:124–132.
  • Eddy CM, Rickards HE, Cavanna AE. The cognitive impact of antiepileptic drugs. Ther Adv Neurol Disord. 2011;4:385–407.
  • Helmstaedter C, Witt J-A. The longer-term cognitive effects of adjunctive antiepileptic treatment with lacosamide in comparison with lamotrigine and topiramate in a naturalistic outpatient setting. Epilepsy Behav. 2013;26:182–187.
  • Meador KJ, Gevins A, Leese PT, et al. Neurocognitive effects of brivaracetam, levetiracetam, and lorazepam. Epilepsia. 2011;52:264–272.
  • Lee S-A, Lee H-W, Heo K, et al. Cognitive and behavioral effects of lamotrigine and carbamazepine monotherapy in patients with newly diagnosed or untreated partial epilepsy. Seizure. 2011;20:49–54.
  • Nygaard HB, Kaufman AC, Sekine-Konno T, et al. Brivaracetam, but not ethosuximide, reverses memory impairments in an Alzheimer’s disease mouse model. Alzheimers Res Ther. 2015;7:25.
  • Quek AM, Britton JW, McKeon A, et al. Autoimmune epilepsy: clinical characteristics and response to immunotherapy. Arch Neurol. 2012;69:582–593.
  • Barry H, Hardiman O, Healy DG, et al. Anti-NMDA receptor encephalitis: an important differential diagnosis in psychosis. Br J Psychiatry. 2011;199:508–509.
  • Chapman MR, Vause HE. Anti-NMDA receptor encephalitis: diagnosis, psychiatric presentation, and treatment. Am J Psychiatry. 2011;168:245–251.
  • Kuppuswamy PS, Takala CR, Sola CL. Management of psychiatric symptoms in anti-NMDAR encephalitis: a case series, literature review and future directions. Gen Hosp Psychiatry. 2014;36:388–391.
  • Braakman HM, Moers-Hornikx VM, Arts BM, et al. Pearls & Oy-sters: electroconvulsive therapy in anti-NMDA receptor encephalitis. Neurology. 2010;75:e44–e46.
  • Matsumoto T, Matsumoto K, Kobayashi T, et al. Electroconvulsive therapy can improve psychotic symptoms in anti-NMDA-receptor encephalitis. Psychiatry Clin Neurosci. 2012;66:242–243.
  • McKeon A, Lennon VA, Pittock SJ. Immunotherapy-responsive dementias and encephalopathies. Continuum (Minneap Minn). 2010;16:80–101.
  • McKeon A. Immunotherapeutics for autoimmune encephalopathies and dementias. Curr Treat Options Neurol. 2013;15:723–737.
  • Oakley RH, Cidlowski JA. Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids. J Biol Chem. 2011;286:3177–3184.
  • Cupps TR, Fauci AS. Corticosteroid-mediated immunoregulation in man. Immunol Rev. 1982;65:133–155.
  • Fauci AS, Dale DC, Balow JE. Glucocorticosteroid therapy: mechanisms of action and clinical considerations. Ann Intern Med. 1976;84:304–315.
  • Ramo-Tello C, Grau-López L, Tintoré M, et al. A randomized clinical trial of oral versus intravenous methylprednisolone for relapse of MS. Mult Scler. 2014;20:717–725.
  • Freedman MS, Selchen D, Arnold DL, et al. Treatment optimization in MS: Canadian MS Working Group updated recommendations. Can J Neurol Sci. 2013;40:307–323.
  • Dubey D, Farzal Z, Hay R, et al. Evaluation of positive and negative predictors of clinical outcomes among patients with autoimmune epilepsy: meta-analysis. Neurology. 2016;86(16):Supplement P6.344. [Epub ahead of print]
  • Gensler LS. Glucocorticoids: complications to anticipate and prevent [abstract]. Neurohospitalist. 2013;3:92–97.
  • Grossman JM, Gordon R, Ranganath VK, et al. American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res (Hoboken). 2010;62:1515–1526.
  • Sangiolo D, Storer B, Nash R, et al. Toxicity and efficacy of daily dapsone as Pneumocystis jiroveci prophylaxis after hematopoietic stem cell transplantation: a case-control study. Biol Blood Marrow Transplant. 2005;11:521–529.
  • Tomonari A, Takahashi S, Ooi J, et al. No occurrence of Pneumocystis jiroveci (carinii) pneumonia in 120 adults undergoing myeloablative unrelated cord blood transplantation. Transpl Infect Dis. 2008;10:303–307.
  • Fridey JL, Kaplan AA. Therapeutic apheresis (plasma exchange or cytapheresis): indications and technology [Internet]. [cited 2015 Jul 29]. Available from: http://www.uptodate.com/contents/therapeutic-apheresis-plasma-exchange-or-cytapheresis-indications-and-technology
  • Láinez-Andrés JM, Gascón-Giménez F, Coret-Ferrer F, et al. [Therapeutic plasma exchange: applications in neurology]. Rev Neurol. 2015;60:120–131. Spanish. http://www.revneurol.com/sec/resumen.php?or=pubmed&id=2014393
  • Ward DM. Conventional apheresis therapies: a review. J Clin Apher. 2011;26:230–238.
  • Pham HP, Daniel-Johnson JA, Stotler BA, et al. Therapeutic plasma exchange for the treatment of anti-NMDA receptor encephalitis. J Clin Apher. 2011;26:320–325.
  • Dalakas MC. Advances in the diagnosis, pathogenesis and treatment of CIDP. Nat Rev Neurol. 2011;7:507–517.
  • Sanchez AP, Cunard R, Ward DM. The selective therapeutic apheresis procedures. J Clin Apher. 2013;28:20–29.
  • Köhler W, Ehrlich S, Dohmen C, et al. Tryptophan immunoadsorption for the treatment of autoimmune encephalitis. Eur J Neurol. 2015;22:203–206.
  • Onugoren M, Golombeck KS, Bien C, et al. Immunoadsorption therapy in autoimmune encephalitides. Neurol Neuroimmunol Neuroinflamm. 2016;3(2):e207. [Epub ahead of print]
  • Lünemann JD, Nimmerjahn F, Dalakas MC. Intravenous immunoglobulin in neurology – mode of action and clinical efficacy. Nat Rev Neurol. 2015;11:80–89.
  • Gelfand EW. Intravenous immune globulin in autoimmune and inflammatory diseases. N Engl J Med. 2012;367:2015–2025.
  • Lünemann JD, Quast I, Dalakas MC. Efficacy of intravenous immunoglobulin in neurological diseases. Neurotherapeutics. 2016;13:34–46.
  • Burks AW, Sampson HA, Buckley RH. Anaphylactic reactions after gamma globulin administration in patients with hypogammaglobulinemia. Detection of IgE antibodies to IgA. N Engl J Med. 1986;314:560–564.
  • Dubey D, Kieseier BC, Hartung HP, et al. Clinical management of multiple sclerosis and neuromyelitis optica with therapeutic monoclonal antibodies: approved therapies and emerging candidates. Expert Rev Clin Immunol. 2015;11:93–108.
  • Dale RC, Brilot F, Duffy LV, et al. Utility and safety of rituximab in pediatric autoimmune and inflammatory CNS disease. Neurology. 2014;83:142–150.
  • Carson KR, Evens AM, Richey EA, et al. Progressive multifocal leukoencephalopathy after rituximab therapy in HIV-negative patients: a report of 57 cases from the Research on Adverse Drug Events and Reports project. Blood. 2009;113:4834–4840.
  • Stone J General principles of the use of cyclophosphamide in rheumatic and renal disease [Internet]. 2015 [cited 2015 Dec 18]. Available from: http://www.uptodate.com/contents/general-principles-of-the-use-of-cyclophosphamide-in-rheumatic-disease
  • Dezern AE, Styler MJ, Drachman DB, et al. Repeated treatment with high dose cyclophosphamide for severe autoimmune diseases. Am J Blood Res. 2013;3:84–90. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3555191/
  • Titulaer MJ, McCracken L, Gabilondo I, et al. Late-onset anti-NMDA receptor encephalitis. Neurology. 2013;81:1058–1063.
  • Drachman DB, Adams RN, Hu R, et al. Rebooting the immune system with high-dose cyclophosphamide for treatment of refractory myasthenia gravis. Ann N Y Acad Sci. 2008;1132:305–314.
  • Morgenstern LB, Pardo CA. Progressive multifocal leukoencephalopathy complicating treatment for Wegener’s granulomatosis. J Rheumatol. 1995;22:1593–1595.
  • Seo P Mycophenolate mofetil: pharmacology and adverse effects when used in the treatment of rheumatic diseases [Internet]. [cited 2014 Sep 30]. Available from: http://www.uptodate.com/contents/mycophenolate-mofetil-pharmacology-and-adverse-effects-when-used-in-the-treatment-of-rheumatic-diseases
  • Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology. 2000;47(2–3):85–118. http://resolver.ebscohost.com.foyer.swmed.edu/openurl?sid=Entrez:PubMed&id=pmid:10878285
  • Neff RT, Hurst FP, Falta EM, et al. Progressive multifocal leukoencephalopathy and use of mycophenolate mofetil after kidney transplantation. Transplantation. 2008;86:1474–1478.
  • Costanzi C, Matiello M, Lucchinetti CF, et al. Azathioprine: tolerability, efficacy, and predictors of benefit in neuromyelitis optica. Neurology. 2011;77:659–666.
  • Witte AS, Cornblath DR, Schatz NJ, et al. Monitoring azathioprine therapy in myasthenia gravis. Neurology. 1986;36:1533–1534.
  • Decaux G, Prospert F, Horsmans Y, et al. Relationship between red cell mean corpuscular volume and 6-thioguanine nucleotides in patients treated with azathioprine. J Lab Clin Med. 2000;135:256–262.
  • Belmont M Pharmacology and side effects of azathioprine when used in rheumatic diseases [Internet]. [cited 2015 Sep 22]. Available from: http://www.uptodate.com/contents/pharmacology-and-side-effects-of-azathioprine-when-used-in-rheumatic-diseases
  • Becker MA Prevention of recurrent gout: pharmacologic urate-lowering therapy and treatment of tophi [Internet]. [cited 2016 Mar 25]. Available from: http://www.uptodate.com/contents/prevention-of-recurrent-gout-pharmacologic-urate-lowering-therapy-and-treatment-of-tophi
  • Gastaldi M, Thouin A, Vincent A. Antibody-mediated autoimmune encephalopathies and immunotherapies. Neurotherapeutics [Internet]. 2016;13(1):147–162. http://link.springer.com/article/10.1007%2Fs13311-015-0410-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.