320
Views
6
CrossRef citations to date
0
Altmetric
Review

Genetic polymorphisms and the adequacy of brain stimulation: state of the art

, &
Pages 1043-1054 | Received 18 Dec 2015, Accepted 23 May 2016, Published online: 03 Jun 2016

References

  • Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med. 2001;345(13):956–963.
  • Mayberg HS, Lozano AM, Voon V, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45(5):651–660.
  • Hummel FC, Cohen LG. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol. 2006;5(8):708–712.
  • Hummel F, Celnik P, Giraux P, et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain. 2005;128(Pt 3):490–499.
  • Sparing R, Dafotakis M, Meister IG, et al. Enhancing language performance with non-invasive brain stimulation – a transcranial direct current stimulation study in healthy humans. Neuropsychologia. 2008;46(1):261–268.
  • Ridding MC, Ziemann U. Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J Physiol. 2010;588(13):2291–2304.
  • Hallett M. Transcranial magnetic stimulation and the human brain. Nature. 2000;406(6792):147–150.
  • Zivadinov R, Weinstock-Guttman B, Benedict R, et al. Preservation of gray matter volume in multiple sclerosis patients with the Met allele of the rs6265 (Val66Met) SNP of brain-derived neurotrophic factor. Hum Mol Genet. 2007;16(22):2659–2668.
  • Egan MF, Kojima M, Callicott JH, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112(2):257–269.
  • Chen Z-Y, Jing D, Bath KG, et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science. 2006;314(5796):140–143.
  • Schumacher J, Jamra RA, Becker T, et al. Evidence for a relationship between genetic variants at the brain-derived neurotrophic factor (BDNF) locus and major depression. Biol Psychiatry. 2005;58(4):307–314.
  • Verhagen M, Van Der Meij A, van Deurzen PAM, et al. Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity. Mol Psychiatry. 2008;15(3):260–271.
  • Hariri AR, Goldberg TE, Mattay VS, et al. Brain-derived neurotrophic factor Val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci. 2003;23(17):6690–6694.
  • Szeszko PR, Lipsky R, Mentschel C, et al. Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation. Mol Psychiatry. 2005;10(7):631–636.
  • Jiang X, Xu K, Hoberman J, et al. BDNF variation and mood disorders: a novel functional promoter polymorphism and Val66Met are associated with anxiety but have opposing effects. Neuropsychopharmacology. 2005;30(7):1353–1361.
  • Soliman F, Glatt CE, Bath KG, et al. A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science. 2010;327(5967):863–866.
  • Ventriglia M, Chiavetto LB, Benussi L, et al. Association between the BDNF 196 A/G polymorphism and sporadic Alzheimer’s disease. Mol Psychiatry. 2002;7(2):136–137.
  • Tsai SJ, Hong CJ, Liu HC, et al. Association analysis of brain-derived neurotrophic factor Val66Met polymorphisms with Alzheimer’s disease and age of onset. Neuropsychobiology. 2004;49(1):10–12.
  • Desai P, Nebes R, DeKosky ST, et al. Investigation of the effect of brain-derived neurotrophic factor (BDNF) polymorphisms on the risk of late-onset Alzheimer’s disease (AD) and quantitative measures of AD progression. Neurosci Lett. 2005;379(3):229–234.
  • Fukumoto N, Fujii T, Combarros O, et al. Sexually dimorphic effect of the Val66Met polymorphism of BDNF on susceptibility to Alzheimer’s disease: new data and meta-analysis. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(1):235–242.
  • Dai L, Wang D, Meng H, et al. Association between the BDNF G196A and C270T polymorphisms and Parkinson’s disease: a meta-analysis. Int J Neurosci. 2013;123(10):675–683.
  • Karamohamed S, Latourelle JC, Racette BA, et al. BDNF genetic variants are associated with onset age of familial Parkinson disease: GenePD Study. Neurology. 2005;65(11):1823–1825.
  • Rossini PM, Barker AT, Berardelli A, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol. 1994;91(2):79–92.
  • Rossini PM, Burke D, Chen R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee. Clin Neurophysiol. 2015;126(6):1071–1107.
  • Fujiyama H, Hyde J, Hinder MR, et al. Delayed plastic responses to anodal tDCS in older adults. Front Aging Neurosci. 2014;6:115.
  • Mastroeni C, Bergmann TO, Rizzo V, et al. Brain-derived neurotrophic factor – a major player in stimulation-induced homeostatic metaplasticity of human motor cortex? PLoS One. 2013;8(2):e57957.
  • Di Lazzaro V, Manganelli F, Dileone M, et al. The effects of prolonged cathodal direct current stimulation on the excitatory and inhibitory circuits of the ipsilateral and contralateral motor cortex. J Neural Transm. 2012;119(12):1499–1506.
  • McHughen SA, Cramer SC. The BDNF val(66)met polymorphism is not related to motor function or short-term cortical plasticity in elderly subjects. Brain Res. 2013;1495:1–10.
  • Lee M, Kim SE, Kim WS, et al. Interaction of motor training and intermittent theta burst stimulation in modulating motor cortical plasticity: influence of BDNF Val66Met polymorphism. PLoS One. 2013;8(2):e57690.
  • Li Voti P, Conte A, Suppa A, et al. Correlation between cortical plasticity, motor learning and BDNF genotype in healthy subjects. Exp Brain Res. 2011;212(1):91–99.
  • Cheeran B, Talelli P, Mori F, et al. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J Physiol. 2008;586(Pt 23):5717–5725.
  • Jayasekeran V, Pendleton N, Holland G, et al. Val66Met in brain-derived neurotrophic factor affects stimulus-induced plasticity in the human pharyngeal motor cortex. Gastroenterology. 2011;141(3):827-836e821–823.
  • Lamy J-C, Boakye M. BDNF Val66Met polymorphism alters spinal DC stimulation-induced plasticity in humans. J Neurophysiol. 2013;110(1):109–116.
  • Cirillo J, Hughes J, Ridding M, et al. Differential modulation of motor cortex excitability in BDNF Met allele carriers following experimentally induced and use-dependent plasticity. Eur J Neurosci. 2012;36(5):2640–2649.
  • McHughen SA, Pearson-Fuhrhop K, Ngo VK, et al. Intense training overcomes effects of the Val66Met BDNF polymorphism on short-term plasticity. Exp Brain Res. 2011;213(4):415–422.
  • Di Lazzaro V, Pellegrino G, Di Pino G, et al. Val66Met BDNF gene polymorphism influences human motor cortex plasticity in acute stroke. Brain Stimul. 2014;8(1):92–96.
  • Uhm KE, Kim Y-H, Yoon KJ, et al. BDNF genotype influence the efficacy of rTMS in stroke patients. Neurosci Lett. 2015;594:117–121.
  • Chang WH, Bang OY, Shin Y-I, et al. BDNF polymorphism and differential rTMS effects on motor recovery of stroke patients. Brain Stimul. 2014;7(4):553–558.
  • Mirowska-Guzel D, Gromadzka G, Seniow J, et al. Association between BDNF-196 G>A and BDNF-270 C>T polymorphisms, BDNF concentration, and rTMS-supported long-term rehabilitation outcome after ischemic stroke. NeuroRehabilitation. 2013;32(3):573–582.
  • Krstic J, Buzadzic I, Milanovic SD, et al. Low-frequency repetitive transcranial magnetic stimulation in the right prefrontal cortex combined with partial sleep deprivation in treatment-resistant depression: a randomized sham-controlled trial. J ECT. 2014;437(2):130–134.
  • Bocchio-Chiavetto L, Miniussi C, Zanardini R, et al. 5-HTTLPR and BDNF Val66Met polymorphisms and response to rTMS treatment in drug resistant depression. Neurosci Lett. 2008;437(2):130–134.
  • Brunoni AR, Kemp AH, Shiozawa P, et al. Impact of 5-HTTLPR and BDNF polymorphisms on response to sertraline versus transcranial direct current stimulation: implications for the serotonergic system. Eur Neuropsychopharmacol. 2013;23(11):1530–1540.
  • Licinio J, Dong C, Wong M-L. Novel sequence variations in the brain-derived neurotrophic factor gene and association with major depression and antidepressant treatment response. Arch Gen Psychiatry. 2009;66(5):488–497.
  • Zeilinger S, Pinto LA, Nockher WA, et al. The effect of BDNF gene variants on asthma in German children. Allergy. 2009;64(12):1790–1794.
  • Pae C-U, Chiesa A, Porcelli S, et al. Influence of BDNF variants on diagnosis and response to treatment in patients with major depression, bipolar disorder and schizophrenia. Neuropsychobiology. 2012;65(1):1–11.
  • Ye C-Y, Xu Y-Q, Hu H, et al. [An association study of brain-derived neurotrophic factor gene polymorphism in bipolar disorders]. Zhonghua Yi Xue Za Zhi. 2009;89(27):1897–1901.
  • Illi A, Viikki M, Poutanen O, et al. No support for a role for BDNF gene polymorphisms rs11030101 and rs61888800 in major depressive disorder or antidepressant response in patients of Finnish origin. Psychiatr Genet. 2013;23(1):33–35.
  • Cho SC, Kim JW, Kim HW, et al. Effect of ADRA2A and BDNF gene-gene interaction on the continuous performance test phenotype. Psychiatr Genet. 2011;21(3):132–135.
  • Cho SC, Kim HW, Kim BN, et al. Gender-specific association of the brain-derived neurotrophic factor gene with attention-deficit/hyperactivity disorder. Psychiatry Investig. 2010;7(4):285–290.
  • Tsai A, Liou YJ, Hong CJ, et al. Association study of brain-derived neurotrophic factor gene polymorphisms and body weight change in schizophrenic patients under long-term atypical antipsychotic treatment. Neuromolecular Med. 2011;13(4):328–333.
  • van Winkel M, Peeters F, van Winkel R, et al. Impact of variation in the BDNF gene on social stress sensitivity and the buffering impact of positive emotions: replication and extension of a gene-environment interaction. Eur Neuropsychopharmacol. 2014;24(6):930–938.
  • Yoo HJ, Yang SY, Cho IH, et al. Polymorphisms of BDNF gene and autism spectrum disorders: family based association study with korean trios. Psychiatry Investig. 2014;11(3):319–324.
  • Viikki ML, Jarventausta K, Leinonen E, et al. BDNF polymorphism rs11030101 is associated with the efficacy of electroconvulsive therapy in treatment-resistant depression. Psychiatr Genet. 2013;23(3):134–136.
  • Li C, Zheng L, Sun Y, et al. No association between the G196A and C270T polymorphism of the brain-derived neurotrophic factor gene and male infertility. Genetika. 2012;48(3):405–407.
  • Unalp A, Bora E, Cankaya T, et al. Lack of association of childhood partial epilepsy with brain derived neurotrophic factor gene. ScientificWorldJournal. 2012;2012:414797.
  • Nagata T, Shinagawa S, Nukariya K, et al. Association between brain-derived neurotrophic factor (BDNF) gene polymorphisms and executive function in Japanese patients with Alzheimer’s disease. Psychogeriatrics. 2011;11(3):141–149.
  • Zhang L, Fang Y, Zeng Z, et al. BDNF gene polymorphisms are associated with Alzheimer’s disease-related depression and antidepressant response. JAD. 2011;26(3):523–530.
  • Sun RF, Zhu YS, Kuang WJ, et al. The G-712A polymorphism of brain-derived neurotrophic factor is associated with major depression but not schizophrenia. Neurosci Lett. 2011;489(1):34–37.
  • Aureli A, Del Beato T, Sebastiani P, et al. Attention-deficit hyperactivity disorder and intellectual disability: a study of association with brain-derived neurotrophic factor gene polymorphisms. Int J Immunopathol Pharmacol. 2010;23(3):873–880.
  • Borroni B, Grassi M, Archetti S, et al. BDNF genetic variations increase the risk of Alzheimer’s disease-related depression. JAD. 2009;18(4):867–875.
  • Cheng L, Ge Q, Xiao P, et al. Association study between BDNF gene polymorphisms and autism by three-dimensional gel-based microarray. Int J Mol Sci. 2009;10(6):2487–2500.
  • Zdanys KF, Kleiman TG, Zhang H, et al. BDNF variants, premorbid educational attainment, and disease characteristics in Alzheimer’s disease: an exploratory study. JAD. 2009;17(4):887–898.
  • Ma L, Gao XH, Zhao LP, et al. Brain-derived neurotrophic factor gene polymorphisms and serum levels in Chinese atopic dermatitis patients. J Eur Acad Dermatol Venereol. 2009;23(11):1277–1281.
  • Grünblatt E, Zehetmayer S, Bartl J, et al. Genetic risk factors and markers for Alzheimer’s disease and/or depression in the VITA study. J Psychiatr Res. 2009;43(3):298–308.
  • Mirowska-Guzel D, Mach A, Gromadzka G, et al. BDNF A196G and C270T gene polymorphisms and susceptibility to multiple sclerosis in the polish population. Gender differences. J Neuroimmunol. 2008;193(1–2):170–172.
  • Li W, Wei J, Zhou DF, et al. Lack of association between the BDNF C270T polymorphism and schizophrenia in a Chinese Han population. Schizophr Res. 2007;97(1–3):297–298.
  • Huang R, Huang J, Cathcart H, et al. Genetic variants in brain-derived neurotrophic factor associated with Alzheimer’s disease. J Med Genet. 2007;44(2):e66.
  • Kishikawa S, Li J-L, Gillis T, et al. Brain-derived neurotrophic factor does not influence age at neurologic onset of Huntington’s disease. Neurobiol Dis. 2006;24(2):280–285.
  • Akatsu H, Yamagata HD, Kawamata J, et al. Variations in the BDNF gene in autopsy-confirmed Alzheimer’s disease and dementia with Lewy bodies in Japan. Dement Geriatr Cogn Disord. 2006;22(3):216–222.
  • Grünblatt E, Hupp E, Bambula M, et al. Association study of BDNF and CNTF polymorphism to depression in non-demented subjects of the “VITA” study. J Affect Disord. 2006;96(1–2):111–116.
  • Zhang H, Ozbay F, Lappalainen J, et al. Brain derived neurotrophic factor (BDNF) gene variants and Alzheimer’s disease, affective disorders, posttraumatic stress disorder, schizophrenia, and substance dependence. Am J Med Genet B Neuropsychiatr Genet. 2006;141B(4):387–393.
  • Tsai S-J, Hong C-J, Liu H-C, et al. The brain-derived neurotrophic factor gene as a possible susceptibility candidate for Alzheimer’s disease in a chinese population. Dement Geriatr Cogn Disord. 2006;21(3):139–143.
  • Shimizu E, Hashimoto K, Koizumi H, et al. No association of the brain-derived neurotrophic factor (BDNF) gene polymorphisms with panic disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2005;29(5):708–712.
  • Anttila S, Illi A, Kampman O, et al. Lack of association between two polymorphisms of brain-derived neurotrophic factor and response to typical neuroleptics. J Neural Transm. 2005;112(7):885–890.
  • Itoh K, Hashimoto K, Shimizu E, et al. Association study between brain-derived neurotrophic factor gene polymorphisms and methamphetamine abusers in Japan. Am J Med Genet B Neuropsychiatr Genet. 2005;132B(1):70–73.
  • Szekeres G, Juhász A, Rimanóczy A, et al. The C270T polymorphism of the brain-derived neurotrophic factor gene is associated with schizophrenia. Schizophr Res. 2003;65(1):15–18.
  • Olin D, MacMurray J, Comings DE. Risk of late-onset Alzheimer’s disease associated with BDNF C270T polymorphism. Neurosci Lett. 2005;381(3):275–278.
  • Desai P, Nebes R, DeKosky ST, et al. Investigation of the effect of brain-derived neurotrophic factor (BDNF) polymorphisms on the risk of late-onset Alzheimer’s disease (AD) and quantitative measures of AD progression. Neurosci Lett. 2005;379(3):229–234.
  • Kunugi H, Ueki A, Otsuka M, et al. A novel polymorphism of the brain-derived neurotrophic factor (BDNF) gene associated with late-onset Alzheimer’s disease. Mol Psychiatry. 2001;6(1):83–86.
  • Matsushita S, Arai H, Matsui T, et al. Brain-derived neurotrophic factor gene polymorphisms and Alzheimer’s disease. J Neural Trans. 2005;112(5):703–711.
  • Watanabe Y, Nunokawa A, Someya T. Association of the BDNF C270T polymorphism with schizophrenia: updated meta-analysis. Psychiatry Clin Neurosci. 2013;67(2):123–125.
  • Zintzaras E. Brain-derived neurotrophic factor gene polymorphisms and schizophrenia: a meta-analysis. Psychiatr Genet. 2007;17(2):69–75.
  • Kawashima K, Ikeda M, Kishi T, et al. BDNF is not associated with schizophrenia: data from a Japanese population study and meta-analysis. Schizophr Res. 2009;112(1–3):72–79.
  • Cheng L, Ge Q, Sun B, et al. Polyacrylamide gel-based microarray: a novel method applied to the association study between the polymorphisms of BDNF gene and autism. J Biomed Nanotechnol. 2009;5(5):542–550.
  • Xu X, Mill J, Zhou K, et al. Family-based association study between brain-derived neurotrophic factor gene polymorphisms and attention deficit hyperactivity disorder in UK and Taiwanese samples. Am J Med Genet B Neuropsychiatr Genet. 2007;144B(1):83–86.
  • Huuhka K, Anttila S, Huuhka M, et al. Brain-derived neurotrophic factor (BDNF) polymorphisms G196A and C270T are not associated with response to electroconvulsive therapy in major depressive disorder. Eur Arch Psychiatry Clin Neurosci. 2007;257(1):31–35.
  • Chen J, Lipska BK, Halim N, et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet. 2004;75(5):807–821.
  • Zubieta J-K, Heitzeg MM, Smith YR, et al. COMT val158met genotype affects µ-opioid neurotransmitter responses to a pain stressor. Science. 2003;299(5610):1240–1243.
  • Plewnia C, Zwissler B, Längst I, et al. Effects of transcranial direct current stimulation (tDCS) on executive functions: influence of COMT Val/Met polymorphism. Cortex. 2013;49(7):1801–1807.
  • Nieratschker V, Kiefer C, Giel K, et al. The COMT Val/Met polymorphism modulates effects of tDCS on response inhibition. Brain Stimul. 2015;8(2):283–288.
  • Lee NJ, Ahn HJ, Jung KI, et al. Reduction of continuous theta burst stimulation-induced motor plasticity in healthy elderly with COMT Val158Met polymorphism. Ann Rehabil Med. 2014;38(5):658–664.
  • Bousman CA, Katalinic N, Martin DM, et al. Effects of COMT, DRD2, BDNF, and APOE genotypic variation on treatment efficacy and cognitive side effects of electroconvulsive therapy. J ECT. 2014;31(2):129–135.
  • Domschke K, Zavorotnyy M, Diemer J, et al. COMT val158met influence on electroconvulsive therapy response in major depression. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(1):286–290.
  • Anttila S, Huuhka K, Huuhka M, et al. Catechol-O-methyltransferase (COMT) polymorphisms predict treatment response in electroconvulsive therapy. Pharmacogenomics J. 2008;8(2):113–116.
  • Lin Z, He H, Zhang C, et al. Influence of Val108/158Met COMT gene polymorphism on the efficacy of modified electroconvulsive therapy in patients with treatment resistant depression. Cell Biochem Biophys. 2014;71(3):1387–1393.
  • Jaaskelainen SK, Lindholm P, Valmunen T, et al. Variation in the dopamine D2 receptor gene plays a key role in human pain and its modulation by transcranial magnetic stimulation. Pain. 2014;155(10):2180–2187.
  • Stewart JA, Kampman O, Huuhka M, et al. ACE polymorphism and response to electroconvulsive therapy in major depression. Neurosci Lett. 2009;458(3):122–125.
  • Huuhka M, Anttila S, Leinonen E, et al. The apolipoprotein E polymorphism is not associated with response to electroconvulsive therapy in major depressive disorder. J ECT. 2005;21(1):7–11.
  • Fisman M, Rabheru K, Hegele RA, et al. Apolipoprotein E polymorphism and response to electroconvulsive therapy. J ECT. 2001;17(1):11–14.
  • Anttila S, Huuhka K, Huuhka M, et al. Interaction between TPH1 and GNB3 genotypes and electroconvulsive therapy in major depression. J Neural Trans. 2007;114(4):461–468.
  • Kautto M, Kampman O, Mononen N, et al. Serotonin transporter (5-HTTLPR) and norepinephrine transporter (NET) gene polymorphisms: susceptibility and treatment response of electroconvulsive therapy in treatment resistant depression. Neurosci Lett. 2015;590:116–120.
  • Viikki M, Kampman O, Anttila S, et al. P2RX7 polymorphisms Gln460Arg and His155Tyr are not associated with major depressive disorder or remission after SSRI or ECT. Neurosci Lett. 2011;493(3):127–130.
  • Huuhka K, Kampman O, Anttila S, et al. RGS4 polymorphism and response to electroconvulsive therapy in major depressive disorder. Neurosci Lett. 2008;437(1):25–28.
  • Savitz J, Lucki I, Drevets WC. 5-HT(1A) receptor function in major depressive disorder. Prog Neurobiol. 2009;88(1):17–31.
  • Malaguti A, Rossini D, Lucca A, et al. Role of COMT, 5-HT(1A), and SERT genetic polymorphisms on antidepressant response to transcranial magnetic stimulation. Depress Anxiety. 2011;28(7):568–573.
  • Zanardi R, Magri L, Rossini D, et al. Role of serotonergic gene polymorphisms on response to transcranial magnetic stimulation in depression. Eur Neuropsychopharmacol. 2007;17(10):651–657.
  • Duman EA, Canli T. Influence of life stress, 5-HTTLPR genotype, and SLC6A4 methylation on gene expression and stress response in healthy Caucasian males. Biol Mood Anxiety Disord. 2015;5(1):1.
  • Langguth B, Sand P, Marek R, et al. Allelic variation in the serotonin transporter promoter modulates cortical excitability. Biol Psychiatry. 2009;66(3):283–286.
  • Rasmussen KG, Black JL. Serotonin transporter gene status and electroconvulsive therapy outcomes: a retrospective analysis of 83 patients. J Clin Psychiatry. 2009;70(1):92–94.
  • Anttila S, Viikki M, Huuhka K, et al. TPH2 polymorphisms may modify clinical picture in treatment-resistant depression. Neurosci Lett. 2009;464(1):43–46.
  • Mori F, Ribolsi M, Kusayanagi H, et al. TRPV1 channels regulate cortical excitability in humans. J Neurosci. 2012;32(3):873–879.
  • Lu H, Zhang T, Wen M, et al. Impact of repetitive transcranial magnetic stimulation on post-stroke dysmnesia and the role of BDNF Val66Met SNP. Med Sci Monit. 2015;21:761–768.
  • Puri R, Hinder MR, Fujiyama H, et al. Duration-dependent effects of the BDNF Val66Met polymorphism on anodal tDCS induced motor cortex plasticity in older adults: a group and individual perspective. Front Aging Neurosci. 2015;7:107.
  • Strube W, Nitsche MA, Wobrock T, et al. BDNF-Val66Met-polymorphism impact on cortical plasticity in schizophrenia patients: a proof-of-concept study. Int J Neuropsychopharmacol. 2015;18(4):1–11.
  • Mori F, Ribolsi M, Kusayanagi H, et al. Genetic variants of the NMDA receptor influence cortical excitability and plasticity in humans. J Neurophysiol. 2011;106(4):1637–1643.
  • Viikki M, Anttila S, Kampman O, et al. Vascular endothelial growth factor (VEGF) polymorphism is associated with treatment resistant depression. Neurosci Lett. 2010;477(3):105–108.
  • Minelli A, Zanardini R, Abate M, et al. Vascular endothelial growth factor (VEGF) serum concentration during electroconvulsive therapy (ECT) in treatment resistant depressed patients. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011;35(5):1322–1325.
  • Huuhka K, Anttila S, Huuhka M, et al. Dopamine 2 receptor C957T and catechol-o-methyltransferase Val158Met polymorphisms are associated with treatment response in electroconvulsive therapy. Neurosci Lett. 2008;448(1):79–83.
  • Pearson-Fuhrhop KM, Minton B, Acevedo D, et al. Genetic variation in the human brain dopamine system influences motor learning and its modulation by L-Dopa. PLoS One. 2013;8(4):e61197.
  • Witte AV, Kurten J, Jansen S, et al. Interaction of BDNF and COMT polymorphisms on paired-associative stimulation-induced cortical plasticity. J Neurosci. 2012;32(13):4553–4561.
  • Saghazadeh A, Mastrangelo M, Rezaei N. Genetic background of febrile seizures. Rev Neurosci. 2014;25(1):129–161.
  • Menzler K, Hermsen A, Balkenhol K, et al. A common SCN1A splice-site polymorphism modifies the effect of carbamazepine on cortical excitability – a pharmacogenetic transcranial magnetic stimulation study. Epilepsia. 2014;55(2):362–369.
  • Eichhammer P, Langguth B, Wiegand R, et al. Allelic variation in the serotonin transporter promoter affects neuromodulatory effects of a selective serotonin transporter reuptake inhibitor (SSRI). Psychopharmacology. 2003;166(3):294–297.
  • Ridding MC, Ziemann U. Determinants of the induction of cortical plasticity by non‐invasive brain stimulation in healthy subjects. J Physiol. 2010;588(Pt 13):2291–2304.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.