960
Views
72
CrossRef citations to date
0
Altmetric
Review

Blood-brain barrier, cytotoxic chemotherapies and glioblastoma

, , , , , , , & show all
Pages 1285-1300 | Received 08 Feb 2016, Accepted 14 Jun 2016, Published online: 04 Jul 2016

References

  • Ostrom QT, Bauchet L, Davis FG, et al. The epidemiology of glioma in adults: a “state of the science” review. Neuro-Oncol. 2014;16(7):896–913.
  • Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–996.
  • Scherer H. Structural development in gliomas. Am J Cancer. 1938;33(3):333–351.
  • Wong AD, Ye M, Levy AF, et al. The blood-brain barrier: an engineering perspective. Front Neuroeng. 2013;6:7.
  • Saunders NR, Daneman R, Dziegielewska KM, et al. Transporters of the blood-brain and blood-CSF interfaces in development and in the adult. Mol Aspects Med. 2013;34(2–3):742–752.
  • Langlet F. Role of tanycytes within the blood-hypothalamus interface. Biol Aujourdhui. 2014;208(3):225–235.
  • Preston JE, Joan Abbott N, Begley DJ. Transcytosis of macromolecules at the blood-brain barrier. Adv Pharmacol San Diego Calif. 2014;71:147–163.
  • Shawahna R, Uchida Y, Declèves X, et al. Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm. 2011;8(4):1332–1341.
  • Uchida Y, Ohtsuki S, Katsukura Y, et al. Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem. 2011;117(2):333–345.
  • Hartz AMS, Bauer B. ABC transporters in the CNS - an inventory. Curr Pharm Biotechnol. 2011;12(4):656–673.
  • Horsburgh A, Massoud TF. The circumventricular organs of the brain: conspicuity on clinical 3T MRI and a review of functional anatomy. Surg Radiol Anat SRA. 2013;35(4):343–349.
  • Langlet F, Mullier A, Bouret SG, et al. Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. J Comp Neurol. 2013;521(15):3389–3405.
  • Morita S, Furube E, Mannari T, et al. Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain. Cell Tissue Res. 2015;363(2):497–511.
  • Hillen F, Griffioen AW. Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev. 2007;26(3–4):489–502.
  • Dubois LG, Campanati L, Righy C, et al. Gliomas and the vascular fragility of the blood brain barrier. Front Cell Neurosci. 2014;8:418.
  • Lee J, Lund-Smith C, Borboa A, et al. Glioma-induced remodeling of the neurovascular unit. Brain Res. 2009;1288:125–134.
  • Schneider SW, Ludwig T, Tatenhorst L, et al. Glioblastoma cells release factors that disrupt blood-brain barrier features. Acta Neuropathol (Berl). 2004;107(3):272–276.
  • Wolburg H, Noell S, Fallier-Becker P, et al. The disturbed blood-brain barrier in human glioblastoma. Mol Aspects Med. 2012;33(5–6):579–589.
  • De Lange ECM. Potential role of ABC transporters as a detoxification system at the blood-CSF barrier. Adv Drug Deliv Rev. 2004;56(12):1793–1809.
  • Pardridge WM. Drug transport in brain via the cerebrospinal fluid. Fluids Barriers CNS. 2011;8(1):7.
  • Patel N, Kirmi O. Anatomy and imaging of the normal meninges. Semin Ultrasound CT MR. 2009;30(6):559–564.
  • Jacus MO, Daryani VM, Harstead KE, et al. Pharmacokinetic properties of anticancer agents for the treatment of central nervous system tumors: update of the literature. Clin Pharmacokinet. 2015;55(3):297–311.
  • Newton HB. Neurological complications of chemotherapy to the central nervous system. Handb Clin Neurol. 2012;105:903–916.
  • Cherubini GB, Platt S. Neurological complications of chemotherapy. Companion Anim. 2008;13(5):76–82.
  • Taal W, Oosterkamp HM, Walenkamp AME, et al. Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial. Lancet Oncol. 2014;15(9):943–953.
  • Brem H, Piantadosi S, Burger PC, et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The polymer-brain tumor treatment group. Lancet. 1995;345(8956):1008–1012.
  • Imbesi F, Marchioni E, Benericetti E, et al. A randomized phase III study: comparison between intravenous and intraarterial ACNU administration in newly diagnosed primary glioblastomas. Anticancer Res. 2006;26(1B):553–558.
  • Kochii M, Kitamura I, Goto T, et al. Randomized comparison of intra-arterial versus intravenous infusion of ACNU for newly diagnosed patients with glioblastoma. J Neurooncol. 2000;49(1):63–70.
  • Brada M, Hoang-Xuan K, Rampling R, et al. Multicenter phase II trial of temozolomide in patients with glioblastoma multiforme at first relapse. Ann Oncol Off J Eur Soc Med Oncol ESMO. 2001;12(2):259–266.
  • Malmström A, Grønberg BH, Marosi C, et al. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol. 2012;13(9):916–926.
  • Paulsen F, Hoffmann W, Becker G, et al. Chemotherapy in the treatment of recurrent glioblastoma multiforme: ifosfamide versus temozolomide. J Cancer Res Clin Oncol. 1999;125(7):411–418.
  • Luyendijk W, Van Beusekom GT. Chemotherapy of cerebral gliomas with intra-carotid methotrexate-infusion. Acta Neurochir (Wien). 1966;15(3):234–248.
  • Healy AT, Vogelbaum MA. Convection-enhanced drug delivery for gliomas. Surg Neurol Int. 2015;6(Suppl 1):S59–67.
  • Bruce JN, Fine RL, Canoll P, et al. Regression of recurrent malignant gliomas with convection-enhanced delivery of topotecan. Neurosurgery. 2011;69(6):1272-1279-1280.
  • Macdonald D, Cairncross G, Stewart D, et al. Phase II study of topotecan in patients with recurrent malignant glioma. National Clinical Institute of Canada Clinical Trials Group. Ann Oncol Off J Eur Soc Med Oncol ESMO. 1996;7(2):205–207.
  • Fulton D, Urtasun R, Forsyth P. Phase II study of prolonged oral therapy with etoposide (VP16) for patients with recurrent malignant glioma. J Neurooncol. 1996;27(2):149–155.
  • Friedman HS, Petros WP, Friedman AH, et al. Irinotecan therapy in adults with recurrent or progressive malignant glioma. J Clin Oncol Off J Am Soc Clin Oncol. 1999;17(5):1516–1525.
  • Prados MD, Lamborn K, Yung WKA, et al. A phase 2 trial of irinotecan (CPT-11) in patients with recurrent malignant glioma: a North American Brain Tumor Consortium study. Neuro Oncol. 2006;8(2):189–193.
  • Turner CD, Gururangan S, Eastwood J, et al. Phase II study of irinotecan (CPT-11) in children with high-risk malignant brain tumors: the Duke experience. Neuro Oncol. 2002;4(2):102–108.
  • Cloughesy TF, Gobin YP, Black KL, et al. Intra-arterial carboplatin chemotherapy for brain tumors: a dose escalation study based on cerebral blood flow. J Neurooncol. 1997;35(2):121–131.
  • Prados MD, Warnick RE, Mack EE, et al. Intravenous carboplatin for recurrent gliomas. A dose-escalating phase II trial. Am J Clin Oncol. 1996;19(6):609–612.
  • Stewart DJ, Belanger JM, Grahovac Z, et al. Phase I study of intracarotid administration of carboplatin. Neurosurgery. 1992;30(4):512-516-517.
  • Fabel K, Dietrich J, Hau P, et al. Long-term stabilization in patients with malignant glioma after treatment with liposomal doxorubicin. Cancer. 2001;92(7):1936–1942.
  • Oliver AS, Firth G, McKeran RO. Studies on the intracerebral injection of vincristine free and entrapped within liposomes in the rat. J Neurol Sci. 1985;68(1):25–30.
  • Yung WK, Albright RE, Olson J, et al. A phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse. Br J Cancer. 2000;83(5):588–593.
  • Chamberlain MC, Kormanik P. Salvage chemotherapy with paclitaxel for recurrent primary brain tumors. J Clin Oncol Off J Am Soc Clin Oncol. 1995;13(8):2066–2071.
  • Lidar Z, Mardor Y, Jonas T, et al. Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase I/II clinical study. J Neurosurg. 2004;100(3):472–479.
  • Postma TJ, Heimans JJ, Luykx SA, et al. A phase II study of paclitaxel in chemonaïve patients with recurrent high-grade glioma. Ann Oncol Off J Eur Soc Med Oncol ESMO. 2000;11(4):409–413.
  • Fabrini MG, Silvano G, Lolli I, et al. A multi-institutional phase II study on second-line Fotemustine chemotherapy in recurrent glioblastoma. J Neurooncol. 2009;92(1):79–86.
  • Khayat D, Giroux B, Berille J, et al. Fotemustine in the treatment of brain primary tumors and metastases. Cancer Invest. 1994;12(4):414–420.
  • Pennese E, Vergine C, Matera R, et al. Complete response induced by fotemustine given as single agent in a patient with primary central nervous system non-Hodgkin aggressive lymphoma relapsed after high-dose chemotherapy and autologous stem cell support. Leuk Lymphoma. 2011;52(11):2188–2189.
  • Tranchand B, Lucas C, Biron P, et al. Phase I pharmacokinetics study of high-dose fotemustine and its metabolite 2-chloroethanol in patients with high-grade gliomas. Cancer Chemother Pharmacol. 1993;32(1):46–52.
  • Dirven L, van den Bent MJ, Bottomley A, et al. The impact of bevacizumab on health-related quality of life in patients treated for recurrent glioblastoma: results of the randomised controlled phase 2 BELOB trial. Eur J Cancer Oxf Engl 1990. 2015;51(10):1321–1330.
  • Friedman HS, Prados MD, Wen PY, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(28):4733–4740.
  • Kreisl TN, Kim L, Moore K, et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(5):740–745.
  • Nagane M, Nishikawa R, Narita Y, et al. Phase II study of single-agent bevacizumab in Japanese patients with recurrent malignant glioma. Jpn J Clin Oncol. 2012;42(10):887–895.
  • Patchell RA, Regine WF, Ashton P, et al. A phase I trial of continuously infused intratumoral bleomycin for the treatment of recurrent glioblastoma multiforme. J Neurooncol. 2002;60(1):37–42.
  • Dresemann G, Weller M, Rosenthal MA, et al. Imatinib in combination with hydroxyurea versus hydroxyurea alone as oral therapy in patients with progressive pretreated glioblastoma resistant to standard dose temozolomide. J Neurooncol. 2010;96(3):393–402.
  • Forsyth P, Cairncross G, Stewart D, et al. Phase II trial of docetaxel in patients with recurrent malignant glioma: a study of the National Cancer Institute of Canada Clinical Trials Group. Invest New Drugs. 1996;14(2):203–206.
  • Sanson M, Napolitano M, Yaya R, et al. Second line chemotherapy with docetaxel in patients with recurrent malignant glioma: a phase II study. J Neurooncol. 2000;50(3):245–249.
  • Zwerdling T, Krailo M, Monteleone P, et al. Phase II investigation of docetaxel in pediatric patients with recurrent solid tumors: a report from the Children’s Oncology Group. Cancer. 2006;106(8):1821–1828.
  • Hassan M, Ehrsson H, Wallin I, et al. Pharmacokinetic and metabolic studies of busulfan in rat plasma and brain. Eur J Drug Metab Pharmacokinet. 1988;13(4):301–305.
  • Hassan M, Ehrsson H, Smedmyr B, et al. Cerebrospinal fluid and plasma concentrations of busulfan during high-dose therapy. Bone Marrow Transplant. 1989;4(1):113–114.
  • Hassan M, Hassan Z, Nilsson C, et al. Pharmacokinetics and distribution of liposomal busulfan in the rat: a new formulation for intravenous administration. Cancer Chemother Pharmacol. 1998;42(6):471–478.
  • Vassal G, Gouyette A, Hartmann O, et al. Pharmacokinetics of high-dose busulfan in children. Cancer Chemother Pharmacol. 1989;24(6):386–390.
  • Heideman RL, Cole DE, Balis F, et al. Phase I and pharmacokinetic evaluation of thiotepa in the cerebrospinal fluid and plasma of pediatric patients: evidence for dose-dependent plasma clearance of thiotepa. Cancer Res. 1989;49(3):736–741.
  • Strong JM, Collins JM, Lester C, et al. Pharmacokinetics of intraventricular and intravenous N,N’,N”-triethylenethiophosphoramide (thiotepa) in rhesus monkeys and humans. Cancer Res. 1986;46(12 Pt 1):6101–6104.
  • Castronovo FP, Potsaid MS, Kopiwoda S. Formulation and biological distribution of radiolabeled 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea in an animal tumor model. Cancer Res. 1980;40(10):3473–3474.
  • Levin VA. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem. 1980;23(6):682–684.
  • Luco JM. Prediction of the brain-blood distribution of a large set of drugs from structurally derived descriptors using partial least-squares (PLS) modeling. J Chem Inf Comput Sci. 1999;39(2):396–404.
  • Wei K-C, Chu P-C, Wang H-YJ, et al. Focused ultrasound-induced blood-brain barrier opening to enhance temozolomide delivery for glioblastoma treatment: a preclinical study. PloS One. 2013;8(3):e58995.
  • Goldwirt L, Beccaria K, Carpentier A, et al. Irinotecan and temozolomide brain distribution: a focus on ABCB1. Cancer Chemother Pharmacol. 2014;74(1):185–193.
  • Ostermann S, Csajka C, Buclin T, et al. Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10(11):3728–3736.
  • Patel M, McCully C, Godwin K, et al. Plasma and cerebrospinal fluid pharmacokinetics of intravenous temozolomide in non-human primates. J Neurooncol. 2003;61(3):203–207.
  • Portnow J, Badie B, Chen M, et al. The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: potential implications for the current approach to chemoradiation. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15(22):7092–7098.
  • Reyderman L, Statkevich P, Thonoor CM, et al. Disposition and pharmacokinetics of temozolomide in rat. Xenobiotica Fate Foreign Compd Biol Syst. 2004;34(5):487–500.
  • Zhou Q, Gallo JM. Differential effect of sunitinib on the distribution of temozolomide in an orthotopic glioma model. Neuro Oncol. 2009;11(3):301–310.
  • Zhou Q, Guo P, Wang X, et al. Preclinical pharmacokinetic and pharmacodynamic evaluation of metronomic and conventional temozolomide dosing regimens. J Pharmacol Exp Ther. 2007;321(1):265–275.
  • Zhou Q, Guo P, Kruh GD, et al. Predicting human tumor drug concentrations from a preclinical pharmacokinetic model of temozolomide brain disposition. Clin Cancer Res Off J Am Assoc Cancer Res. 2007;13(14):4271–4279.
  • Ettinger LJ, Chervinsky DS, Freeman AI, et al. Pharmacokinetics of methotrexate following intravenous and intraventricular administration in acute lymphocytic leukemia and non-Hodgkin’s lymphoma. Cancer. 1982;50(9):1676–1682.
  • Evans WE, Hutson PR, Stewart CF, et al. Methotrexate cerebrospinal fluid and serum concentrations after intermediate-dose methotrexate infusion. Clin Pharmacol Ther. 1983;33(3):301–307.
  • Heideman RL, Balis FM, Zimm S, et al. The effect of amitriptyline on the central nervous system penetration of methotrexate. Cancer Drug Deliv. 1986;3(4):219–222.
  • Lippens RJ, Winograd B. Methotrexate concentration levels in the cerebrospinal fluid during high-dose methotrexate infusions: an unreliable prediction. Pediatr Hematol Oncol. 1988;5(2):115–124.
  • Morse M, Savitch J, Balis F, et al. Altered central nervous system pharmacology of methotrexate in childhood leukemia: another sign of meningeal relapse. J Clin Oncol Off J Am Soc Clin Oncol. 1985;3(1):19–24.
  • Slørdal L, Jaeger R, Kjaeve J, et al. Pharmacokinetics of 7-hydroxy-methotrexate and methotrexate in the rat. Pharmacol Toxicol. 1988;63(2):81–84.
  • Thyss A, Milano G, Deville A, et al. Effect of dose and repeat intravenous 24 hr infusions of methotrexate on cerebrospinal fluid availability in children with hematological malignancies. Eur J Cancer Clin Oncol. 1987;23(6):843–847.
  • Westerhout J, Van Den Berg D-J, Hartman R, et al. Prediction of methotrexate CNS distribution in different species - influence of disease conditions. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2014;57:11–24.
  • Baker SD, Heideman RL, Crom WR, et al. Cerebrospinal fluid pharmacokinetics and penetration of continuous infusion topotecan in children with central nervous system tumors. Cancer Chemother Pharmacol. 1996;37(3):195–202.
  • Blaney SM, Cole DE, Balis FM, et al. Plasma and cerebrospinal fluid pharmacokinetic study of topotecan in nonhuman primates. Cancer Res. 1993;53(4):725–727.
  • Morgan RJ, Synold T, Mamelak A, et al. Plasma and cerebrospinal fluid pharmacokinetics of topotecan in a phase I trial of topotecan, tamoxifen, and carboplatin, in the treatment of recurrent or refractory brain or spinal cord tumors. Cancer Chemother Pharmacol. 2010;66(5):927–933.
  • Straathof CS, van den Bent MJ, Loos WJ, et al. The accumulation of topotecan in 9L glioma and in brain parenchyma with and without dexamethasone administration. J Neurooncol. 1999;42(2):117–122.
  • Sung C, Blaney SM, Cole DE, et al. A pharmacokinetic model of topotecan clearance from plasma and cerebrospinal fluid. Cancer Res. 1994;54(19):5118–5122.
  • Zamboni WC, Lüftner DI, Egorin MJ, et al. The effect of increasing topotecan infusion from 30 minutes to 4 hours on the duration of exposure in cerebrospinal fluid. Ann Oncol Off J Eur Soc Med Oncol ESMO. 2001;12(1):119–122.
  • DeGregorio MW, King OY, Holleran WM, et al. Ultrafiltrate and total platinum in plasma and cerebrospinal fluid in a patient with neuroblastoma. Cancer Treat Rep. 1985;69(12):1441–1442.
  • Jacobs S, McCully CL, Murphy RF, et al. Extracellular fluid concentrations of cisplatin, carboplatin, and oxaliplatin in brain, muscle, and blood measured using microdialysis in nonhuman primates. Cancer Chemother Pharmacol. 2010;65(5):817–824.
  • Jacobs SS, Fox E, Dennie C, et al. Plasma and cerebrospinal fluid pharmacokinetics of intravenous oxaliplatin, cisplatin, and carboplatin in nonhuman primates. Clin Cancer Res Off J Am Assoc Cancer Res. 2005;11(4):1669–1674.
  • Straathof CS, van den Bent MJ, Ma J, et al. The effect of dexamethasone on the uptake of cisplatin in 9L glioma and the area of brain around tumor. J Neurooncol. 1998;37(1):1–8.
  • Burgio DE, Gosland MP, McNamara PJ. Modulation effects of cyclosporine on etoposide pharmacokinetics and CNS distribution in the rat utilizing microdialysis. Biochem Pharmacol. 1996;51(7):987–992.
  • Burgio DE, Gosland MP. McNamara aPJ null. Effects of P-glycoprotein modulators on etoposide elimination and central nervous system distribution. J Pharmacol Exp Ther. 1998;287(3):911–917.
  • Hande KR, Wedlund PJ, Noone RM, et al. Pharmacokinetics of high-dose etoposide (VP-16-213) administered to cancer patients. Cancer Res. 1984;44(1):379–382.
  • Relling MV, Mahmoud HH, Pui CH, et al. Etoposide achieves potentially cytotoxic concentrations in CSF of children with acute lymphoblastic leukemia. J Clin Oncol Off J Am Soc Clin Oncol. 1996;14(2):399–404.
  • Zucchetti M, Rossi C, Knerich R, et al. Concentrations of VP16 and VM26 in human brain tumors. Ann Oncol Off J Eur Soc Med Oncol ESMO. 1991;2(1):63–66.
  • Blaney SM, Takimoto C, Murry DJ, et al. Plasma and cerebrospinal fluid pharmacokinetics of 9-aminocamptothecin (9-AC), irinotecan (CPT-11), and SN-38 in nonhuman primates. Cancer Chemother Pharmacol. 1998;41(6):464–468.
  • Goldwirt L, Canney M, Horodyckid C, et al. Enhanced brain distribution of carboplatin in a primate model after blood-brain barrier disruption using an implantable ultrasound device. Cancer Chemother Pharmacol. 2015;77(1):211–216.
  • van Asperen J, van Tellingen O, Tijssen F, et al. Increased accumulation of doxorubicin and doxorubicinol in cardiac tissue of mice lacking mdr1a P-glycoprotein. Br J Cancer. 1999;79(1):108–113.
  • Garberg P, Ball M, Borg N, et al. In vitro models for the blood-brain barrier. Toxicol Vitro Int J Publ Assoc BIBRA. 2005;19(3):299–334.
  • Greig NH, Soncrant TT, Shetty HU, et al. Brain uptake and anticancer activities of vincristine and vinblastine are restricted by their low cerebrovascular permeability and binding to plasma constituents in rat. Cancer Chemother Pharmacol. 1990;26(4):263–268.
  • Boyle FM, Eller SL, Grossman SA. Penetration of intra-arterially administered vincristine in experimental brain tumor. Neuro-Oncol. 2004;6(4):300–305.
  • Kellie SJ, Barbaric D, Koopmans P, et al. Cerebrospinal fluid concentrations of vincristine after bolus intravenous dosing: a surrogate marker of brain penetration. Cancer. 2002;94(6):1815–1820.
  • Van Prooijen HC, Punt K, Muus P. Cerebrospinal fluid concentrations of cytosine arabinoside during intravenous therapy with intermediate dose: a preliminary report. Br J Haematol. 1985;59(1):188–190.
  • Slevin ML, Piall EM, Aherne GW, et al. The pharmacokinetics of cytosine arabinoside in the plasma and cerebrospinal fluid during conventional and high-dose therapy. Med Pediatr Oncol. 1982;10(Suppl 1):157–168.
  • Wolff JE, Trilling T, Mölenkamp G, et al. Chemosensitivity of glioma cells in vitro: a meta analysis. J Cancer Res Clin Oncol. 1999;125(8–9):481–486.
  • Eiseman JL, Eddington ND, Leslie J, et al. Plasma pharmacokinetics and tissue distribution of paclitaxel in CD2F1 mice. Cancer Chemother Pharmacol. 1994;34(6):465–471.
  • Heimans JJ, Vermorken JB, Wolbers JG, et al. Paclitaxel (Taxol) concentrations in brain tumor tissue. Ann Oncol Off J Eur Soc Med Oncol ESMO. 1994;5(10):951–953.
  • Hendrikx JJMA, Lagas JS, Wagenaar E, et al. Oral co-administration of elacridar and ritonavir enhances plasma levels of oral paclitaxel and docetaxel without affecting relative brain accumulation. Br J Cancer. 2014;110(11):2669–2676.
  • Arndt CA, Balis FM, McCully CL, et al. Cerebrospinal fluid penetration of active metabolites of cyclophosphamide and ifosfamide in rhesus monkeys. Cancer Res. 1988;48(8):2113–2115.
  • Creaven PJ, Allen LM, Alford DA, et al. Clinical pharmacology of isophosphamide. Clin Pharmacol Ther. 1974;16(1):77–86.
  • Ninane J, Baurain R, De Kraker J, et al. Alkylating activity in serum, urine, and CSF following high-dose ifosfamide in children. Cancer Chemother Pharmacol. 1989;24(Suppl 1):S2–6. discussion S7
  • Walker EJ, Su H, Shen F, et al. Bevacizumab attenuates VEGF-induced angiogenesis and vascular malformations in the adult mouse brain. Stroke J Cereb Circ. 2012;43(7):1925–1930.
  • Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548–558.
  • Chiang M-H, Chang L-W, Wang J-W, et al. Herb-drug pharmacokinetic interaction of a traditional chinese medicine jia-wei-xiao-yao-san with 5-Fluorouracil in the blood and brain of rat using microdialysis. Evid.-Based Complement Altern Med ECAM. 2015;729679:2015.
  • Hornbeck CL, Floyd RA, Byfield JE, et al. Cerebrospinal fluid versus serum concentrations of 5-FU, allopurinol, and oxypurinol during treatment of metastatic brain cancer with 5-FU infusion, allopurinol, and radiation. Cancer Treat Rep. 1982;66(3):571–573.
  • Kerr IG, Zimm S, Collins JM, et al. Effect of intravenous dose and schedule on cerebrospinal fluid pharmacokinetics of 5-fluorouracil in the monkey. Cancer Res. 1984;44(11):4929–4932.
  • Dogruel M, Gibbs JE, Thomas SA. Hydroxyurea transport across the blood-brain and blood-cerebrospinal fluid barriers of the guinea-pig. J Neurochem. 2003;87(1):76–84.
  • Gwilt PR, Manouilov KK, McNabb J, et al. Pharmacokinetics of hydroxyurea in plasma and cerebrospinal fluid of HIV-1-infected patients. J Clin Pharmacol. 2003;43(9):1003–1007.
  • Navarra P, Del Carmine R, Ciabattoni G, et al. Hydroxyurea: relationship between toxicity and centrally-induced adrenal activation. Pharmacol Toxicol. 1990;67(3):209–215.
  • Kemper EM, Verheij M, Boogerd W, et al. Improved penetration of docetaxel into the brain by co-administration of inhibitors of P-glycoprotein. Eur J Cancer Oxf Engl. 2004;40(8):1269–1274.
  • Ten Tije AJ, Loos WJ, Zhao M, et al. Limited cerebrospinal fluid penetration of docetaxel. Anticancer Drugs. 2004;15(7):715–718.
  • Li C-M, Lu Y, Chen J, et al. Orally bioavailable tubulin antagonists for paclitaxel-refractory cancer. Pharm Res. 2012;29(11):3053–3063.
  • Breithaupt H, Pralle H, Eckhardt T, et al. Clinical results and pharmacokinetics of high-dose cytosine arabinoside (HD ARA-C). Cancer. 1982;50(7):1248–1257.
  • DeAngelis LM, Kreis W, Chan K, et al. Pharmacokinetics of ara-C and ara-U in plasma and CSF after high-dose administration of cytosine arabinoside. Cancer Chemother Pharmacol. 1992;29(3):173–177.
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1–3):3–26.
  • Lanevskij K, Japertas P, Didziapetris R. Improving the prediction of drug disposition in the brain. Expert Opin Drug Metab Toxicol. 2013;9(4):473–486.
  • Van Nifterik KA, Van Den Berg J, Van Der Meide WF, et al. Absence of the MGMT protein as well as methylation of the MGMT promoter predict the sensitivity for temozolomide. Br J Cancer. 2010;103(1):29–35.
  • Tomita T. Interstitial chemotherapy for brain tumors: review. J Neurooncol. 1991;10(1):57–74.
  • Stone JB, DeAngelis LM. Cancer-treatment-induced neurotoxicity–focus on newer treatments. Nat Rev Clin Oncol. 2016;13(2):92–105.
  • Hassenbusch SJ, Nardone EM, Levin VA, et al. Stereotactic injection of DTI-015 into recurrent malignant gliomas: phase I/II trial. Neoplasia N Y N. 2003;5(1):9–16.
  • Tator CH, Day A, Ng R, et al. Chemotherapy of an experimental glioma with nitrosoureas. Cancer Res. 1977;37(2):476–481.
  • Ommaya AK. Subcutaneous reservoir and pump for sterile access to ventricular cerebrospinal fluid. Lancet. 1963;2(7315):983–984.
  • Kroll RA, Pagel MA, Muldoon LL, et al. Increasing volume of distribution to the brain with interstitial infusion: dose, rather than convection, might be the most important factor. Neurosurgery. 1996;38(4):746-752-754.
  • Sampson JH, Brady ML, Petry NA, et al. Intracerebral infusate distribution by convection-enhanced delivery in humans with malignant gliomas: descriptive effects of target anatomy and catheter positioning. Neurosurgery. 2007;60(2 Suppl 1):ONS89-98; discussion ONS98-99.
  • Tanner PG, Holtmannspötter M, Tonn J-C, Goldbrunner R. Effects of drug efflux on convection-enhanced paclitaxel delivery to malignant gliomas: technical note. Neurosurgery. 2007;61(4):E880–882. discussion E882
  • Kroin JS, Penn RD. Intracerebral chemotherapy: chronic microinfusion of cisplatin. Neurosurgery. 1982;10(3):349–354.
  • Barua NU, Hopkins K, Woolley M, et al. A novel implantable catheter system with transcutaneous port for intermittent convection-enhanced delivery of carboplatin for recurrent glioblastoma. Drug Deliv. 2016;23(1):167–173.
  • Kerr JZ, Berg S, Blaney SM. Intrathecal chemotherapy. Crit Rev Oncol Hematol. 2001;37(3):227–236.
  • Qweider M, Gilsbach JM, Rohde V. Inadvertent intrathecal vincristine administration: a neurosurgical emergency. Case report. J Neurosurg Spine. 2007;6(3):280–283.
  • Saiki JH, Thompson S, Smith F, et al. Paraplegia following intrathecal chemotherapy. Cancer. 1972;29(2):370–374.
  • Brem H, Mahaley MS, Vick NA, et al. Interstitial chemotherapy with drug polymer implants for the treatment of recurrent gliomas. J Neurosurg. 1991;74(3):441–446.
  • Perry J, Chambers A, Spithoff K, et al. Gliadel wafers in the treatment of malignant glioma: a systematic review. Curr Oncol Tor Ont. 2007;14(5):189–194.
  • Subach BR, Witham TF, Kondziolka D, et al. Morbidity and survival after 1,3-bis(2-chloroethyl)-1-nitrosourea wafer implantation for recurrent glioblastoma: a retrospective case-matched cohort series. Neurosurgery. 1999;45(1):17-22-23.
  • Olivi A, Grossman SA, Tatter S, et al. Dose escalation of carmustine in surgically implanted polymers in patients with recurrent malignant glioma: a New Approaches to Brain Tumor Therapy CNS Consortium trial. J Clin Oncol Off J Am Soc Clin Oncol. 2003;21(9):1845–1849.
  • Engelhard HH. Tumor bed cyst formation after BCNU wafer implantation: report of two cases. Surg Neurol. 2000;53(3):220–224.
  • Weber EL, Goebel EA. Cerebral edema associated with Gliadel wafers: two case studies. Neuro Oncol. 2005;7(1):84–89.
  • Fung LK, Shin M, Tyler B, et al. Chemotherapeutic drugs released from polymers: distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea in the rat brain. Pharm Res. 1996;13(5):671–682.
  • Fung LK, Ewend MG, Sills A, et al. Pharmacokinetics of interstitial delivery of carmustine, 4-hydroperoxycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain. Cancer Res. 1998;58(4):672–684.
  • Akbar U, Jones T, Winestone J, et al. Delivery of temozolomide to the tumor bed via biodegradable gel matrices in a novel model of intracranial glioma with resection. J Neurooncol. 2009;94(2):203–212.
  • Elstad NL, Fowers KD. OncoGel (ReGel/paclitaxel)–clinical applications for a novel paclitaxel delivery system. Adv Drug Deliv Rev. 2009;61(10):785–794.
  • Kim GY, Tyler BM, Tupper MM, et al. Resorbable polymer microchips releasing BCNU inhibit tumor growth in the rat 9L flank model. J Control Release Off J Control Release Soc. 2007;123(2):172–178.
  • Li KW, Dang W, Tyler BM, et al. Polilactofate microspheres for Paclitaxel delivery to central nervous system malignancies. Clin Cancer Res Off J Am Assoc Cancer Res. 2003;9(9):3441–3447.
  • Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2000;11(1):1–18.
  • Sakane T, Yamashita S, Yata N, et al. Transnasal delivery of 5-Fluorouracil to the brain in the rat. J Drug Target. 1999;7(3):233–240.
  • Shingaki T, Inoue D, Furubayashi T, et al. Transnasal delivery of methotrexate to brain tumors in rats: a new strategy for brain tumor chemotherapy. Mol Pharm. 2010;7(5):1561–1568.
  • Bay J-O, Jacques-Olivier B, Linassier C, et al. Does high-dose carmustine increase overall survival in supratentorial high-grade malignant glioma? An EBMT retrospective study. Int J Cancer J Int Cancer. 2007;120(8):1782–1786.
  • Grill J, Kalifa C, Doz F, et al. A high-dose busulfan-thiotepa combination followed by autologous bone marrow transplantation in childhood recurrent ependymoma. Phase-Ii Study Pediatr Neurosurg. 1996;25(1):7–12.
  • Valteau-Couanet D, Fillipini B, Benhamou E, et al. High-dose busulfan and thiotepa followed by autologous stem cell transplantation (ASCT) in previously irradiated medulloblastoma patients: high toxicity and lack of efficacy. Bone Marrow Transplant. 2005;36(11):939–945.
  • Armstrong TS, Wefel JS, Wang M, et al. Net clinical benefit analysis of radiation therapy oncology group 0525: a phase III trial comparing conventional adjuvant temozolomide with dose-intensive temozolomide in patients with newly diagnosed glioblastoma. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(32):4076–4084.
  • Gilbert MR, Wang M, Aldape KD, et al. Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(32):4085–4091.
  • Massimino M, Gandola L, Luksch R, et al. Sequential chemotherapy, high-dose thiotepa, circulating progenitor cell rescue, and radiotherapy for childhood high-grade glioma. Neuro Oncol. 2005;7(1):41–48.
  • Nakagawa H, Fujita T, Izumoto S, et al. cis-diamminedichloroplatinum (CDDP) therapy for brain metastasis of lung cancer. I. Distribution within the central nervous system after intravenous and intracarotid infusion. J Neurooncol. 1993;16(1):61–67.
  • Savaraj N, Lu K, Feun LG, et al. Comparison of CNS penetration, tissue distribution, and pharmacology of VP 16-213 by intracarotid and intravenous administration in dogs. Cancer Invest. 1987;5(1):11–16.
  • Neuwelt EA, Barnett PA, McCormick CI, et al. Differential permeability of a human brain tumor xenograft in the nude rat: impact of tumor size and method of administration on optimizing delivery of biologically diverse agents. Clin Cancer Res Off J Am Assoc Cancer Res. 1998;4(6):1549–1555.
  • Tyler JL, Yamamoto YL, Diksic M, et al. Pharmacokinetics of superselective intra-arterial and intravenous [11C]BCNU evaluated by PET. J Nucl Med Off Publ Soc Nucl Med. 1986;27(6):775–780.
  • Chauveinc L, Sola-Martinez MT, Martin-Duverneuil M, et al. Intra arterial chemotherapy with ACNU and radiotherapy in inoperable malignant gliomas. J Neurooncol. 1996;27(2):141–147.
  • Hirano Y, Mineura K, Mizoi K, et al. Therapeutic results of intra-arterial chemotherapy in patients with malignant glioma. Int J Oncol. 1998;13(3):537–542.
  • Poisson M, Chiras J, Fauchon F, et al. [Treatment of supratentorial glioma in adults by intra-arterial HECNU. Experience of the Pitié-Salpétrière group]. Rev Neurol (Paris). 1992;148(6–7):441–447.
  • Roosen N, Lins E, Kiwit JC, et al. Intra-arterial chemotherapy with ACNU for the treatment of glioblastoma. Preliminary experience. Acta Radiol Suppl. 1986;369:220–222.
  • Vega F, Davila L, Chatellier G, et al. Treatment of malignant gliomas with surgery, intraarterial chemotherapy with ACNU and radiation therapy. J Neurooncol. 1992;13(2):131–135.
  • Bankstahl JP, Bankstahl M, Römermann K, et al. Tariquidar and elacridar are dose-dependently transported by P-glycoprotein and Bcrp at the blood-brain barrier: a small-animal positron emission tomography and in vitro study. Drug Metab Dispos Biol Fate Chem. 2013;41(4):754–762.
  • Fox E, Bates SE. Tariquidar (XR9576): a P-glycoprotein drug efflux pump inhibitor. Expert Rev Anticancer Ther. 2007;7(4):447–459.
  • International Transporter Consortium, Giacomini KM, Huang SM, et al. Membrane transporters in drug development. Nat Rev Drug Discov 2010;9(3):215–236.
  • Kemper EM, Cleypool C, Boogerd W, et al. The influence of the P-glycoprotein inhibitor zosuquidar trihydrochloride (LY335979) on the brain penetration of paclitaxel in mice. Cancer Chemother Pharmacol. 2004;53(2):173–178.
  • Kemper EM, Van Zandbergen AE, Cleypool C, et al. Increased penetration of paclitaxel into the brain by inhibition of P-Glycoprotein. Clin Cancer Res Off J Am Assoc Cancer Res. 2003;9(7):2849–2855.
  • Fellner S, Bauer B, Miller DS, et al. Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J Clin Invest. 2002;110(9):1309–1318.
  • Drion N, Lemaire M, Lefauconnier JM, et al. Role of P-glycoprotein in the blood-brain transport of colchicine and vinblastine. J Neurochem. 1996;67(4):1688–1693.
  • Hughes CS, Vaden SL, Manaugh CA, et al. Modulation of doxorubicin concentration by cyclosporin A in brain and testicular barrier tissues expressing P-glycoprotein in rats. J Neurooncol. 1998;37(1):45–54.
  • Warren KE, Patel MC, McCully CM, et al. Effect of P-glycoprotein modulation with cyclosporin A on cerebrospinal fluid penetration of doxorubicin in non-human primates. Cancer Chemother Pharmacol. 2000;45(3):207–212.
  • Asadi-Pooya AA, Razavizadegan SMA, Abdi-Ardekani A, et al. Adjunctive use of verapamil in patients with refractory temporal lobe epilepsy: a pilot study. Epilepsy Behav EB. 2013;29(1):150–154.
  • Choo EF, Kurnik D, Muszkat M, et al. Differential in vivo sensitivity to inhibition of P-glycoprotein located in lymphocytes, testes, and the blood-brain barrier. J Pharmacol Exp Ther. 2006;317(3):1012–1018.
  • Mason WP. Blood-brain barrier-associated efflux transporters: a significant but underappreciated obstacle to drug development in glioblastoma. Neuro Oncol. 2015;17(9):1181–1182.
  • Hollis PH, Zappulla RA, Spigelman MK, et al. Physiological and electrophysiological consequences of etoposide-induced blood-brain barrier disruption. Neurosurgery. 1986;18(5):581–586.
  • Sardi I. Morphine facilitates doxorubicin penetration in the central nervous system: a new prospect for therapy of brain tumors. J Neurooncol. 2011;104(2):619–620.
  • Cao Y, Tsien CI, Shen Z, et al. Use of magnetic resonance imaging to assess blood-brain/blood-glioma barrier opening during conformal radiotherapy. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(18):4127–4136.
  • Rapoport SI, Robinson PJ. Tight-junctional modification as the basis of osmotic opening of the blood-brain barrier. Ann N Y Acad Sci. 1986;481:250–267.
  • Joshi S, Ergin A, Wang M, et al. Inconsistent blood brain barrier disruption by intraarterial mannitol in rabbits: implications for chemotherapy. J Neurooncol. 2011;104(1):11–19.
  • Rodriguez A, Tatter SB, Debinski W. Neurosurgical techniques for disruption of the blood-brain barrier for glioblastoma treatment. Pharmaceutics. 2015;7(3):175–187.
  • Neuwelt EA, Wiliams PC, Mickey BE, et al. Therapeutic dilemma of disseminated CNS germinoma and the potential of increased platinum-based chemotherapy delivery with osmotic blood-brain barrier disruption. Pediatr Neurosurg. 1994;21(1):16–22.
  • Bullard DE, Bourdon M, Bigner DD. Comparison of various methods for delivering radiolabeled monoclonal antibody to normal rat brain. J Neurosurg. 1984;61(5):901–911.
  • Gregor A, Lind M, Newman H, et al. Phase II studies of RMP-7 and carboplatin in the treatment of recurrent high grade glioma. RMP-7 European Study Group. J Neurooncol. 1999;44(2):137–145.
  • Prados MD, Schold SC, Fine HA, et al. A randomized, double-blind, placebo-controlled, phase 2 study of RMP-7 in combination with carboplatin administered intravenously for the treatment of recurrent malignant glioma. Neuro Oncol. 2003;5(2):96–103.
  • Qureshi AI, Suri MF, Khan J, et al. Superselective intra-arterial carboplatin for treatment of intracranial neoplasms: experience in 100 procedures. J Neurooncol. 2001;51(2):151–158.
  • Matsukado K, Inamura T, Nakano S, et al. Enhanced tumor uptake of carboplatin and survival in glioma-bearing rats by intracarotid infusion of bradykinin analog, RMP-7. Neurosurgery. 1996;39(1):125-133-134.
  • Vykhodtseva NI, Hynynen K, Damianou C. Histologic effects of high intensity pulsed ultrasound exposure with subharmonic emission in rabbit brain in vivo. Ultrasound Med Biol. 1995;21(7):969–979.
  • Horodyckid C, Canney M, Vignot A, et al. Safe long-term repeated disruption of the blood-brain barrier using an implantable ultrasound device : a multiparametric study in primates. J Neurosurg. 2015;10:1–11.
  • McDannold N, Vykhodtseva N, Raymond S, et al. MRI-guided targeted blood-brain barrier disruption with focused ultrasound: histological findings in rabbits. Ultrasound Med Biol. 2005;31(11):1527–1537.
  • Hynynen K, McDannold N, Sheikov NA, et al. Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. NeuroImage. 2005;24(1):12–20.
  • Beccaria K, Canney M, Goldwirt L, et al. Ultrasound-induced opening of the blood-brain barrier to enhance temozolomide and irinotecan delivery: an experimental study in rabbits. J Neurosurg. 2015;124(6):1602–1610.
  • McDannold N, Clement GT, Black P, et al. Transcranial magnetic resonance imaging- guided focused ultrasound surgery of brain tumors: initial findings in 3 patients. Neurosurgery. 2010;66(2):323–332. discussion 332
  • McDannold N, Arvanitis CD, Vykhodtseva N, et al. Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques. Cancer Res. 2012;72(14):3652–3663.
  • Birngruber T, Raml R, Gladdines W, et al. Enhanced doxorubicin delivery to the brain administered through glutathione PEGylated liposomal doxorubicin (2B3-101) as compared with generic Caelyx,(®)/Doxil(®)–a cerebral open flow microperfusion pilot study. J Pharm Sci. 2014;103(7):1945–1948.
  • Gaillard PJ, Appeldoorn CCM, Dorland R, et al. Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PloS One. 2014;9(1):e82331.
  • Bradley MO, Webb NL, Anthony FH, et al. Tumor targeting by covalent conjugation of a natural fatty acid to paclitaxel. Clin Cancer Res Off J Am Assoc Cancer Res. 2001;7(10):3229–3238.
  • Lajoie JM, Shusta EV. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol. 2015;55:613–631.
  • Zhang F, Xu C-L, Liu C-M. Drug delivery strategies to enhance the permeability of the blood-brain barrier for treatment of glioma. Drug Des Devel Ther. 2015;9:2089–2100.
  • Fan C-H, Ting C-Y, Lin H-J, et al. SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery. Biomaterials. 2013;34(14):3706–3715.
  • Thomsen LB, Thomsen MS, Moos T. Targeted drug delivery to the brain using magnetic nanoparticles. Ther Deliv. 2015;6:1145–1155.
  • Dilnawaz F, Singh A, Mewar S, et al. The transport of non-surfactant based paclitaxel loaded magnetic nanoparticles across the blood brain barrier in a rat model. Biomaterials. 2012;33(10):2936–2951.
  • Mitragotri S. Devices for overcoming biological barriers: the use of physical forces to disrupt the barriers. Adv Drug Deliv Rev. 2013;65(1):100–103.
  • Garcia PA, Rossmeisl JH, Robertson JL, et al. 7.0-T magnetic resonance imaging characterization of acute blood-brain-barrier disruption achieved with intracranial irreversible electroporation. PloS One. 2012;7(11):e50482.
  • Stupp R, Taillibert S, Kanner AA, et al. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: A randomized clinical trial. JAMA. 2015;314(23):2535–2543.
  • Rehman AA, Elmore KB, Mattei TA. The effects of alternating electric fields in glioblastoma: current evidence on therapeutic mechanisms and clinical outcomes. Neurosurg Focus. 2015;38(3):E14.
  • Stam R. Electromagnetic fields and the blood-brain barrier. Brain Res Rev. 2010;65(1):80–97.
  • Pokorny JL, Calligaris D, Gupta SK, et al. The efficacy of the wee1 inhibitor MK-1775 combined with temozolomide is limited by heterogeneous distribution across the blood–brain barrier in glioblastoma. Clin Cancer Res. 2015;21(8):1916–1924.
  • van den Bent MJ, Brandes AA, Taphoorn MJB, et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(3):344–350.
  • Cairncross G, Wang M, Shaw E, et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(3):337–343.
  • Naik P, Cucullo L. In vitro blood-brain barrier models: current and perspective technologies. J Pharm Sci. 2012;101(4):1337–1354.
  • Weksler BB, Subileau EA, Perrière N, et al. Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J Off Publ Fed Am Soc Exp Biol. 2005;19(13):1872–1874.
  • Warren MS, Zerangue N, Woodford K, et al. Comparative gene expression profiles of ABC transporters in brain microvessel endothelial cells and brain in five species including human. Pharmacol Res Off J Ital Pharmacol Soc. 2009;59(6):404–413.
  • Abbott NJ. Prediction of blood-brain barrier permeation in drug discovery from in vivo, in vitro and in silico models. Drug Discov Today Technol. 2004;1(4):407–416.
  • Sigmond J, Honeywell RJ, Postma TJ, et al. Gemcitabine uptake in glioblastoma multiforme: potential as a radiosensitizer. Ann Oncol. 2009;20(1):182–187.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.