481
Views
27
CrossRef citations to date
0
Altmetric
Review

The effect of L-dopa in Parkinson’s disease as revealed by neurophysiological studies of motor and sensory functions

, , , &
Pages 181-192 | Received 09 May 2016, Accepted 28 Jul 2016, Published online: 12 Aug 2016

References

  • Braak H, Del Tredici K, Rüb U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211.
  • Dickson DW, Braak H, Duda JE, et al. Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol. 2009;8(12):1150–1157.
  • Lees AJ, Hardy J, Revesz T. Parkinson’s disease. Lancet. 2009 Jun 13;373(9680):2055–2066.
  • DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch Neurol. 2007;64:20–24.
  • Creese I, Sibley DR, Leff S, et al. Dopamine receptors: subtypes, localization and regulation. Fed Proc. 1981;40(2):147–152.
  • Redgrave P, Rodriguez M, Smith Y, et al. Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci. 2010;11(11):760–772.
  • Calabresi P, Ghiglieri V, Mazzocchetti P, et al. Levodopa-induced plasticity: a double-edged sword in Parkinson’s disease?. Philos Trans R Soc Lond B Biol Sci. 2015;370(1672). pii:20140184.
  • Calabresi P, Picconi B, Tozzi A, et al. Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat Neurosci. 2014;17(8):1022–1030.
  • Fahn S, Oakes D, Shoulson I, et al. Levodopa and the progression of Parkinson’s disease. New Engl J Med. 2004;351(24):2498–2508.
  • Chen R, Cros D, Currà A, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol. 2008;119:504–532.
  • Berardelli A, Abbruzzese G, Chen R, et al. Consensus paper on short-interval intracortical inhibition and other transcranial magnetic stimulation intracortical paradigms in movement disorders. Brain Stim. 2008;1:183–191.
  • Suppa S, Huang YZ, Funke K, et al. Ten years of theta burst stimulation in humans: established knowledge, unknown and prospects. Brain Stimul. 2016;9:323–335.
  • Currà A, Modugno N, Inghilleri M, et al. Transcranial magnetic stimulation techniques in clinical investigation. Neurology. 2002 24;59(12):1851–1859.
  • Conte A, Khan N, Defazio G, et al. Pathophysiology of somatosensory abnormalities in Parkinson disease. Nat Rev Neurol. 2013;9:687–697.
  • Berardelli A, Rothwell JC, Thompson PD, et al. Pathophysiology of bradykinesia in Parkinson’s disease. Brain. 2001;124:2131–2146.
  • Berardelli A, Hallett M, Rothwell JC, et al. Single-joint rapid arm movements in normal subjects and in patients with motor disorders. Brain. 1996;119(Pt 2):661–674.
  • Vaillancourt DE, Prodoehl J, VerhagenMetman L, et al. Effects of deep brain stimulation and medication on bradykinesia and muscle activation in Parkinson’s disease. Brain. 2004;127(Pt 3):491–504.
  • Rafal RD, Friedman JH, Lannon MC. Preparation of manual movements in hemiparkinsonism. J Neurol Neurosurg Psychiatry. 1989;52:399–40.
  • Jackson GM, Jackson SR, Hindle JV. The control of bimanual reach-to-grasp movements in hemiparkinsonian patients. Exp Brain Res. 2000;132:390–398.
  • Castiello U, Bennett KM, Bonfiglioli C, et al. The reach-to-grasp movement in Parkinson’s disease before and after dopaminergic medication. Neuropsychologia. 2000;38(1):46–59.
  • Doana JB, Melvinc KG, Whishaw IQ, et al. Bilateral impairments of skilled reach-to-eat in early Parkinson’s disease patients presenting with unilateral or asymmetrical symptoms. Behavioural Brain Research. 2008;194:207–213.
  • Bastian AJ, Kelly VE, Perlmutter JS, et al. Effects of pallidotomy and levodopa on walking and reaching movements in Parkinson’s disease. Mov Disord. 2003;18(9):1008–1017.
  • Benecke R, Rothwell JC, Dick JP, et al. Disturbance of sequential movements in patients with Parkinson’s disease. Brain. 1987;110:361–379.
  • Stelmach GE, Worringham CJ. The control of bimanual aiming movements in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1988;51(2):223–231.
  • Castiello U, Bennett KM. The bilateral reach-to-grasp movement of Parkinson’s disease subjects. Brain. 1997;120(Pt 4):593–604.
  • Agostino R, Berardelli A, Formica A, et al. Sequential arm movements in patients with Parkinson’s disease, Huntington’s disease and dystonia. Brain. 1992;115:1481–1495.
  • Agostino R, Berardelli A, Formica A, et al. Analysis of repetitive and nonrepetitive sequential arm movements in patients with Parkinson’s disease. Mov Disord. 1994;9(3):311–314.
  • Kang SY, Wasaka T, Shamim EA. Characteristics of the sequence effect in Parkinson’s disease. Mov Disord. 2010;25(13):2148–2155.
  • Lee E, Lee JE, Yoo K, et al. Neural correlates of progressive reduction of bradykinesia in de novo Parkinson’s disease. Parkinsonism Relat Disord. 2014;20:1376–1381.
  • Wu T, Zhang J, Hallett M, et al. Neural correlates underlying micrographia in Parkinson’s disease. Brain. 2016;139:144–160.
  • Kelly VE, Bastian AJ. Antiparkinson medications improve agonist activation but not antagonist inhibition during sequential reaching movements. Mov Disord. 2005;20:694–704.
  • Agostino R, Berardelli A, Currà A, et al. Clinical impairment of sequential finger movements in Parkinson’s disease. Mov Disord. 1998;13(3):418–421.
  • Goetz CG, Fahn S, Martinez-Martin P, et al. Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): process, format, and clinimetric testing plan. Mov Disord. 2007;22:41–47.
  • Goetz CG, Tilley BC, Shaftman SR, et al. Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23:2129–2170.
  • Agostino R, Currà A, Giovannelli M, et al. Impairment of individual finger movements in Parkinson’s disease. Mov Disord. 2003;18(5):560–565.
  • Espay AJ, Beaton DE, Morgante F, et al. Impairments of speed and amplitude of movement in Parkinson’s disease: a pilot study. Mov Disord. 2009;24(7):1001–1008.
  • Espay AJ, Giuffrida JP, Chen R, et al. Differential response of speed, amplitude, and rhythm to dopaminergic medications in Parkinson’s disease. Mov Disord. 2011;26(14):2504–2508.
  • Teo WP, Rodrigues JP, Mastaglia FL, et al. Comparing kinematic changes between a finger-tapping task and unconstrained finger flexion-extension task in patients with Parkinson’s disease. Exp Brain Res. 2013;227(3):323–331.
  • Bologna M, Fabbrini G, Marsili L, et al. Facial bradykinesia. J Neurol Neurosurg Psychiatry. 2013;84(6):681–685.
  • Karson CN. Spontaneous eye-blink rates and dopaminergic systems. Brain. 1983;106:643–653.
  • Deuschl G, Goddemeier C. Spontaneous and reflex activity of facial muscles in dystonia, Parkinson’s disease, and in normal subjects. J NeurolNeurosurgPsychiatry. 1998;64:320–324.
  • Altiparmak UE, Eggenberger E, Coleman A, et al. The ratio of square wave jerk rates to blink rates distinguishes progressive supranuclear palsy from Parkinson disease. J Neuroophthalmol. 2006;26:257–259.
  • Korosec M, Zidar I, Reits D, et al. Eyelid movements during blinking in patients with Parkinson’s disease. Mov Disord. 2006;21:1248–1251.
  • Kimber TE, Thompson PD. Increased blink rate in advanced Parkinson’s disease: a form of ‘off’-period dystonia? Mov Disord. 2000;15(5):982–985.
  • Agostino R, Bologna M, Dinapoli L, et al. Voluntary, spontaneous, and reflex blinking in Parkinson’s disease. Mov Disord. 2008;15:669–675.
  • Bologna M, Fasano A, Modugno N, et al. Effects of subthalamic nucleus deep brain stimulation and L-DOPA on blinking in Parkinson’s disease. Exp Neurol. 2012;235(1):265–272.
  • Marsili L, Agostino R, Bologna M, et al. Bradykinesia of posed smiling and voluntary movement of the lower face in Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(4):370–375.
  • Caligiuri MP. Labial kinematics during speech in patients with parkinsonian rigidity. Brain. 1987;110:1033–1044.
  • Connor NP, Abbs JH, Cole KJ, et al. Parkinsonian deficits in serial multiarticulate movements for speech. Brain. 1989;112:997–1009.
  • Cruccu G, Deuschl G. The clinical use of brainstem reflexes and hand-muscle reflexes. Clin Neurophysiol. 2000;111:371–387.
  • Valls-Sole J. Assessment of excitability in brainstem circuits mediating the blink reflex and the startle reaction. Clin Neurophysiol. 2012 Jan;123(1):13–20.
  • Kimura J, Rodnitzky RL, Van Allen MW. Electrodiagnostic study of trigeminal nerve. Orbicularis oculi reflex and masseter reflex in trigeminal neuralgia, paratrigeminal syndrome, and other lesions of the trigeminal nerve. Neurology. 1970;20(6):574–583.
  • Berardelli A, Accornero N, Cruccu G, et al. The orbicularis oculi response after hemispheral damage. J Neurol Neurosurg Psychiatry. 1983;46(9):837–843.
  • Aramideh M, Ongerboer de Visser BW. Brainstem reflexes: electrodiagnostic techniques, physiology, normative data, and clinical applications. Muscle Nerve. 2002 Jul;26(1):14–30.
  • Cruccu G, Iannetti GD, Marx JJ, et al. Brainstem reflex circuits revisited. Brain. 2005;128(Pt 2):386–394.
  • Basso MA, Evinger C. An explanation for reflex blink hyperexcitability in Parkinson’s disease. II. Nucleus raphe magnus. J Neurosci. 1996;16(22):7318–7330.
  • Basso MA, Powers AS, Evinger C. An explanation for reflex blink hyperexcitability in Parkinson’s disease. I. Superior colliculus. J Neurosci. 1996;16(22):7308–7317.
  • Agostino R, Bologna M, Dinapoli L, et al. Voluntary, spontaneous, and reflex blinking in Parkinson’s disease. Mov Disord. 2008 Apr 15;23(5):669–675.
  • Rocchi L, Chiari L, Horak FB. Effects of deep brain stimulation and levodopa on postural sway in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2002;73(3):267–274.
  • Gago MF, Fernandes V, Ferreira J, et al. The effect of levodopa on postural stability evaluated by wearable inertial measurement units for idiopathic and vascular Parkinson’s disease. Gait Posture. 2015;41(2):459–464.
  • Benninger F, Khlebtovsky A, Roditi Y, et al. Beneficial effect of levodopa therapy on stooped posture in Parkinson’s disease. Gait Posture. 2015;42(3):263–268.
  • Morris M, Iansek R, McGinley J, et al. Three-dimensional gait biomechanics in Parkinson’s disease: evidence for a centrally mediated amplitude regulation disorder. Mov Disord. 2005;20(1):40–50.
  • Iansek R, Huxham F, McGinley J. The sequence effect and gait festination in Parkinson disease: contributors to freezing of gait? Mov Disord. 2006;21(9):1419–1424.
  • Grajić M, Stanković I, Radovanović S, et al. Gait in drug naïve patients with de novo Parkinson’s disease–altered but symmetric. Neurol Res. 2015;37(8):712–716.
  • Nutt JG, Bloem BR, Giladi N, et al. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol. 2011;10:734–744.
  • Giladi N, McMahon D, Przedborski S, et al. Motor blocks in Parkinson’s disease. Neurology. 1992;42(2):333–339.
  • Kerr GK, Worringham CJ, Cole MH, et al. Predictors of future falls in Parkinson disease. Neurology. 2010;75:116–124.
  • Ferrarin M, Rizzone M, Lopiano L, et al. Effects of subthalamic nucleus stimulation and L-dopa in trunk kinematics of patients with Parkinson’s disease. Gait Posture. 2004;19(2):164–171.
  • Morris ME, Iansek R, Matyas TA, et al. Stride length regulation in Parkinson’s disease. Normalization strategies and underlying mechanism. Brain. 1996;119:551–568.
  • Ridding MC, Inzelberg R, Rothwell JC. Changes in excitability of motor cortical circuitry in patients with Parkinson’s disease. Ann Neurol. 1995;37(2):181–188.
  • Strafella AP, Valzania F, Nassetti SA, et al. Effects of chronic levodopa and pergolide treatment on cortical excitability in patients with Parkinson’s disease: a transcranial magnetic stimulation study. Clin Neurophysiol. 2000;111(7):1198–1202.
  • Bares M, Kanovský P, Klajblová H, et al. Intracortical inhibition and facilitation are impaired in patients with early Parkinson’s disease: a paired TMS study. Eur J Neurol. 2003;10(4):385–389.
  • MacKinnon CD, Gilley EA, Weis-McNulty A, et al. Pathways mediating abnormal intracortical inhibition in Parkinson’s disease. Ann Neurol. 2005;58:516–524.
  • Ni Z, Bahl N, Gunraj CA, et al. Increased motor cortical facilitation and decreased inhibition in Parkinson disease. Neurology. 2013;80:1746–1753.
  • Berardelli A, Rona S, Inghilleri M, et al. Cortical inhibition in Parkinson’s disease. A study with paired magnetic stimulation. Brain. 1996;119(Pt 1):71–77.
  • Civardi C, Cantello R, Asselman P, et al. Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans. Neuroimage. 2001;14:1444–1453.
  • Koch G, Fernandez Del Olmo M, Cheeran B, et al. Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex. J Neurosci. 2007;27:6815–6822.
  • Koch G, Franca M, Mochizuki H, et al. Interactions between pairs of transcranial magnetic stimuli over the human left dorsal premotor cortex differ from those seen in primary motor cortex. J Physiol. 2007;578:551–562.
  • Buhmann C, Gorsler A, Bäumer T, et al. Abnormal excitability of premotor-motor connections in de novo Parkinson’s disease. Brain. 2004;127:2732–2746.
  • Mir P, Matsunaga K, Gilio F, et al. Dopaminergic drugs restore facilitatory premotor–motor interactions in Parkinson’s disease. Neurology. 2005;64:1906–1912.
  • Zittel S, Heinbokel C, van der Vegt JP, et al. Effects of dopaminergic treatment on functional cortico-cortical connectivity in Parkinson’s disease. Exp Brain Res. 2015;233:329–337.
  • Carrillo F, Palomar FJ, Conde V, et al. Study of cerebello-thalamocortical pathway by transcranial magnetic stimulation in Parkinson’s disease. Brain Stimul. 2013;6:582–589.
  • Pascual-Leone A, Valls-Solé J, Wassermann EM, et al. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain. 1994;117:847–858.
  • Jennum P, Winkel H, Fuglsang-Frederiksen A. Repetitive magnetic stimulation and motor evoked potentials. Electroencephalogr Clin Neurophysiol. 1995;97:96–101.
  • Suppa A, Bologna M, Gilio F, et al. Preconditioning rTMS of premotor cortex can reduce but not enhance short-term facilitation of primary motor cortex. J Neurophysiol. 2008;99:564–570.
  • Gilio F, Curra A, Inghilleri M, et al. Repetitive magnetic stimulation of cortical motor areas in Parkinson’s disease: implications for the pathophysiology of cortical function. Mov Disord. 2002;17:467–473.
  • Suppa A, Iezzi E, Conte A, et al. Dopamine influences primary motor cortex plasticity and dorsal premotor-to-motor connectivity in Parkinson’s disease. Cereb Cortex. 2010;20:2224–2233.
  • Ueki Y, Mima T, Ali Kotb M, et al. Altered plasticity of the human motor cortex in Parkinson’s disease. Ann Neurol. 2006;59:60–71.
  • Morgante F, Espay AJ, Gunraj C, et al. Motor cortex plasticity in Parkinson’s disease and levodopa-induced dyskinesias. Brain. 2006;129:1059–1069.
  • Kawashima S, Ueki Y, Mima T, et al. Differences in dopaminergic modulation to motor cortical plasticity between Parkinson’s disease and multiple system atrophy. PLoS ONE. 2013;8:e62515.
  • Bagnato S, Agostino R, Modugno N, et al. Plasticity of the motor cortex in Parkinson’s disease patients on and off therapy. Mov Disord. 2006;21:639–645.
  • Kojovic M, Bologna M, Kassavetis P, et al. Functional reorganization of sensorimotor cortex in early Parkinson disease. Neurology. 2012;78:1441–1448.
  • Kojovic M, Kassavetis P, Bologna M, et al. Transcranial magnetic stimulation follow-up study in early Parkinson’s disease: a decline in compensation with disease progression? Mov Disord. 2015;30:1098–1106.
  • Huang YZ, Edwards MJ, Rounis E, et al. Theta burst stimulation of the human motor cortex. Neuron. 2005;45:201–206.
  • Eggers C, Fink GR, Nowak DA. Theta burst stimulation over the primary motor cortex does not induce cortical plasticity in Parkinson’s disease. J Neurol. 2010;257:1669–1674.
  • Suppa A, Marsili L, Belvisi D, et al. Lack of LTP-like plasticity in primary motor cortex in Parkinson’s disease. Exp Neurol. 2011;227:296–301.
  • Kishore A, Joseph T, Velayudhan B, et al. Early, severe and bilateral loss of LTP and LTD-like plasticity in motor cortex (M1) in de novo Parkinson’s disease. Clin Neurophysiol. 2012;123:822–828.
  • Zamir O, Gunraj C, Ni Z, et al. Effects of theta burst stimulation on motor cortex excitability in Parkinson’s disease. Clin Neurophysiol. 2012;123:815–821.
  • Huang YZ, Rothwell JC, Lu CS, et al. Abnormal bidirectional plasticity-like effects in Parkinson’s disease. Brain. 2011;134:2312–2320.
  • Brown P, Eusebio A. Paradoxes of functional neurosurgery: clues from basal ganglia recordings. Mov Disord. 2008;23(1):12–20.
  • Little S, Brown P. The functional role of beta oscillations in Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(Suppl 1):S44–S48.
  • Quiroga-Varela A, Walters JR, Brazhnik E, et al. What basal ganglia changes underlie the parkinsonian state? The significance of neuronal oscillatory activity. Neurobiol Dis. 2013;58:242–248.
  • Bergman H, Wichmann T, Karmon B, et al. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol. 1994;72:507–520.
  • Nini A, Feingold A, Slovin H, et al. Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appearin the MPTP model of parkinsonism. J Neurophysiol. 1995;74:1800–1805.
  • Brown P, Oliviero A, Mazzone P, et al. Dopaminedependency of oscillations between subthalamic nucleus and pallidum inParkinson’s disease. J Neurosci. 2001;21:1033–1038.
  • Priori A, Foffani G, Pesenti A, et al. Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Exp Neurol. 2004;189:369–379.
  • Weinberger MMN, Hutchison WD, Lozano AM, et al. Beta oscillatory activity in the subthalamic nucleus and its relation todopaminergic response in Parkinson’s disease. J Neurophysiol. 2006;96:3248–3256.
  • Kuhn AA, Tsui A, Aziz T, et al. Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Exp Neurol. 2009;215:380–387.
  • Kuhn AA, Kupsch A, Schneider GH, et al. Reduction in subthalamic 8–35 Hzoscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur JNeurosci. 2006;23:1956–1960.
  • Chen CC, Litvak V, Gilbertson T, et al. Excessive synchronization of basal ganglianeurons at 20 Hz slows movement in Parkinson’s disease. Exp Neurol. 2007;205:214–221.
  • Eusebio A, Chen CC, Lu CS, et al. Effects of low-frequency stimulation of the subthalamic nucleus on movement inParkinson’s disease. Exp Neurol. 2008;209(1):125–130.
  • Artieda J, Pastor MA, Lacruz F, et al. Temporal discrimination is abnormal in Parkinson’s disease. Brain. 1992;115:199–210.
  • Conte A, Modugno N, Lena F, et al. Subthalamic nucleus stimulation and somatosensory temporal discrimination in Parkinson’s disease. Brain. 2010;133(9):2656–2663.
  • Rocchi L, Conte A, Nardella A, et al. Somatosensory temporal discrimination threshold may help to differentiate patients with multiple system atrophy from patients with Parkinson’s disease. Eur J Neurol. 2013;20(4):714–719.
  • Lyoo CH, Lee SY, Song TJ, et al. Abnormal temporal discrimination threshold in patients with multiple system atrophy. Mov Disord. 2007 Mar 15;22(4):556–559.
  • Lyoo CH, Ryu YH, Lee MJ, et al. Striatal dopamine loss and discriminative sensory dysfunction in Parkinson’s disease. Acta Neurol Scand. 2012;126:344–349.
  • Lee MS, Lyoo CH, Lee MJ, et al. Impaired finger dexterity in patients with Parkinson’s disease correlates with discriminative cutaneous sensory dysfunction. Mov Disord. 2010;25:2531–2535.
  • Patel N, Jankovic J, Hallett M. Sensory aspects of movement disorders. Lancet Neurol. 2014 Jan;13(1):100–112.
  • Lee MS, Kim HS, Lyoo CH. “Off” gait freezing and temporal discrimination threshold in patients with Parkinson disease. Neurology. 2005 22;64(4):670–674.
  • Djaldetti R, Shifrin A, Rogowski Z, et al. Quantitative measurement of pain sensation in patients with Parkinson disease. Neurology. 2004;62:2171–2175.
  • Brefel-Courbon C, Payoux P, Thalamas C, et al. Effect of levodopa on pain threshold in Parkinson’s disease: a clinical and positron emission tomography study. Mov Disord. 2005;20:1557–1563.
  • Nolano M, Provitera V, Estraneo A, et al. Sensory deficit in Parkinson’s disease: evidence of a cutaneous denervation. Brain. 2008;131:1903–1911.
  • Lim SY, Farrell MJ, Gibson SJ, et al. Do dyskinesia and pain share common pathophysiological mechanisms in Parkinson’s disease? Mov Disord. 2008(23):1689–1695.
  • Jensen TS, Smith DF. Dopaminergic effects on tail-flick response in spinal rats. Eur J Pharmacol. 1982;79:129–133.
  • Jensen TS, Yaksh TL. Effects of an intrathecal dopamine agonist, apomorphine, on thermal and chemical evoked noxious responses in rats. Brain Res. 1984;296:285–293.
  • Fleetwood-Walker SM, Hope PJ, Mitchell R. Antinociceptive actions of descending dopaminergic tracts on cat and rat dorsal horn somatosensory neurones. J Physiol. 1998;399:335–348.
  • Liu QS, Qiao JT, Dafny N. D2 dopamine receptor involvement in spinal dopamine-produced antinociception. Life Sci. 1992;51:1485–1492.
  • Ben-Sreti MM, Gonzalez JP, Sewell RD. Differential effects of SKF 38393 and LY 141865 on nociception and morphine analgesia. Life Sci. 1983;33(Suppl 1):665–668.
  • Altier N, Stewart J. Dopamine receptor antagonists in the nucleus accumbens attenuate analgesia induced by ventral tegmental area substance P or morphine and by nucleus accumbens amphetamine. J Pharmaco Lexpther. 1998;285:208–215.
  • Magnusson JE, Fisher K. The involvement of dopamine in nociception: the role of D(1) and D(2) receptors in the dorsolateral striatum. Brain Res. 2000;855:260–266.
  • Hagelberg N, Martikainen IK, Mansikka H, et al. Dopamine D2 receptor binding in the human brain is associated with the response to painful stimulation and pain modulatory capacity. Pain. 2002;99:273–279.
  • Pertovaara A, Martikainen IK, Hagelberg N, et al. Striatal dopamine D2/D3 receptor availability correlates with individual response characteristics to pain. Eur J Neurosci. 2004;20:1587–1592.
  • Martikainen IK, Hagelberg N, Mansikka H, et al. Association of striatal dopamine D2/D3 receptor binding potential with pain but not tactile sensitivity or placebo analgesia. Neurosci Lett. 2005;376:149–153.
  • Scott DJ, Heitzeg MM, Koeppe RA, et al. Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity. J Neurosci. 2006;26:10789–10795.
  • Scott DJ, Stohler CS, Koeppe RA, et al. Timecourse of change in [11C]carfentanil and [11C]raclopride binding potential after a nonpharmacological challenge. Synapse. 2007;61:707–714.
  • Tinazzi M, Del Vesco C, Defazio G, et al. Abnormal processing of the nociceptive input in Parkinson’s disease: a study with CO2 laser evoked potentials. Pain. 2008;136:117–124.
  • Abbruzzese G, Berardelli A. Sensorimotorintegration in movementdisorders. Mov Disord. 2003 Mar;18(3):231–240.
  • Di Lazzaro V, Oliviero A, Saturno E, et al. Effects of lorazepam on short latency afferent inhibition and short latency intracortical inhibition in humans. J Physiol. 2005;564:661–668.
  • Sailer A, Molnar GF, Paradiso G, et al. Short and long latency afferent inhibition in Parkinson’s disease. Brain. 2003;126:1883–1894.
  • Berardelli A, Dick JP, Rothwell JC, et al. Scaling of the size of the first agonist EMG burst during rapid wrist movements in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1986;49:1273–1279.
  • Michely J, Volz LJ, Barbe MT, et al. Dopaminergic modulation of motor network dynamics in Parkinson’s disease. Brain. 2015;138(Pt 3):664–678.
  • Nachev P, Kennard C, Husain M. Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci. 2008;9:856–869.
  • D’Angelo E. Neural circuits of the cerebellum: hypothesis for function. J Integr Neurosci. 2011;10:317–52.31.
  • Bologna M, Suppa A, Conte A, et al. Are studies of motor cortex plasticity relevant in human patients with Parkinson’s disease?. Clin Neurophysiol. 2016;127(1):50–59.
  • Wang J, O’Donnell P. D1 dopamine receptors potentiate NMDA-mediated excitability increase in layer V prefrontal cortical pyramidal neurons. Cereb Cortex. 2001;11:452–462.
  • Molina-Luna K, Pekanovic A, Röhrich S, et al. Dopamine in motor cortex is necessary for skill learning and synaptic plasticity. PLoS One. 2009;4:e7082.
  • Hosp JA, Luft AR. Dopaminergic meso-cortical projections to M1: role in motor learning and motor cortex plasticity. Front Neurol. 2013;4:145.
  • Harrington DL, Haaland KY, Hermanowicz N. Temporal processing in the basal ganglia. Neuropsychology. 1998;12(1):3–12.
  • Harrington DL, Haaland KY, Knight RT. Cortical networks underlying mechanisms of time perception. J Neurosci. 1998 1;18(3):1085–1095.
  • Ivry RB. The representation of temporal information in perception and motor control. Curr Opin Neurobiol. 1996;6(6):851–857.
  • Appel-Cresswell S, De La Fuente-Fernandez R, Galley S, et al. Imaging of compensatory mechanisms in Parkinson’s disease. Curr Opin Neurol. 2010;23(4):407–412.
  • Obeso JA, Rodriguez-Oroz M, Marin C, et al. The origin of motor fluctuations in Parkinson’s disease: importance of dopaminergic innervation and basal ganglia circuits. Neurology. 2004 13;62(1 Suppl 1):S17–S30.
  • Sabatini U, Boulanouar K, Fabre N, et al. Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain. 2000;123(Pt 2):394–403.
  • van Nuenen BF, van Eimeren T, van der Vegt JP, et al. Mapping preclinical compensation in Parkinson’s disease: an imaging genomics approach. Mov Disord. 2009;24(Suppl 2):S703–S710.
  • Zigmond MJ. Do compensatory processes underlie the preclinical phase of neurodegenerative disease? Insights from an animal model of parkinsonism. Neurobiol Dis. 1997;4(3–4):247–253.
  • Defazio G, Tinazzi M, Berardelli A. How pain arises in Parkinson’s disease? Eur J Neurol. 2013 Dec;20(12):1517–1523.
  • Fabbrini G, Latorre A, Suppa A, et al. Fatigue in Parkinson’s disease: motor or non-motor symptom? Parkinsonism Relat Disord. 2013;19:148–152.
  • Cury RG, Galhardoni R, Fonoff ET, et al. Sensory abnormalities and pain in Parkinson disease and its modulation by treatment of motor symptoms. Eur J Pain. 2016;20(2):151–165.
  • Becker S, Gandhi W, Elfassy NM, et al. The role of dopamine in the perceptual modulation of nociceptive stimuli by monetary wins or losses. Eur J Neurosci. 2013;38:3080–3088.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.