3,925
Views
119
CrossRef citations to date
0
Altmetric
Review

Neonatal hypoxic ischemic encephalopathy: an update on disease pathogenesis and treatment

, &
Pages 449-459 | Received 04 Feb 2016, Accepted 08 Nov 2016, Published online: 23 Nov 2016

References

  • Stoll BJ, Hansen NI, Bell EF, et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics. 2010 Sep;126(3):443–456.
  • Pierrat V, Haouari N, Liska A, et al. Prevalence, causes, and outcome at 2 years of age of newborn encephalopathy: population based study. Arch Dis Child Fetal Neonatal Ed. 2005 May;90(3):F257–F261.
  • Logitharajah P, Rutherford MA, Cowan FM. Hypoxic-ischemic encephalopathy in preterm infants: antecedent factors, brain imaging, and outcome. Pediatr Res. 2009 Aug;66(2):222–229.
  • Douglas-Escobar M, Weiss MD. Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatr. 2015 Apr;169(4):397–403.
  • Al-Macki N, Miller SP, Hall N, et al. The spectrum of abnormal neurologic outcomes subsequent to term intrapartum asphyxia. Pediatr Neurol. 2009 Dec;41(6):399–405.
  • Barnett A, Mercuri E, Rutherford M, et al. Neurological and perceptual-motor outcome at 5-6 years of age in children with neonatal encephalopathy: relationship with neonatal brain MRI. Neuropediatrics. 2002 Oct;33(5):242–248.
  • Volpe JJ. Encephalopathy of prematurity includes neuronal abnormalities. Pediatrics. 2005 Jul;116(1):221–225.
  • Back SA, Riddle A, McClure MM. Maturation-dependent vulnerability of perinatal white matter in premature birth. Stroke. 2007 Feb;38(2 Suppl):724–730.
  • Gonzalez FF, Ferriero DM. Therapeutics for neonatal brain injury. Pharmacol Ther. 2008 Oct;120(1):43–53.
  • Miller SP, Ramaswamy V, Michelson D, et al. Patterns of brain injury in term neonatal encephalopathy. J Pediatr. 2005 Apr;146(4):453–460.
  • Bennet L, Roelfsema V, Pathipati P, et al. Relationship between evolving epileptiform activity and delayed loss of mitochondrial activity after asphyxia measured by near-infrared spectroscopy in preterm fetal sheep. J Physiol. 2006 Apr 1;572(Pt 1):141–154.
  • Vannucci SJ, Hagberg H. Hypoxia-ischemia in the immature brain. J Exp Biol. 2004 Aug;207(Pt 18):3149–3154.
  • Bennet L, Tan S, van den Heuij L, et al. Cell therapy for neonatal hypoxia-ischemia and cerebral palsy. Ann Neurol. 2012 May;71(5):589–600.
  • Puka-Sundvall M, Wallin C, Gilland E, et al. Impairment of mitochondrial respiration after cerebral hypoxia-ischemia in immature rats: relationship to activation of caspase-3 and neuronal injury. Brain Res Dev Brain Res. 2000 Dec 29;125(1–2):43–50.
  • Tazegul G, Etcioglu E, Yildiz F, et al. Can MRI related patient anxiety be prevented? Magn Reson Imaging. 2015 Jan;33(1):180–183.
  • Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005;39:359–407.
  • Nishimura Y, Romer LH, Lemasters JJ. Mitochondrial dysfunction and cytoskeletal disruption during chemical hypoxia to cultured rat hepatic sinusoidal endothelial cells: the pH paradox and cytoprotection by glucose, acidotic pH, and glycine. Hepatology. 1998 Apr;27(4):1039–1049.
  • Belch JJ. Free radicals and their scavenging in stroke. Scott Med J. 1992 Jun;37(3):67–68.
  • Hall ED. Brain attack. Acute therapeutic interventions. Free radical scavengers and antioxidants. Neurosurg Clin N Am. 1997 Apr;8(2):195–206.
  • Cross JL, Meloni BP, Bakker AJ, et al. Modes of neuronal calcium entry and homeostasis following cerebral Ischemia. Stroke Res Treat. 2010;2010:316862.
  • Cerio FG, Lara-Celador I, Alvarez A, et al. Neuroprotective therapies after perinatal hypoxic-ischemic brain injury. Brain Sci. 2013;3(1):191–214.
  • Lemasters JJ, Qian T, He L, et al. Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid Redox Signal. 2002 Oct;4(5):769–781.
  • Baker LD, Cross DJ, Minoshima S, et al. Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch Neurol. 2011 Jan;68(1):51–57.
  • van den Tweel ER, Nijboer C, Kavelaars A, et al. Expression of nitric oxide synthase isoforms and nitrotyrosine formation after hypoxia-ischemia in the neonatal rat brain. J Neuroimmunol. 2005 Oct;167(1–2):64–71.
  • Cimino M, Balduini W, Carloni S, et al. Neuroprotective effect of simvastatin in stroke: a comparison between adult and neonatal rat models of cerebral ischemia. Neurotoxicology. 2005 Oct;26(5):929–933.
  • Fan X, Kavelaars A, Heijnen CJ, et al. Pharmacological neuroprotection after perinatal hypoxic-ischemic brain injury. Curr Neuropharmacol. 2010 Dec;8(4):324–334.
  • Fabian RH, Perez-Polo JR, Kent TA. Perivascular nitric oxide and superoxide in neonatal cerebral hypoxia-ischemia. Am J Physiol Heart Circ Physiol. 2008 Oct;295(4):H1809–H1814.
  • Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J Neuroimmunol. 2007 Mar;184(1–2):53–68.
  • Perrone S, Szabo M, Bellieni CV, et al. Whole body hypothermia and oxidative stress in babies with hypoxic-ischemic brain injury. Pediatr Neurol. 2010 Oct;43(4):236–240.
  • Yamasaki Y, Matsuura N, Shozuhara H, et al. Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke. 1995 Apr;26(4):676–680; discussion 81.
  • Blomgren K, Leist M, Groc L. Pathological apoptosis in the developing brain. Apoptosis. 2007 May;12(5):993–1010.
  • Gill R, Soriano M, Blomgren K, et al. Role of caspase-3 activation in cerebral ischemia-induced neurodegeneration in adult and neonatal brain. J Cereb Blood Flow Metab. 2002 Apr;22(4):420–430.
  • Aridas JD, McDonald CA, Paton MC, et al. Cord blood mononuclear cells prevent neuronal apoptosis in response to perinatal asphyxia in the newborn lamb. J Physiol. 2016 Mar 1;594(5):1421–1435.
  • Teo JD, Morris MJ, Jones NM. Hypoxic postconditioning reduces microglial activation, astrocyte and caspase activity, and inflammatory markers after hypoxia-ischemia in the neonatal rat brain. Pediatr Res. 2015 Jun;77(6):757–764.
  • Compagnoni G, Pogliani L, Lista G, et al. Hypothermia reduces neurological damage in asphyxiated newborn infants. Biol Neonate. 2002;82(4):222–227.
  • Davidson JO, Wassink G, Yuill CA, et al. How long is too long for cerebral cooling after ischemia in fetal sheep? J Cereb Blood Flow Metab. 2015 May;35(5):751–758.
  • Takenouchi T, Sugiura Y, Morikawa T, et al. Therapeutic hypothermia achieves neuroprotection via a decrease in acetylcholine with a concurrent increase in carnitine in the neonatal hypoxia-ischemia. J Cereb Blood Flow Metab. 2015 May;35(5):794–805.
  • Shankaran S, Laptook AR, Pappas A, et al. Effect of depth and duration of cooling on deaths in the NICU among neonates with hypoxic ischemic encephalopathy: a randomized clinical trial. JAMA. 2014 Dec 24-31;312(24):2629–2639.
  • Barrett RD, Bennet L, Davidson J, et al. Destruction and reconstruction: hypoxia and the developing brain. Birth Defects Res C Embryo Today. 2007 Sep;81(3):163–176.
  • Wagner CL, Eicher DJ, Katikaneni LD, et al. The use of hypothermia: a role in the treatment of neonatal asphyxia? Pediatr Neurol. 1999 Jul;21(1):429–443.
  • Tong G, Endersfelder S, Rosenthal LM, et al. Effects of moderate and deep hypothermia on RNA-binding proteins RBM3 and CIRP expressions in murine hippocampal brain slices. Brain Res. 2013;1504:74–84.
  • Tanaka T, Wakamatsu T, Daijo H, et al. Persisting mild hypothermia suppresses hypoxia-inducible factor-1alpha protein synthesis and hypoxia-inducible factor-1-mediated gene expression. Am J Physiol Regul Integr Comp Physiol. 2010 Mar;298(3):R661–R671.
  • Webster CM, Kelly S, Koike MA, et al. Inflammation and NFkappaB activation is decreased by hypothermia following global cerebral ischemia. Neurobiol Dis. 2009 Feb;33(2):301–312.
  • Orrock JE, Panchapakesan K, Vezina G, et al. Association of brain injury and neonatal cytokine response during therapeutic hypothermia in newborns with hypoxic-ischemic encephalopathy. Pediatr Res. 2016 May;79(5):742-747.
  • Aj G, Tr G, Mi G, et al. Neuroprotection with prolonged head cooling started before postischemic seizures in fetal sheep. Pediatrics. 1998 Nov;102(5):1098–1106.
  • Roelfsema V, Bennet L, George S, et al. Window of opportunity of cerebral hypothermia for postischemic white matter injury in the near-term fetal sheep. J Cereb Blood Flow Metab. 2004 Aug;24(8):877–886.
  • Gunn AJ, Bennet L, Gunning MI, et al. Cerebral hypothermia is not neuroprotective when started after postischemic seizures in fetal sheep. Pediatr Res. 1999 Sep;46(3):274–280.
  • Shah DK, Wusthoff CJ, Clarke P, et al. Electrographic seizures are associated with brain injury in newborns undergoing therapeutic hypothermia. Arch Dis Child Fetal Neonatal Ed. 2014 May;99(3):F219–F224.
  • Glass HC, Wusthoff CJ, Shellhaas RA, et al. Risk factors for EEG seizures in neonates treated with hypothermia: a multicenter cohort study. Neurology. 2014 Apr 8;82(14):1239–1244.
  • Birca A, Lortie A, Birca V, et al. Rewarming affects EEG background in term newborns with hypoxic-ischemic encephalopathy undergoing therapeutic hypothermia. Clin Neurophysiol. 2016 Apr;127(4):2087–2094.
  • Thoresen M, Tooley J, Liu X, et al. Time is brain: starting therapeutic hypothermia within three hours after birth improves motor outcome in asphyxiated newborns. Neonatology. 2013;104(3):228–233.
  • Shankaran S, Laptook AR, Ehrenkranz RA, et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med. 2005 Oct 13;353(15):1574–1584.
  • Azzopardi DV, Strohm B, Edwards AD, et al. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med. 2009 Oct 1;361(14):1349–1358.
  • Shankaran S, Pappas A, McDonald SA, et al. Childhood outcomes after hypothermia for neonatal encephalopathy. N Engl J Med. 2012 May 31;366(22):2085–2092.
  • Azzopardi D, Strohm B, Marlow N, et al. Effects of hypothermia for perinatal asphyxia on childhood outcomes. N Engl J Med. 2014 Jul 10;371(2):140–149.
  • Jacobs SE, Morley CJ, Inder TE, et al. Whole-body hypothermia for term and near-term newborns with hypoxic-ischemic encephalopathy: a randomized controlled trial. Arch Pediatr Adolesc Med. 2011 Aug;165(8):692–700.
  • Zhou WH, Cheng GQ, Shao XM, et al. Selective head cooling with mild systemic hypothermia after neonatal hypoxic-ischemic encephalopathy: a multicenter randomized controlled trial in China. J Pediatr. 2010 Sep;157(3):367–372; 72 e1-3.
  • Gluckman PD, Wyatt JS, Azzopardi D, et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet. 2005 Feb 19-25;365(9460):663–670.
  • Welin AK, Svedin P, Lapatto R, et al. Melatonin reduces inflammation and cell death in white matter in the mid-gestation fetal sheep following umbilical cord occlusion. Pediatr Res. 2007 Feb;61(2):153–158.
  • Tutunculer F, Eskiocak S, Basaran UN, et al. The protective role of melatonin in experimental hypoxic brain damage. Pediatr Int. 2005 Aug;47(4):434–439.
  • Alonso-Alconada D, Alvarez A, Arteaga O, et al. Neuroprotective effect of melatonin: a novel therapy against perinatal hypoxia-ischemia. Int J Mol Sci. 2013;14(5):9379–9395.
  • Reiter RJ, Tan DX, Mayo JC, et al. Melatonin, longevity and health in the aged: an assessment. Free Radic Res. 2002 Dec;36(12):1323–1329.
  • Robertson NJ, Faulkner S, Fleiss B, et al. Melatonin augments hypothermic neuroprotection in a perinatal asphyxia model. Brain. 2013 Jan;136(Pt 1):90–105.
  • Aly H, Elmahdy H, El-Dib M, et al. Melatonin use for neuroprotection in perinatal asphyxia: a randomized controlled pilot study. J Perinatol. 2015 Mar;35(3):186–191.
  • Pandi-Perumal SR, Srinivasan V, Maestroni GJ, et al. Melatonin: nature’s most versatile biological signal? Febs J. 2006 Jul;273(13):2813–2838.
  • Peeters-Scholte C, Braun K, Koster J, et al. Effects of allopurinol and deferoxamine on reperfusion injury of the brain in newborn piglets after neonatal hypoxia-ischemia. Pediatr Res. 2003 Oct;54(4):516–522.
  • Ko KM, Godin DV. Inhibition of transition metal ion-catalysed ascorbate oxidation and lipid peroxidation by allopurinol and oxypurinol. Biochem Pharmacol. 1990 Aug 15;40(4):803–809.
  • Hudome S, Palmer C, Roberts RL, et al. The role of neutrophils in the production of hypoxic-ischemic brain injury in the neonatal rat. Pediatr Res. 1997 May;41(5):607–616.
  • Palmer C, Towfighi J, Roberts RL, et al. Allopurinol administered after inducing hypoxia-ischemia reduces brain injury in 7-day-old rats. Pediatr Res. 1993 Apr;33(4 Pt 1):405–411.
  • Gunes T, Ozturk MA, Koklu E, et al. Effect of allopurinol supplementation on nitric oxide levels in asphyxiated newborns. Pediatr Neurol. 2007 Jan;36(1):17–24.
  • Torrance HL, Benders MJ, Derks JB, et al. Maternal allopurinol during fetal hypoxia lowers cord blood levels of the brain injury marker S-100B. Pediatrics. 2009 Jul;124(1):350–357.
  • Kelen D, Robertson NJ. Experimental treatments for hypoxic ischaemic encephalopathy. Early Hum Dev. 2010 Jun;86(6):369–377.
  • Kaandorp JJ, Benders MJ, Schuit E, et al. Maternal allopurinol administration during suspected fetal hypoxia: a novel neuroprotective intervention? A multicentre randomised placebo controlled trial. Arch Dis Child Fetal Neonatal Ed. 2015 May;100(3):F216–F223.
  • Kaandorp JJ, van Bel F, Veen S, et al. Long-term neuroprotective effects of allopurinol after moderate perinatal asphyxia: follow-up of two randomised controlled trials. Arch Dis Child Fetal Neonatal Ed. 2012 May;97(3):F162–F166.
  • Marret S, Doyle LW, Crowther CA, et al. Antenatal magnesium sulphate neuroprotection in the preterm infant. Semin Fetal Neonatal Med. 2007 Aug;12(4):311–317.
  • Spandou E, Soubasi V, Papoutsopoulou S, et al. Neuroprotective effect of long-term MgSO4 administration after cerebral hypoxia-ischemia in newborn rats is related to the severity of brain damage. Reprod Sci. 2007 Oct;14(7):667–677.
  • Sugimoto J, Romani AM, Valentin-Torres AM, et al. Magnesium decreases inflammatory cytokine production: a novel innate immunomodulatory mechanism. J Immunol. 2012 Jun 15;188(12):6338–6346.
  • Itoh K, Maki T, Shindo A, et al. Magnesium sulfate protects oligodendrocyte lineage cells in a rat cell-culture model of hypoxic-ischemic injury. Neurosci Res. 2016 May;106:66-69.
  • Tataranno ML, Perrone S, Longini M, et al. New antioxidant drugs for neonatal brain injury. Oxid Med Cell Longev. 2015;2015:108251.
  • Heyborne K, Bowes WA. The use of antenatal magnesium sulfate for neuroprotection for infants born prematurely. F1000 Med Rep. 2010;2:78.
  • Doyle LW, Crowther CA, Middleton P, et al. Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus. Cochrane Database Syst Rev. 2009;1:CD004661.
  • Khashaba MT, Shouman BO, Shaltout AA, et al. Excitatory amino acids and magnesium sulfate in neonatal asphyxia. Brain Dev. 2006 Jul;28(6):375–379.
  • Bhat MA, Charoo BA, Bhat JI, et al. Magnesium sulfate in severe perinatal asphyxia: a randomized, placebo-controlled trial. Pediatrics. 2009 May;123(5):e764–e769.
  • Campbell K, Meloni BP, Knuckey NW. Combined magnesium and mild hypothermia (35 degrees C) treatment reduces infarct volumes after permanent middle cerebral artery occlusion in the rat at 2 and 4, but not 6 h. Brain Res. 2008 Sep 16;1230:258–264.
  • Zhu H, Meloni BP, Bojarski C, et al. Post-ischemic modest hypothermia (35 degrees C) combined with intravenous magnesium is more effective at reducing CA1 neuronal death than either treatment used alone following global cerebral ischemia in rats. Exp Neurol. 2005 Jun;193(2):361–368.
  • Bozkurt O, Eras Z, Canpolat FE, et al. Antenatal magnesium sulfate and neurodevelopmental outcome of preterm infants born to preeclamptic mothers. J Matern Fetal Neonatal Med. 2016 Apr;29(7):1101–1104.
  • Tagin M, Shah PS, Lee KS. Magnesium for newborns with hypoxic-ischemic encephalopathy: a systematic review and meta-analysis. J Perinatol. 2013 Sep;33(9):663–669.
  • Villa P, Bigini P, Mennini T, et al. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med. 2003 Sep 15;198(6):971–975.
  • Wang L, Zhang Z, Wang Y, et al. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke. 2004 Jul;35(7):1732–1737.
  • Juul SE. Hypothermia plus erythropoietin for neonatal neuroprotection? commentary on Fan et al. and Fang et al. Pediatr Res. 2013 Jan;73(1):10–11.
  • Mu D, Chang YS, Vexler ZS, et al. Hypoxia-inducible factor 1alpha and erythropoietin upregulation with deferoxamine salvage after neonatal stroke. Exp Neurol. 2005 Oct;195(2):407–415.
  • Mazur M, Miller RH, Robinson S. Postnatal erythropoietin treatment mitigates neural cell loss after systemic prenatal hypoxic-ischemic injury. J Neurosurg Pediatr. 2010 Sep;6(3):206–221.
  • Lee ST, Chu K, Sinn DI, et al. Erythropoietin reduces perihematomal inflammation and cell death with eNOS and STAT3 activations in experimental intracerebral hemorrhage. J Neurochem. 2006 Mar;96(6):1728–1739.
  • Sargin D, Friedrichs H, El-Kordi A, et al. Erythropoietin as neuroprotective and neuroregenerative treatment strategy: comprehensive overview of 12 years of preclinical and clinical research. Best Pract Res Clin Anaesthesiol. 2010 Dec;24(4):573–594.
  • Xiong T, Qu Y, Mu D, et al. Erythropoietin for neonatal brain injury: opportunity and challenge. Int J Dev Neurosci. 2011 Oct;29(6):583–591.
  • Traudt CM, Juul SE. Erythropoietin as a neuroprotectant for neonatal brain injury: animal models. Methods Mol Biol. 2013;982:113–126.
  • Fan X, van Bel F, van der Kooij MA, et al. Hypothermia and erythropoietin for neuroprotection after neonatal brain damage. Pediatr Res. 2013 Jan;73(1):18–23.
  • Zhu C, Kang W, Xu F, et al. Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy. Pediatrics. 2009 Aug;124(2):e218–e226.
  • Elmahdy H, El-Mashad AR, El-Bahrawy H, et al. Human recombinant erythropoietin in asphyxia neonatorum: pilot trial. Pediatrics. 2010 May;125(5):e1135–e1142.
  • Rogers EE, Bonifacio SL, Glass HC, et al. Erythropoietin and hypothermia for hypoxic-ischemic encephalopathy. Pediatr Neurol. 2014 Nov;51(5):657–662.
  • Wu YW, Bauer LA, Ballard RA, et al. Erythropoietin for neuroprotection in neonatal encephalopathy: safety and pharmacokinetics. Pediatrics. 2012 Oct;130(4):683–691.
  • Kellert BA, McPherson RJ, Juul SE. A comparison of high-dose recombinant erythropoietin treatment regimens in brain-injured neonatal rats. Pediatr Res. 2007 Apr;61(4):451–455.
  • Weber A, Dzietko M, Berns M, et al. Neuronal damage after moderate hypoxia and erythropoietin. Neurobiol Dis. 2005 Nov;20(2):594–600.
  • Johnson D, Mignacca D, Herod D, et al. Characterization and identification of trends in average ambient ozone and fine particulate matter levels through trajectory cluster analysis in eastern Canada. J Air Waste Manag Assoc. 2007 Aug;57(8):907–918.
  • Khan M, Sekhon B, Jatana M, et al. Administration of N-acetylcysteine after focal cerebral ischemia protects brain and reduces inflammation in a rat model of experimental stroke. J Neurosci Res. 2004 May 15;76(4):519–527.
  • Paintlia MK, Paintlia AS, Barbosa E, et al. N-acetylcysteine prevents endotoxin-induced degeneration of oligodendrocyte progenitors and hypomyelination in developing rat brain. J Neurosci Res. 2004 Nov 1;78(3):347–361.
  • Cakir O, Erdem K, Oruc A, et al. Neuroprotective effect of N-acetylcysteine and hypothermia on the spinal cord ischemia-reperfusion injury. Cardiovasc Surg. 2003 Oct;11(5):375–379.
  • Shank RP, Doose DR, Streeter AJ, et al. Plasma and whole blood pharmacokinetics of topiramate: the role of carbonic anhydrase. Epilepsy Res. 2005 Feb;63(2–3):103–112.
  • Guerrini R, Parmeggiani L. Topiramate and its clinical applications in epilepsy. Expert Opin Pharmacother. 2006 Apr;7(6):811–823.
  • Kaminski RM, Banerjee M, Rogawski MA. Topiramate selectively protects against seizures induced by ATPA, a GluR5 kainate receptor agonist. Neuropharmacology. 2004 Jun;46(8):1097–1104.
  • Zona C, Ciotti MT, Avoli M. Topiramate attenuates voltage-gated sodium currents in rat cerebellar granule cells. Neurosci Lett. 1997 Aug 15;231(3):123–126.
  • Costa C, Martella G, Picconi B, et al. Multiple mechanisms underlying the neuroprotective effects of antiepileptic drugs against in vitro ischemia. Stroke. 2006 May;37(5):1319–1326.
  • Kudin AP, Debska-Vielhaber G, Vielhaber S, et al. The mechanism of neuroprotection by topiramate in an animal model of epilepsy. Epilepsia. 2004 Dec;45(12):1478–1487.
  • Glier C, Dzietko M, Bittigau P, et al. Therapeutic doses of topiramate are not toxic to the developing rat brain. Exp Neurol. 2004 Jun;187(2):403–409.
  • Filippi L, Poggi C, La Marca G, et al. Oral topiramate in neonates with hypoxic ischemic encephalopathy treated with hypothermia: a safety study. J Pediatr. 2010 Sep;157(3):361–366.
  • Ritter F, Glauser TA, Elterman RD, et al. Effectiveness, tolerability, and safety of topiramate in children with partial-onset seizures. Topiramate YP study group. Epilepsia. 2000;41(Suppl 1):S82–S85.
  • Biton V, Montouris GD, Ritter F, et al. A randomized, placebo-controlled study of topiramate in primary generalized tonic-clonic seizures. Topiramate YTC study group. Neurology. 1999 Apr 22;52(7):1330–1337.
  • Mikaeloff Y, Rey E, Soufflet C, et al. Topiramate pharmacokinetics in children with epilepsy aged from 6 months to 4 years. Epilepsia. 2004 Nov;45(11):1448–1452.
  • Glauser TA, Miles MV, Tang P, et al. Topiramate pharmacokinetics in infants. Epilepsia. 1999 Jun;40(6):788–791.
  • Franks NP, Dickinson R, de Sousa SL, et al. How does xenon produce anaesthesia? Nature. 1998 Nov 26;396(6709):324.
  • Ma D, Williamson P, Januszewski A, et al. Xenon mitigates isoflurane-induced neuronal apoptosis in the developing rodent brain. Anesthesiology. 2007 Apr;106(4):746–753.
  • Ryang YM, Fahlenkamp AV, Rossaint R, et al. Neuroprotective effects of argon in an in vivo model of transient middle cerebral artery occlusion in rats. Crit Care Med. 2011 Jun;39(6):1448–1453.
  • Lobo N, Yang B, Rizvi M, et al. Hypothermia and xenon: novel noble guardians in hypoxic-ischemic encephalopathy? J Neurosci Res. 2013 Apr;91(4):473–478.
  • Azzopardi D, Robertson NJ, Bainbridge A, et al. Moderate hypothermia within 6 h of birth plus inhaled xenon versus moderate hypothermia alone after birth asphyxia (TOBY-Xe): a proof-of-concept, open-label, randomised controlled trial. Lancet Neurol. 2015 Dec 18. pii: S1474-4422(15)00347-6.
  • Yoo J, Kim HS, Hwang DY. Stem cells as promising therapeutic options for neurological disorders. J Cell Biochem. 2013 Apr;114(4):743–753.
  • Banga A, Greder LV, Dutton JR, et al. Stable insulin-secreting ducts formed by reprogramming of cells in the liver using a three-gene cocktail and a PPAR agonist. Gene Ther. 2014 Jan;21(1):19–27.
  • Meier C, Middelanis J, Wasielewski B, et al. Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediatr Res. 2006 Feb;59(2):244–249.
  • Pimentel-Coelho PM, Magalhaes ES, Lopes LM, et al. Human cord blood transplantation in a neonatal rat model of hypoxic-ischemic brain damage: functional outcome related to neuroprotection in the striatum. Stem Cells Dev. 2010 Mar;19(3):351–358.
  • Castillo-Melendez M, Yawno T, Jenkin G, et al. Stem cell therapy to protect and repair the developing brain: a review of mechanisms of action of cord blood and amnion epithelial derived cells. Front Neurosci. 2013;7:194.
  • Wang L, Jiang F, Li Q, et al. Mild hypothermia combined with neural stem cell transplantation for hypoxic-ischemic encephalopathy: neuroprotective effects of combined therapy. Neural Regen Res. 2014 Oct 1;9(19):1745–1752.
  • Park WS, Sung SI, Ahn SY, et al. Hypothermia augments neuroprotective activity of mesenchymal stem cells for neonatal hypoxic-ischemic encephalopathy. PLoS One. 2015;10(3):e0120893.
  • Cotten CM, Murtha AP, Goldberg RN, et al. Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy. J Pediatr. 2014;164(5):973–979.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.