386
Views
18
CrossRef citations to date
0
Altmetric
Review

Extra-motor abnormalities in amyotrophic lateral sclerosis: another layer of heterogeneity

, &
Pages 561-577 | Received 15 Jul 2016, Accepted 14 Dec 2016, Published online: 03 Jan 2017

References

  • Byrne S, Elamin M, Bede P, et al. Absence of consensus in diagnostic criteria for familial neurodegenerative diseases. J Neurol Neurosurg Psychiatry. 2012;83(4):365–367.
  • Marangi G, Traynor BJ. Genetic causes of amyotrophic lateral sclerosis: new genetic analysis methodologies entailing new opportunities and challenges. Brain Res. 2015;160:75–93.
  • Renton AE, Chio A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci. 2014;17(1):17–23.
  • Fang F, Kamel F, Lichtenstein P, et al. Familial aggregation of amyotrophic lateral sclerosis. Ann Neurol. 2009;66(1):94–99.
  • Al-Chalabi A, Calvo A, Chio A, et al. Analysis of amyotrophic lateral sclerosis as a multistep process: a population-based modelling study. Lancet Neurol. 2014;13(11):1108–1113.
  • Lattante S, Conte A, Zollino M, et al. Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease. Neurology. 2012;79(1):66–72.
  • Al-Chalabi A, Fang F, Hanby MF, et al. An estimate of amyotrophic lateral sclerosis heritability using twin data. J Neurol Neurosurg Psychiatry. 2010;81(12):1324–1326.
  • Dejesus-Hernandez M, Rayaprolu S, Soto-Ortolaza AI, et al. Analysis of the C9orf72 repeat in Parkinson’s disease, essential tremor and restless legs syndrome. Parkinsonism Relat Disord. 2013;19(2):198–201.
  • Williams KL, Topp S, Yang S, et al. CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia. Nat Commun. 2016;7:11253.
  • Kwiatkowski TJ Jr., Bosco DA, Leclerc AL, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science (80-). 2009;323(5918):1205–1208.
  • Vance C, Rogelj B, Hortobagyi T, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science (80-). 2009;323(5918):1208–1211.
  • Johnson JO, Pioro EP, Boehringer A, et al. Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat Neurosci. 2014;17(5):664–666.
  • Maruyama H, Morino H, Ito H, et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature. 2010;465(7295):223–226.
  • Rosen DR. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;364:362.
  • Yang Y, Tang L, Zhang N, et al. Six SQSTM1 mutations in a Chinese amyotrophic lateral sclerosis cohort. Amyotroph Lateral Scler Frontotemporal Degener. 2015;16(5–6):378–384.
  • Kabashi E, Valdmanis PN, Dion P, et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet. 2008;40(5):572–574.
  • Cirulli ET, Lasseigne BN, Petrovski S, et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science (80-). 2015;347(6229):1436–1441.
  • Smith BN, Ticozzi N, Fallini C, et al. Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS. Neuron. 2014;84(2):324–331.
  • Deng HX, Chen W, Hong ST, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature. 2011;477(7363):211–215.
  • Nishimura AL, Mitne-Neto M, Silva HC, et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet. 2004;75(5):822–831.
  • Johnson JO, Mandrioli J, Benatar M, et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron. 2010;68(5):857–864.
  • Daoud H, Belzil V, Martins S, et al. Association of long ATXN2 CAG repeat sizes with increased risk of amyotrophic lateral sclerosis. Arch Neurol. 2011;68(6):739–742.
  • Geschwind DH, Perlman S, Figueroa CP, et al. The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia. Am J Hum Genet. 1997;60(4):842–850.
  • Furtado S, Farrer M, Tsuboi Y, et al. SCA-2 presenting as parkinsonism in an Alberta family: clinical, genetic, and PET findings. Neurology. 2002;59(10):1625–1627.
  • Lindquist SG, Duno M, Batbayli M, et al. Corticobasal and ataxia syndromes widen the spectrum of C9ORF72 hexanucleotide expansion disease. Clin Genet. 2013;83(3):279–283.
  • Watson A, Pribadi M, Chowdari K, et al. C9orf72 repeat expansions that cause frontotemporal dementia are detectable among patients with psychosis. Psychiatry Res. 2016;235:200–202.
  • Bannwarth S, Ait-El-Mkadem S, Chaussenot A, et al. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain. 2014;137(Pt 8):2329–2345.
  • Ajroud-Driss S, Fecto F, Ajroud K, et al. Mutation in the novel nuclear-encoded mitochondrial protein CHCHD10 in a family with autosomal dominant mitochondrial myopathy. Neurogenetics. 2015;16(1):1–9.
  • Penttila S, Jokela M, Bouquin H, et al. Late onset spinal motor neuronopathy is caused by mutation in CHCHD10. Ann Neurol. 2015;77(1):163–172.
  • Broustal O, Camuzat A, Guillot-Noel L, et al. FUS mutations in frontotemporal lobar degeneration with amyotrophic lateral sclerosis. J Alzheimer’s Dis. 2010;22(3):765–769.
  • Merner ND, Girard SL, Catoire H, et al. Exome sequencing identifies FUS mutations as a cause of essential tremor. Am J Hum Genet. 2012;91(2):313–319.
  • Huey ED, Ferrari R, Moreno JH, et al. FUS and TDP43 genetic variability in FTD and CBS. Neurobiol Aging. 2012;33(5):1016.e9-17.
  • Senderek J, Garvey SM, Krieger M, et al. Autosomal-dominant distal myopathy associated with a recurrent missense mutation in the gene encoding the nuclear matrix protein, matrin 3. Am J Hum Genet. 2009;84(4):511–518.
  • Hortobagyi T, Troakes C, Nishimura AL, et al. Optineurin inclusions occur in a minority of TDP-43 positive ALS and FTLD-TDP cases and are rarely observed in other neurodegenerative disorders. Acta Neuropathol. 2011;121(4):519–527.
  • Rezaie T, Child A, Hitchings R, et al. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science (80-). 2002;295(5557):1077–1079.
  • Van Der Zee J, Van Langenhove T, Kovacs GG, et al. Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration. Acta Neuropathol. 2014;128(3):397–410.
  • Bucelli RC, Arhzaouy K, Pestronk A, et al. SQSTM1 splice site mutation in distal myopathy with rimmed vacuoles. Neurology. 2015;85(8):665–674.
  • Laurin N, Brown JP, Morissette J, et al. Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Hum Genet. 2002;70(6):1582–1588.
  • Borroni B, Bonvicini C, Alberici A, et al. Mutation within TARDBP leads to frontotemporal dementia without motor neuron disease. Hum Mutat. 2009;30(11):E974–83.
  • Gijselinck I, Van Mossevelde S, Van Der Zee J, et al. Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort. Neurology. 2015;85(24):2116–2125.
  • Ugwu F, Rollinson S, Harris J, et al. UBQLN2 variant of unknown significance in frontotemporal lobar degeneration. Neurobiol Aging. 2015;36(1):546.e15-6.
  • Kosac V, Freitas MR, Prado FM, et al. Familial adult spinal muscular atrophy associated with the VAPB gene: report of 42 cases in Brazil. Arq Neuropsiquiatr. 2013;71(10):788–790.
  • Watts GD, Wymer J, Kovach MJ, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet. 2004;36(4):377–381.
  • Gonzalez MA, Feely SM, Speziani F, et al. A novel mutation in VCP causes Charcot-Marie-Tooth Type 2 disease. Brain. 2014;137(Pt 11):2897–2902.
  • Blokhuis AM, Groen EJ, Koppers M, et al. Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol. 2013;125(6):777–794.
  • Saberi S, Stauffer JE, Schulte DJ, et al. Neuropathology of amyotrophic lateral sclerosis and its variants. Neurol Clin. 2015;33(4):855–876.
  • Kanekura K, Yagi T, Cammack AJ, et al. Poly-dipeptides encoded by the C9ORF72 repeats block global protein translation. Hum Mol Genet. 2016;25(9):1803–1813.
  • Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis. The Lancet. 2011;377(9769):942–955.
  • Miller RG, Gelinas DF, O’Connor P. Amyotrophic lateral sclerosis: demos medical pub. 2005. p. 258.
  • Brooks BR, Miller RG, Swash M, et al. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1(5):293–299.
  • Mateen FJ, Carone M, Sorenson EJ. Patients who survive 5 years or more with ALS in Olmsted County, 1925–2004. J Neurol Neurosurg Psychiatry. 2010;81(10):1144–1146.
  • Kumar V, Islam A, Hassan MI, et al. Therapeutic progress in amyotrophic lateral sclerosis-beginning to learning. Eur J Med Chem. 2016;121:903–917.
  • Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group N Engl J Med. 1994;330(9):585–591.
  • Beghi E, Chio A, Couratier P, et al. The epidemiology and treatment of ALS: focus on the heterogeneity of the disease and critical appraisal of therapeutic trials. Amyotroph Lateral Scler. 2011;12(1):1–10.
  • Swinnen B, Robberecht W. The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol. 2014;10(11):661–670.
  • Turner MR, Parton MJ, Shaw CE, et al. Prolonged survival in motor neuron disease: a descriptive study of the King’s database 1990-2002. J Neurol Neurosurg Psychiatry. 2003;74(7):995–997.
  • Van Den Berg-Vos R, Visser J, Kalmijn S, et al. A long-term prospective study of the natural course of sporadic adult-onset lower motor neuron syndromes. Arch Neurol. 2009;66(6):751–757.
  • Soraru G, Ermani M, Logroscino G, et al. Natural history of upper motor neuron-dominant ALS. Amyotroph Lateral Scler. 2010;11(5):424–429.
  • Turner MR, Swash M. The expanding syndrome of amyotrophic lateral sclerosis: a clinical and molecular odyssey. J Neurol Neurosurg Psychiatry. 2015;86(6):667–673.
  • McCluskey L, Vandriel S, Elman L, et al. ALS-Plus syndrome: non-pyramidal features in a large ALS cohort. J Neurol Sci. 2014;345(1–2):118–124.
  • McCombe PA, Henderson RD. The role of immune and inflammatory mechanisms in ALS. Curr Mol Med. 2011;11(3):246–254.
  • Ngo ST, Steyn FJ, McCombe PA. Body mass index and dietary intervention: implications for prognosis of amyotrophic lateral sclerosis. J Neurol Sci. 2014;340:5–12.
  • Ioannides ZA, Ngo ST, Henderson RD, et al. Altered metabolic homeostasis in amyotrophic lateral sclerosis: mechanisms of energy imbalance and contribution to disease progression. Neurodegener Dis. 2016;16(5–6):382–397.
  • Massman PJ, Sims J, Cooke N, et al. Prevalence and correlates of neuropsychological deficits in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 1996;61(5):450–455.
  • Ringholz GM, Appel SH, Bradshaw M, et al. Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology. 2005;65(4):586–590.
  • Rippon GA, Scarmeas N, Gordon PH, et al. An observational study of cognitive impairment in amyotrophic lateral sclerosis. Arch Neurol. 2006;63(3):345–352.
  • Gordon PH, Goetz RR, Rabkin JG, et al. A prospective cohort study of neuropsychological test performance in ALS. Amyotroph Lateral Scl. 2010;11(3):312–320.
  • Witgert M, Salamone AR, Strutt AM, et al. Frontal-lobe mediated behavioral dysfunction in amyotrophic lateral sclerosis. Eur J Neurol. 2010;17(1):103–110.
  • Lillo P, Mioshi E, Zoing MC, et al. How common are behavioural changes in amyotrophic lateral sclerosis? Amyotroph Lateral Scl. 2011;12(1):45–51.
  • Oh SI, Park A, Kim HJ, et al. Spectrum of cognitive impairment in Korean ALS patients without known genetic mutations. Plos One. 2014;9(2):e87163.
  • Cui B, Cui L, Gao J, et al. Cognitive Impairment in Chinese Patients with Sporadic Amyotrophic Lateral Sclerosis. Plos One. 2015;10(9):e0137921.
  • Phukan J, Elamin M, Bede P, et al. The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg Psychiatry. 2012;83(1):102–108.
  • Montuschi A, Iazzolino B, Calvo A, et al. Cognitive correlates in amyotrophic lateral sclerosis: a population-based study in Italy. J Neurol Neurosurg Psychiatry. 2015;86(2):168–173.
  • Atalaia A, De Carvalho M, Evangelista T, et al. Sleep characteristics of amyotrophic lateral sclerosis in patients with preserved diaphragmatic function. Amyotroph Lateral Scl. 2007;8(2):101–105.
  • Lo Coco D, Piccoli F, La Bella V. Restless legs syndrome in patients with amyotrophic lateral sclerosis. Move Disord. 2010;25(15):2658–2661.
  • Lo Coco D, Mattaliano P, Spataro R, et al. Sleep-wake disturbances in patients with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2011;82(8):839–842.
  • Limousin N, Blasco H, Corcia P, et al. The high frequency of restless legs syndrome in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scl. 2011;12(4):303–306.
  • Lo CD, Puligheddu M, Mattaliano P, et al. REM sleep behavior disorder and periodic leg movements during sleep in ALS. Acta Neurol Scand. 2016. DOI: 10.1111/ane.12593.
  • Jacobs L, Bozian D, Heffner RR Jr., et al. An eye movement disorder in amyotrophic lateral sclerosis. Neurology. 1981;31(10):1282–1287.
  • Ohki M, Kanayama R, Nakamura T, et al. Ocular abnormalities in amyotrophic lateral sclerosis. Acta Oto-Laryngologica Supplementum. 1994;511:138–142.
  • Palmowski A, Jost WH, Prudlo J, et al. Eye movement in amyotrophic lateral sclerosis: a longitudinal study. Ger J Ophthalmol. 1995;4(6):355–362.
  • Kawamura Y, Dyck PJ, Shimono M, et al. Morphometric comparison of the vulnerability of peripheral motor and sensory neurons in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 1981;40(6):667–675.
  • Jamal GA, Weir AI, Hansen S, et al. Sensory involvement in motor neuron disease: further evidence from automated thermal threshold determination. J Neurol Neurosurg Psychiatry. 1985;48(9):906–910.
  • Radtke RA, Erwin A, Erwin CW. Abnormal sensory evoked potentials in amyotrophic lateral sclerosis. Neurology. 1986;36(6):796–801.
  • Gregory R, Mills K, Donaghy M. Progressive sensory nerve dysfunction in amyotrophic lateral sclerosis: a prospective clinical and neurophysiological study. J Neurol. 1993;240(5):309–314.
  • Pugdahl K, Fuglsang-Frederiksen A, De Carvalho M, et al. Generalised sensory system abnormalities in amyotrophic lateral sclerosis: a European multicentre study. J Neurol Neurosurg Psychiatry. 2007;78(7):746–749.
  • Nolano M, Provitera V, Manganelli F, et al. Nonmotor involvement in amyotrophic lateral sclerosis: new insight from nerve and vessel analysis in skin biopsy. Neuropathol Appl Neurobiol. 2016. DOI: 10.1111/nan.12332.
  • Dalla Bella E, Lombardi R, Porretta-Serapiglia C, et al. Amyotrophic lateral sclerosis causes small fiber pathology. Eur J Neurol. 2016;23(2):416–420.
  • Isak B, Tankisi H, Johnsen B, et al. Involvement of distal sensory nerves in amyotrophic lateral sclerosis. Muscle Nerve. 2016;54:1086–1092.
  • Chio A, Canosa A, Gallo S, et al. Pain in amyotrophic lateral sclerosis: a population-based controlled study. Eur J Neurol. 2012;19(4):551–555.
  • Wallace VC, Ellis CM, Burman R, et al. The evaluation of pain in amyotrophic lateral sclerosis: a case controlled observational study. Amyotroph Lateral Scler Frontotemporal Degener. 2014;15(7–8):520–527.
  • Hanisch F, Skudlarek A, Berndt J, et al. Characteristics of pain in amyotrophic lateral sclerosis. Brain Behav. 2015;5(3):e00296.
  • Stephens HE, Lehman E, Raheja D, et al. Pain in amyotrophic lateral sclerosis: patient and physician perspectives and practices. Amyotroph Lateral Scler Frontotemporal Degener. 2015;17(1–2):21–29.
  • Santos-Bento M, De Carvalho M, Evangelista T, et al. Sympathetic sudomotor function and amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2001;2(2):105–108.
  • Oey PL, Vos PE, Wieneke GH, et al. Subtle involvement of the sympathetic nervous system in amyotrophic lateral sclerosis. Muscle Nerve. 2002;25(3):402–408.
  • Shindo K, Watanabe H, Ohta E, et al. Sympathetic sudomotor neural function in amyotrophic lateral sclerosis. Amyotroph Lateral Scl. 2011;12(1):39–44.
  • Piccione EA, Sletten DM, Staff NP, et al. Autonomic system and amyotrophic lateral sclerosis. Muscle Nerve. 2015;51(5):676–679.
  • Dalla VL, De MB, Marinou K, et al. Cardiovascular neural regulation is impaired in amyotrophic lateral sclerosis patients. A study by spectral complexity analysis cardiovascular oscillations. Physiol Meas. 2015;36(4):659–670.
  • Hu F, Jin J, Qu Q, et al. Sympathetic skin response in amyotrophic lateral sclerosis. J Clin Neurophysiol. 2016;33(1):60–65.
  • Lopes De Carvalho ML, Motta R, Battaglia MA, et al. Urinary disorders in amyotrophic lateral sclerosis subjects. Amyotroph Lateral Scl. 2011;12(5):352–355.
  • Nubling GS, Mie E, Bauer RM, et al. Increased prevalence of bladder and intestinal dysfunction in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2014;15(3–4):174–179.
  • Arlandis S, Vazquez-Costa JF, Martinez-Cuenca E, et al. Urodynamic findings in amyotrophic lateral sclerosis patients with lower urinary tract symptoms: results from a pilot study. Neurourol Urodyn. 2016. DOI: 10.1002/nau.22976.
  • Carvalho M, Schwartz MS, Swash M. Involvement of the external anal sphincter in amyotrophic lateral sclerosis. Muscle Nerve. 1995;18(8):848–853.
  • Toepfer M, Folwaczny C, Lochmuller H, et al. Noninvasive (13)C-octanoic acid breath test shows delayed gastric emptying in patients with amyotrophic lateral sclerosis. Digestion. 1999;60(6):567–571.
  • Toepfer M, Schroeder M, Klauser A, et al. Delayed colonic transit times in amyotrophic lateral sclerosis assessed with radio-opaque markers. Eur J Med Res. 1997;2(11):473–476.
  • Wiedemann FR, Winkler K, Kuznetsov AV, et al. Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J Neurol Sci. 1998;156(1):65–72.
  • Vielhaber S, Kunz D, Winkler K, et al. Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic lateral sclerosis. Brain. 2000;123(Pt 7):1339–1348.
  • Krasnianski A, Deschauer M, Neudecker S, et al. Mitochondrial changes in skeletal muscle in amyotrophic lateral sclerosis and other neurogenic atrophies. Brain. 2005;128(Pt 8):1870–1876.
  • Jensen L, Jorgensen LH, Bech RD, et al. Skeletal muscle remodelling as a function of disease progression in amyotrophic lateral sclerosis. Biomed Res Int. 2016;2016:5930621.
  • Sakamoto H, Akamatsu M, Hirano M, et al. Multiple system involvement in a Japanese patient with a V31A mutation in the SOD1 gene. Amyotroph Lateral Scler Frontotemporal Degener. 2014;15(3–4):312–314.
  • Kobayashi Z, Tsuchiya K, Kubodera T, et al. FALS with Gly72Ser mutation in SOD1 gene: report of a family including the first autopsy case. J Neurol Sci. 2011;300(1–2):9–13.
  • Ebben MR, Shahbazi M, Lange DJ, et al. REM behavior disorder associated with familial amyotrophic lateral sclerosis. Amyotroph Lateral Scl. 2012;13(5):473–474.
  • Giannini F, Battistini S, Mancuso M, et al. D90A-SOD1 mutation in ALS: the first report of heterozygous Italian patients and unusual findings. Amyotroph Lateral Scl. 2010;11(1–2):216–219.
  • Dalla Bella E, Rigamonti A, Mantero V, et al. Heterozygous D90A-SOD1 mutation in a patient with facial onset sensory motor neuronopathy (FOSMN) syndrome: a bridge to amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2014;85(9):1009–1011.
  • Kawata A, Kato S, Hayashi H, et al. Prominent sensory and autonomic disturbances in familial amyotrophic lateral sclerosis with a Gly93Ser mutation in the SOD1 gene. J Neurol Sci. 1997;153(1):82–85.
  • Hineno A, Oyanagi K, Nakamura A, et al. Lower urinary tract dysfunction and neuropathological findings of the neural circuits controlling micturition in familial amyotrophic lateral sclerosis with L106V mutation in the SOD1 gene. Rinsho Shinkeigaku. 2016;56(2):69–76.
  • Shimizu T, Kawata A, Kato S, et al. Autonomic failure in ALS with a novel SOD1 gene mutation. Neurology. 2000;54(7):1534–1537.
  • Nakamura M, Bieniek KF, Lin WL, et al. A truncating SOD1 mutation, p.Gly141X, is associated with clinical and pathologic heterogeneity, including frontotemporal lobar degeneration. Acta Neuropathol. 2015;130(1):145–157.
  • Canosa A, Calvo A, Moglia C, et al. A familial ALS case carrying a novel p.G147C SOD1 heterozygous missense mutation with non-executive cognitive impairment. J Neurol Neurosurg Psychiatry. 2014;85(12):1437–1439.
  • Ju X, Liu W, Li X, et al. Two distinct clinical features and cognitive impairment in amyotrophic lateral sclerosis patients with TARDBP gene mutations in the Chinese population. Neurobiol Aging. 2016;38:216.e1-6.
  • Camdessanche JP, Belzil VV, Jousserand G, et al. Sensory and motor neuronopathy in a patient with the A382P TDP-43 mutation. Orphanet J Rare Dis. 2011;6:4.
  • Chio A, Calvo A, Moglia C, et al. Amyotrophic lateral sclerosis-frontotemporal lobar dementia in 3 families with p.Ala382Thr TARDBP mutations. Arch Neurol. 2010;67(8):1002–1009.
  • Borghero G, Floris G, Cannas A, et al. A patient carrying a homozygous p.A382T TARDBP missense mutation shows a syndrome including ALS, extrapyramidal symptoms, and FTD. Neurobiol Aging. 2011;32(12):2327.e1-5.
  • Gonzalez-Perez P, Cirulli ET, Drory VE, et al. Novel mutation in VCP gene causes atypical amyotrophic lateral sclerosis. Neurology. 2012;79(22):2201–2208.
  • Ito H, Nakamura M, Komure O, et al. Clinicopathologic study on an ALS family with a heterozygous E478G optineurin mutation. Acta Neuropathol. 2011;122(2):223–229.
  • Di L, Chen H, Da Y, et al. Atypical familial amyotrophic lateral sclerosis with initial symptoms of pain or tremor in a Chinese family harboring VAPB-P56S mutation. J Neurol. 2016;263(2):263–268.
  • Rubio MA, Herrando-Grabulosa M, Vilches JJ, et al. Involvement of sensory innervation in the skin of SOD1 G93A ALS mice. J Peripheral Nerv Syst JPNS. 2016;21:88–95.
  • Guo YS, Wu DX, Wu HR, et al. Sensory involvement in the SOD1-G93A mouse model of amyotrophic lateral sclerosis. Exp Mol Med. 2009;41(3):140–150.
  • Medina DX, Orr ME, Oddo S. Accumulation of C-terminal fragments of transactive response DNA-binding protein 43 leads to synaptic loss and cognitive deficits in human TDP-43 transgenic mice. Neurobiol Aging. 2014;35(1):79–87.
  • Hatzipetros T, Bogdanik LP, Tassinari VR, et al. C57BL/6J congenic Prp-TDP43A315T mice develop progressive neurodegeneration in the myenteric plexus of the colon without exhibiting key features of ALS. Brain Res. 2014;1584:59–72.
  • Qiu H, Lee S, Shang Y, et al. ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects. J Clin Invest. 2014;124(3):981–999.
  • Rodriguez-Ortiz CJ, Hoshino H, Cheng D, et al. Neuronal-specific overexpression of a mutant valosin-containing protein associated with IBMPFD promotes aberrant ubiquitin and TDP-43 accumulation and cognitive dysfunction in transgenic mice. Am J Pathol. 2013;183(2):504–515.
  • Custer SK, Neumann M, Lu H, et al. Transgenic mice expressing mutant forms VCP/p97 recapitulate the full spectrum of IBMPFD including degeneration in muscle, brain and bone. Hum Mol Genet. 2010;19(9):1741–1755.
  • Gorrie GH, Fecto F, Radzicki D, et al. Dendritic spinopathy in transgenic mice expressing ALS/dementia-linked mutant UBQLN2. Proc Natl Acad Sci U S A. 2014;111(40):14524–14529.
  • Liu Y, Pattamatta A, Zu T, et al. C9orf72 BAC mouse model with motor deficits and neurodegenerative features of ALS/FTD. Neuron. 2016;90:521–534.
  • Ringholz GM, Appel SH, Bradshaw M, et al. Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology. 2005;65(4):586–590.
  • Achi EY, Rudnicki SA. ALS and frontotemporal dysfunction: a review. Neurol Res Int. 2012;2012:806306.
  • Strong MJ, Grace GM, Freedman M, et al. Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2009;10(3):131–146.
  • Abrahams S, Leigh PN, Goldstein LH. Cognitive change in ALS: a prospective study. Neurology. 2005;64(7):1222–1226.
  • Murphy J, Factor-Litvak P, Goetz R, et al. Cognitive-behavioral screening reveals prevalent impairment in a large multicenter ALS cohort. Neurology. 2016;86(9):813–820.
  • Ye S, Ji Y, Li C, et al. The Edinburgh cognitive and behavioural ALS screen in a Chinese amyotrophic lateral sclerosis population. Plos One. 2016;11(5):e0155496.
  • Poletti B, Solca F, Carelli L, et al. The validation of the Italian Edinburgh Cognitive and Behavioural ALS Screen (ECAS). Amyotroph Lateral Scler Frontotemporal Degener. 2016;17(7–8):489–498.
  • Bock M, Duong YN, Kim A, et al. Cognitive-behavioral changes in amyotrophic lateral sclerosis: screening prevalence and impact on patients and caregivers. Amyotroph Lateral Scler Frontotemporal Degener. 2016;17(5–6):366–373.
  • Nidos A, Kasselimis DS, Simos PG, et al. Frontotemporal dysfunction in amyotrophic lateral sclerosis: a discriminant function analysis. Neurodegener Dis. 2016;16(3–4):140–146.
  • Turon-Sans J, Gascon-Bayarri J, Rene R, et al. Cognitive impairment in ALS patients and validation of the Spanish version of the ALS-CBS test. Amyotroph Lateral Scler Frontotemporal Degener. 2016;17(3–4):221–227.
  • Wei Q, Chen X, Zheng Z, et al. Screening for cognitive impairment in a Chinese ALS population. Amyotroph Lateral Scler Frontotemporal Degener. 2015;16(1–2):40–45.
  • Osborne RA, Sekhon R, Johnston W, et al. Screening for frontal lobe and general cognitive impairment in patients with amyotrophic lateral sclerosis. J Neurol Sci. 2014;336(1–2):191–196.
  • Wei Q, Chen X, Zheng Z, et al. Frontal lobe function and behavioral changes in amyotrophic lateral sclerosis: a study from Southwest China. J Neurol. 2014;261(12):2393–2400.
  • Lule D, Burkhardt C, Abdulla S, et al. The Edinburgh cognitive and behavioural amyotrophic lateral sclerosis screen: a cross-sectional comparison of established screening tools in a German-Swiss population. Amyotroph Lateral Scler Frontotemporal Degener. 2015;16(1–2):16–23.
  • Oskarsson B, Quan D, Rollins YD, et al. Using the Frontal Assessment Battery to identify executive function impairments in amyotrophic lateral sclerosis: A preliminary experience. Amyotroph Lateral Scler. 2010;11(1–2):244–247.
  • Radakovic R, Stephenson L, Colville S, et al. Multidimensional apathy in ALS: validation of the Dimensional Apathy Scale. J Neurol Neurosurg Psychiatry. 2016;87(6):663–669.
  • Lillo P, Garcin B, Hornberger M, et al. Neurobehavioral features in frontotemporal dementia with amyotrophic lateral sclerosis. Arch Neurol. 2010;67(7):826–830.
  • Olojugba C, De Silva R, Kartsounis LD, et al. De Clerambault’s syndrome (erotomania) as a presenting feature of fronto-temporal dementia and motor neurone disease (FTD-MND). Behav Neurol. 2007;18(3):193–195.
  • Anneser JM, Krzovska M, Borasio GD, et al. Occurrence of the “applause sign” in patients with amyotrophic lateral sclerosis. Clin Neurol Neurosurg. 2015;137:8–10.
  • Strong MJ, Grace GM, Orange JB, et al. A prospective study of cognitive impairment in ALS. Neurology. 1999;53(8):1665–1670.
  • Robinson KM, Lacey SC, Grugan P, et al. Cognitive functioning in sporadic amyotrophic lateral sclerosis: a six month longitudinal study. J Neurol Neurosurg Psychiatry. 2006;77(5):668–670.
  • Trojsi F, Santangelo G, Caiazzo G, et al. Neuropsychological assessment in different King’s clinical stages of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2016;17(3–4):228–235.
  • Kasper E, Zydatiss K, Schuster C, et al. No change in executive performance in ALS patients: a longitudinal neuropsychological study. Neurodegener Dis. 2016;16(3–4):184–191.
  • Le Ber I. Frontotemporal lobar dementia and amyotrophic lateral sclerosis associated with c9orf72 expansion. Rev Neurol (Paris). 2015;171(6–7):475–481.
  • Millecamps S, Boillee S, Le Ber I, et al. Phenotype difference between ALS patients with expanded repeats in C9ORF72 and patients with mutations in other ALS-related genes. J Med Genet. 2012;49(4):258–263.
  • Devenney E, Hornberger M, Irish M, et al. Frontotemporal dementia associated with the C9ORF72 mutation: a unique clinical profile. JAMA Neurol. 2014;71(3):331–339.
  • Floris G, Borghero G, Cannas A, et al. Constructional apraxia in frontotemporal dementia associated with the C9orf72 mutation: broadening the clinical and neuropsychological phenotype. Amyotroph Lateral Scler Frontotemporal Degener. 2015;16(1–2):8–15.
  • Floris G, Borghero G, Cannas A, et al. Frontotemporal dementia with psychosis, parkinsonism, visuo-spatial dysfunction, upper motor neuron involvement associated to expansion of C9ORF72: a peculiar phenotype? J Neurol. 2012;259(8):1749–1751.
  • Wilke C, Pomper JK, Biskup S, et al. Atypical parkinsonism in C9orf72 expansions: a case report and systematic review of 45 cases from the literature. J Neurol. 2016;263(3):558–574.
  • Chio A, Brunetti M, Barberis M, et al. The role of APOE in the occurrence of frontotemporal dementia in amyotrophic lateral sclerosis. JAMA Neurol. 2016;73(4):425–430.
  • Ducharme S, Kolivakis TT. Psychosis secondary to ALS in the absence of dementia: a convincing case. J Neuropsychiatry Clin Neurosci. 2011;23(3):E33.
  • Enns MW, Barakat SM, Brown JH. Amyotrophic lateral sclerosis presenting with psychosis. Psychosomatics. 1993;34(5):453–455.
  • Cui B, Cui L, Liu M, et al. Amyotrophic lateral sclerosis with frontotemporal dementia presented with prominent psychosis. Chin Med J. 2014;127(22):3996–3998.
  • Friedlander JW, Kesert BH. Role of psychosis in amyotrophic lateral sclerosis; report of case. Arch Neurol Psychiatry. 1948;59(4):554.
  • Friedlander JW, Kesert 4BH. The role of psychosis in amyotrophic lateral sclerosis. J Nerv Ment Dis. 1948;107(3):243–250.
  • Snowden JS, Harris J, Adams J, et al. Psychosis associated with expansions in the C9orf72 gene: the influence of a 10 base pair gene deletion. J Neurol Neurosurg Psychiatry. 2016;87(5):562–563.
  • Kertesz A, Ang LC, Jesso S, et al. Psychosis and hallucinations in frontotemporal dementia with the C9ORF72 mutation: a detailed clinical cohort. Cogn Behav Neurol. 2013;26(3):146–154.
  • Carvalho TL, Almeida LM, Lorega CM, et al. Depression and anxiety in individuals with amyotrophic lateral sclerosis: a systematic review. Trends Psychiatry Psychother. 2016;38(1):1–5.
  • Thakore NJ, Pioro EP. Depression in ALS in a large self-reporting cohort. Neurology. 2016;86(11):1031–1038.
  • Atassi N, Cook A, Pineda CM, et al. Depression in amyotrophic lateral sclerosis. Amyotroph Lateral Scl. 2011;12(2):109–112.
  • Ferentinos P, Paparrigopoulos T, Rentzos M, et al. Prevalence of major depression in ALS: comparison of a semi-structured interview and four self-report measures. Amyotroph Lateral Scl. 2011;12(4):297–302.
  • Gil J, Funalot B, Verschueren A, et al. Causes of death amongst French patients with amyotrophic lateral sclerosis: a prospective study. Eur J Neurol. 2008;15(11):1245–1251.
  • Fang F, Valdimarsdottir U, Furst CJ, et al. Suicide among patients with amyotrophic lateral sclerosis. Brain. 2008;131(Pt 10):2729–2733.
  • Maessen M, Veldink JH, Onwuteaka-Philipsen BD, et al. Euthanasia and physician-assisted suicide in amyotrophic lateral sclerosis: a prospective study. J Neurol. 2014;261(10):1894–1901.
  • Takeuchi R, Tada M, Shiga A, et al. Heterogeneity of cerebral TDP-43 pathology in sporadic amyotrophic lateral sclerosis: evidence for clinico-pathologic subtypes. Acta Neuropathol Commun. 2016;4(1):61.
  • Stojkovic T, Stefanova E, Pekmezovic T, et al. Executive dysfunction and survival in patients with amyotrophic lateral sclerosis: preliminary report from a Serbian centre for motor neuron disease. Amyotroph Lateral Scler Frontotemporal Degener. 2016;17(7–8):543–554.
  • Hu WT, Shelnutt M, Wilson A, et al. Behavior matters–cognitive predictors of survival in amyotrophic lateral sclerosis. Plos One. 2013;8(2):e57584.
  • Ahmed RM, Caga J, Devenney E, et al. Cognition and eating behavior in amyotrophic lateral sclerosis: effect on survival. J Neurol. 2016;263(8):1593–1603.
  • Caga J, Turner MR, Hsieh S, et al. Apathy is associated with poor prognosis in amyotrophic lateral sclerosis. Eur J Neurol. 2016;23(5):891–897.
  • Cykowski MD, Takei H, Schulz PE, et al. TDP-43 pathology in the basal forebrain and hypothalamus of patients with amyotrophic lateral sclerosis. Acta Neuropathol Commun. 2014;2:171.
  • Swash M, Scholtz CL, Vowles G, et al. Selective and asymmetric vulnerability of corticospinal and spinocerebellar tracts in motor neuron disease. J Neurol Neurosurg Psychiatry. 1988;51(6):785–789.
  • Tan RH, Kril JJ, McGinley C, et al. Cerebellar neuronal loss in amyotrophic lateral sclerosis cases with ATXN2 intermediate repeat expansions. Ann Neurol. 2016;79(2):295–305.
  • Troakes C, Maekawa S, Wijesekera L, et al. An MND/ALS phenotype associated with C9orf72 repeat expansion: abundant p62-positive, TDP-43-negative inclusions in cerebral cortex, hippocampus and cerebellum but without associated cognitive decline. Neuropathology. 2012;32(5):505–514.
  • Prell T, Grosskreutz J. The involvement of the cerebellum in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14(7–8):507–515.
  • Tan RH, Devenney E, Dobson-Stone C, et al. Cerebellar integrity in the amyotrophic lateral sclerosis-frontotemporal dementia continuum. Plos One. 2014;9(8):e105632.
  • Belzil VV, Bauer PO, Gendron TF, et al. Characterization of DNA hypermethylation in the cerebellum of c9FTD/ALS patients. Brain Res. 2014;1584:15–21.
  • Mizutani T, Aki M, Shiozawa R, et al. Development of ophthalmoplegia in amyotrophic lateral sclerosis during long-term use of respirators. J Neurol Sci. 1990;99(2–3):311–319.
  • Sharma R, Hicks S, Berna CM, et al. Oculomotor dysfunction in amyotrophic lateral sclerosis: a comprehensive review. Arch Neurol. 2011;68(7):857–861.
  • Donaghy C, Thurtell MJ, Pioro EP, et al. Eye movements in amyotrophic lateral sclerosis and its mimics: a review with illustrative cases. J Neurol Neurosurg Psychiatry. 2011;82(1):110–116.
  • Okuda B, Yamamoto T, Yamasaki M, et al. Motor neuron disease with slow eye movements and vertical gaze palsy. Acta Neurol Scand. 1992;85(1):71–76.
  • Pinto S, De Carvalho M. Amyotrophic lateral sclerosis patients and ocular ptosis. Clin Neurol Neurosurg. 2008;110(2):168–170.
  • Steele JC. Parkinsonism-dementia complex of Guam. Move Disord. 2005;20(Suppl 12):S99–s107.
  • Manno C, Lipari A, Bono V, et al. Sporadic Parkinson disease and amyotrophic lateral sclerosis complex (Brait-Fahn-Schwartz disease). J Neurol Sci. 2013;326(1–2):104–106.
  • Pupillo E, Bianchi E, Messina P, et al. Extrapyramidal and cognitive signs in amyotrophic lateral sclerosis: A population based cross-sectional study. Amyotroph Lateral Scler Frontotemporal Degener. 2015;16(5–6):324–330.
  • Desai J, Swash M. Extrapyramidal involvement in amyotrophic lateral sclerosis: backward falls and retropulsion. J Neurol Neurosurg Psychiatry. 1999;67(2):214–216.
  • Cannas A, Solla P, Borghero G, et al. C9ORF72 intermediate repeat expansion in patients affected by atypical parkinsonian syndromes or Parkinson’s disease complicated by psychosis or dementia in a Sardinian population. J Neurol. 2015;262(11):2498–2503.
  • Truini A, Biasiotta A, Onesti E, et al. Small-fibre neuropathy related to bulbar and spinal-onset in patients with ALS. J Neurol. 2015;262(4):1014–1018.
  • Isaacs JD, Dean AF, Shaw CE, et al. Amyotrophic lateral sclerosis with sensory neuropathy: part of a multisystem disorder? J Neurol Neurosurg Psychiatry. 2007;78(7):750–753.
  • Wakabayashi K, Horikawa Y, Oyake M, et al. Sporadic motor neuron disease with severe sensory neuronopathy. Acta Neuropathol. 1998;95(4):426–430.
  • Ziso B, Williams TL, Walters RJ, et al. Facial onset sensory and motor neuronopathy: further evidence for a TDP-43 proteinopathy. Case Rep Neurol. 2015;7(1):95–100.
  • Rivera I, Ajroud-Driss S, Casey P, et al. Prevalence and characteristics of pain in early and late stages of ALS. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14(5–6):369–372.
  • Werneck LC, Bezerra R, Silveira Neto O, et al. A clinical epidemiological study of 251 cases of amyotrophic lateral sclerosis in the south of Brazil. Arq Neuropsiquiatr. 2007;65(2a):189–195.
  • Caress JB, Ciarlone SL, Sullivan EA, et al. Natural history of muscle cramps in amyotrophic lateral sclerosis. Muscle Nerve. 2016;53(4):513–517.
  • Baltadzhieva R, Gurevich T, Korczyn AD. Autonomic impairment in amyotrophic lateral sclerosis. Curr Opin Neurol. 2005;18(5):487–493.
  • Merico A, Cavinato M. Autonomic dysfunction in the early stage of ALS with bulbar involvement. Amyotroph Lateral Scl. 2011;12(5):363–367.
  • Beck M, Giess R, Magnus T, et al. Progressive sudomotor dysfunction in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2002;73(1):68–70.
  • Takeda S, Yamada M, Kawasaki K, et al. Motor neuron disease with multi-system involvement presenting as tetraparesis, ophthalmoplegia and sensori-autonomic dysfunction. Acta Neuropathol. 1994;88(3):193–200.
  • Pinto S, Pinto A, De Carvalho M. Decreased heart rate variability predicts death in amyotrophic lateral sclerosis. Muscle Nerve. 2012;46(3):341–345.
  • Gershon MD. Genes and lineages in the formation of the enteric nervous system. Curr Opin Neurobiol. 1997;7(1):101–109.
  • Gershon MD. The enteric nervous system: a second brain. Hosp Pract (1995). 1999;34(7):31-2 passim.
  • Toepfer M, Folwaczny C, Klauser A, et al. Gastrointestinal dysfunction in amyotrophic lateral sclerosis. Amyotroph Lateral Scl. 1999;1(1):15–19.
  • Raheja D, Stephens HE, Lehman E, et al. Patient-reported problematic symptoms in an ALS treatment trial. Amyotroph Lateral Scler Frontotemporal Degener. 2016;17(3-4):198–205.
  • Kihira T, Yoshida S, Yoshimasu F, et al. Involvement of Onuf’s nucleus in amyotrophic lateral sclerosis. J Neurol Sci. 1997;147(1):81–88.
  • Loeffler JP, Picchiarelli G, Dupuis L. Gonzalez De Aguilar JL. Role Skeletal Muscle Amyotrophic Lateral Sclerosis Brain Pathol. 2016;26(2):227–236.
  • Boyer JG, Ferrier A, Kothary R. More than a bystander: the contributions of intrinsic skeletal muscle defects in motor neuron diseases. Front Physiol. 2013;4:356.
  • Wong M, Martin LJ. Skeletal muscle-restricted expression of human SOD1 causes motor neuron degeneration in transgenic mice. Hum Mol Genet. 2010;19(11):2284–2302.
  • Martini M, Dobrowolny G, Aucello M, et al. Postmitotic expression of SOD1(G93A) gene affects the identity of myogenic cells and inhibits myoblasts differentiation. Mediators Inflamm. 2015;2015:537853.
  • Dobrowolny G, Bernardini C, Martini M, et al. Muscle expression of SOD1(G93A) modulates microRNA and mRNA transcription pattern associated with the myelination process in the spinal cord of transgenic mice. Front Cell Neurosci. 2015;9:463.
  • Fecto F, Yan J, Vemula SP, et al. SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol. 2011;68(11):1440–1446.
  • Ono S. The skin in amyotrophic lateral sclerosis. Amyotroph Lateral Scl. 2000;1(3):191–199.
  • Tsukie T, Masaki H, Yoshida S, et al. Decreased amount of collagen in the skin of amyotrophic lateral sclerosis in the Kii Peninsula of Japan. Acta Neurol Taiwan. 2014;23(3):82–89.
  • Kolde G, Bachus R, Ludolph AC. Skin involvement in amyotrophic lateral sclerosis. Lancet. 1996;347(9010):1226–1227.
  • Ono S, Yamauchi M. Elastin cross-linking in the skin from patients with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 1994;57(1):94–96.
  • Ono S, Toyokura Y, Mannen T, et al. Amyotrophic lateral sclerosis: histologic, histochemical, and ultrastructural abnormalities of skin. Neurology. 1986;36(7):948–956.
  • Ono S, Yamauchi M. Collagen fibril diameter and its relation to cross-linking of collagen in the skin of patients with amyotrophic lateral sclerosis. J Neurol Sci. 1993;119(1):74–78.
  • Fukazawa H, Tsukie T, Higashida K, et al. An immunohistochemical study of increased tumor necrosis factor-alpha in the skin of patients with amyotrophic lateral sclerosis. J Clin Neurosci. 2013;20(10):1371–1376.
  • Higashida K, Tsukie T, Fukazawa H, et al. Immunohistochemical studies of angiogenin in the skin of patients with amyotrophic lateral sclerosis. J Neurol Sci. 2013;326(1–2):18–23.
  • Nomura M, Oketa Y, Yasui K, et al. Expression of hepatocyte growth factor in the skin of amyotrophic lateral sclerosis. Acta Neurol Scand. 2012;125(6):389–397.
  • Suzuki M, Watanabe T, Mikami H, et al. Immunohistochemical studies of vascular endothelial growth factor in skin of patients with amyotrophic lateral sclerosis. J Neurol Sci. 2009;285(1–2):125–129.
  • Ono S, Hu J, Shimizu N, et al. Increased interleukin-6 of skin and serum in amyotrophic lateral sclerosis. J Neurol Sci. 2001;187(1–2):27–34.
  • Fang L, Huber-Abel F, Teuchert M, et al. Linking neuron and skin: matrix metalloproteinases in amyotrophic lateral sclerosis (ALS). J Neurol Sci. 2009;285(1–2):62–66.
  • Oketa Y, Higashida K, Fukasawa H, et al. Abundant FUS-immunoreactive pathology in the skin of sporadic amyotrophic lateral sclerosis. Acta Neurol Scand. 2013;128(4):257–264.
  • Ishikawa H, Yasui K, Oketa Y, et al. Increased expression of valosin-containing protein in the skin of patients with amyotrophic lateral sclerosis. J Clin Neurosci. 2012;19(4):522–526.
  • Yasui K, Oketa Y, Higashida K, et al. Increased progranulin in the skin of amyotrophic lateral sclerosis: an immunohistochemical study. J Neurol Sci. 2011;309(1–2):110–114.
  • Suzuki M, Mikami H, Watanabe T, et al. Increased expression of TDP-43 in the skin of amyotrophic lateral sclerosis. Acta Neurol Scand. 2010;122(5):367–372.
  • Watanabe T, Okeda Y, Yamano T, et al. An immunohistochemical study of ubiquitin in the skin of sporadic amyotrophic lateral sclerosis. J Neurol Sci. 2010;298(1–2):52–56.
  • McGoldrick P, Joyce PI, Fisher EM, et al. Rodent models of amyotrophic lateral sclerosis. Biochim Biophys Acta. 2013;1832(9):1421–1436.
  • Picher-Martel V, Valdmanis PN, Gould PV, et al. From animal models to human disease: a genetic approach for personalized medicine in ALS. Acta Neuropathol Commun. 2016;4(1):70.
  • Swarup V, Phaneuf D, Bareil C, et al. Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments. Brain. 2011;134(Pt 9):2610–2626.
  • Caccamo A, Majumder S, Oddo S. Cognitive decline typical of frontotemporal lobar degeneration in transgenic mice expressing the 25-kDa C-terminal fragment of TDP-43. Am J Pathol. 2012;180(1):293–302.
  • Liu R, Sheng ZF, Cai B, et al. Increased orexin expression promotes sleep/wake disturbances in the SOD1-G93A mouse model of amyotrophic lateral sclerosis. Chin Med J. 2015;128(2):239–244.
  • Vercruysse P, Sinniger J, El Oussini H, et al. Alterations in the hypothalamic melanocortin pathway in amyotrophic lateral sclerosis. Brain. 2016;139(Pt 4):1106–1122.
  • Esmaeili MA, Panahi M, Yadav S, et al. Premature death of TDP-43 (A315T) transgenic mice due to gastrointestinal complications prior to development of full neurological symptoms of amyotrophic lateral sclerosis. Int J Exp Pathol. 2013;94(1):56–64.
  • Leigh PN, Whitwell H, Garofalo O, et al. Ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis. Morphology, distribution, and specificity. Brain. 1991;114(Pt 2):775–788.
  • Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science (80-). 2006;314(5796):130–133.
  • Kwong LK, Neumann M, Sampathu DM, et al. Trojanowski JQ. TDP-43 proteinopathy: the neuropathology underlying major forms of sporadic and familial frontotemporal lobar degeneration and motor neuron disease. Acta Neuropathol. 2007;114(1):63–70.
  • Van Der Zee J, Van Broeckhoven C. Dementia in 2013: frontotemporal lobar degeneration-building on breakthroughs. Nat Reviews Neurol. 2014;10(2):70–72.
  • Neumann M, Rademakers R, Roeber S, et al. A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain. 2009;132(Pt 11):2922–2931.
  • Brettschneider J, Del Tredici K, Toledo JB, et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol. 2013;74(1):20–38.
  • Fatima M, Tan R, Halliday GM, et al. Spread of pathology in amyotrophic lateral sclerosis: assessment of phosphorylated TDP-43 along axonal pathways. Acta Neuropathol Commun. 2015;3:47.
  • Smethurst P, Newcombe J, Troakes C, et al. In vitro prion-like behaviour of TDP-43 in ALS. Neurobiol Dis. 2016;96:236–247.
  • Maniecka Z, Polymenidou M. From nucleation to widespread propagation: aprion-like concept for ALS. Virus Res. 2015;207:94–105.
  • Munch C, O’Brien J, Bertolotti A. Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci U S A. 2011;108(9):3548–3553.
  • Ravits JM, La Spada AR. ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology. 2009;73(10):805–811.
  • Devine MS, Woodhouse H, McCombe PA, et al. The relationship between limb dominance, disease lateralization and spread of weakness in amyotrophic lateral sclerosis (ALS). Amyotroph Lateral Scler Frontotemporal Degener. 2013;14(2):150–151.
  • Brettschneider J, Del Tredici K, Lee VM, et al. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Reviews Neurosci. 2015;16(2):109–120.
  • Morgan S, Orrell RW. Pathogenesis of amyotrophic lateral sclerosis. Br Med Bull. 2016;119(1):87–98.
  • Abu-Hamad S, Israelson A. Macrophage migration inhibitory factor as a component of selective vulnerability of motor neurons in ALS. Rare Dis (Austin, Tex). 2015;3(1):e1061164.
  • Muller HP, Turner MR, Grosskreutz J, et al. A large-scale multicentre cerebral diffusion tensor imaging study in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2016;87:570–579.
  • Kassubek J, Muller HP, Del Tredici K, et al. Diffusion tensor imaging analysis of sequential spreading of disease in amyotrophic lateral sclerosis confirms patterns of TDP-43 pathology. Brain. 2014;137(Pt 6):1733–1740.
  • Rose S, Pannek K, Bell C, et al. Direct evidence of intra- and interhemispheric corticomotor network degeneration in amyotrophic lateral sclerosis: an automated MRI structural connectivity study. Neuroimage. 2011;59(3):2661–2669.
  • Bede P, Elamin M, Byrne S, et al. Basal ganglia involvement in amyotrophic lateral sclerosis. Neurology. 2013;81(24):2107–2115.
  • Abdulla S, Machts J, Kaufmann J, et al. Hippocampal degeneration in patients with amyotrophic lateral sclerosis. Neurobiol Aging. 2014;35(11):2639–2645.
  • Westeneng HJ, Verstraete E, Walhout R, et al. Subcortical structures in amyotrophic lateral sclerosis. Neurobiol Aging. 2015;36(2):1075–1082.
  • Li HF, Wu ZY. Genotype-phenotype correlations of amyotrophic lateral sclerosis. Transl Neurodegener. 2016;5:3.
  • Yamashita S, Ando Y. Genotype-phenotype relationship in hereditary amyotrophic lateral sclerosis. Transl Neurodegener. 2015;4:13.
  • Pratt AJ, Shin DS, Merz GE, et al. Aggregation propensities of superoxide dismutase G93 hotspot mutants mirror ALS clinical phenotypes. Proc Natl Acad Sci U S A. 2014;111(43):E4568–76.
  • Niblock M, Smith BN, Lee YB, et al. Retention of hexanucleotide repeat-containing intron in C9orf72 mRNA: implications for the pathogenesis of ALS/FTD. Acta Neuropathol Commun. 2016;4:18.
  • Majounie E, Renton AE, Mok K, et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol. 2012;11(4):323–330.
  • Byrne S, Elamin M, Bede P, et al. Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study. Lancet Neurol. 2012;11(3):232–240.
  • Cooper-Knock J, Kirby J, Highley R, et al. The spectrum of C9orf72-mediated neurodegeneration and amyotrophic lateral sclerosis. Neurotherapeutics. 2015;12(2):326–339.
  • Synofzik M, Biskup S, Leyhe T, et al. Suicide attempt as the presenting symptom of C9orf72 dementia. Am J Psychiatry. 2012;169(11):1211–1213.
  • Calvo A, Moglia C, Canosa A, et al. Amyotrophic lateral sclerosis/frontotemporal dementia with predominant manifestations of obsessive-compulsive disorder associated to GGGGCC expansion of the c9orf72 gene. J Neurol. 2012;259(12):2723–2725.
  • Solje E, Miettunen J, Marttila R, et al. The C9ORF72 expansion sizes in patients with psychosis: a population-based study on the Northern Finland Birth Cohort 1966. Psychiatr Genet. 2016;26(2):92–94.
  • Deng H, Gao K, Jankovic J. The role of FUS gene variants in neurodegenerative diseases. Nat Reviews Neurol. 2014;10(6):337–348.
  • Rademakers R, Stewart H, Dejesus-Hernandez M, et al. Fus gene mutations in familial and sporadic amyotrophic lateral sclerosis. Muscle Nerve. 2010;42(2):170–176.
  • Spalloni A, Longone P. Cognitive impairment in amyotrophic lateral sclerosis, clues from the SOD1 mouse. Neurosci Biobehav Rev. 2016;60:12–25.
  • Elamin M, Bede P, Byrne S, et al. Cognitive changes predict functional decline in ALS: a population-based longitudinal study. Neurology. 2013;80(17):1590–1597.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.