545
Views
13
CrossRef citations to date
0
Altmetric
Review

Therapeutic complement inhibition: a promising approach for treatment of neuroimmunological diseases

, , &
Pages 579-591 | Received 28 Jul 2016, Accepted 12 Jan 2017, Published online: 06 Mar 2017

References

  • Barrington R, Zhang M, Fischer M, et al. The role of complement in inflammation and adaptive immunity. Immunol Rev. 2001;180:5–15.
  • Carroll MC. The complement system in regulation of adaptive immunity. Nat Immunol. 2004;5:981–986.
  • Pittock SJ, Lennon VA, McKeon A, et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. Lancet Neurol. 2013;12:554–562.
  • Nauta AJ, Castellano G, Xu W, et al. Opsonization with C1q and mannose-binding lectin targets apoptotic cells to dendritic cells. J Immunol. 2004;173:3044–3050.
  • Beinrohr L, Dobo J, Zavodszky P, et al. C1, MBL-MASPs and C1-inhibitor: novel approaches for targeting complement-mediated inflammation. Trends Mol Med. 2008;14:511–521.
  • Rosado CJ, Buckle AM, Law RHP, et al. A common fold mediates vertebrate defense and bacterial attack. Science. 2007;317:1548–1551.
  • Wagner E, Frank MM. Therapeutic potential of complement modulation. Nat Rev Drug Discov. 2010;9:43–56.
  • McHarg S, Clark SJ, Day AJ, et al. Age-related macular degeneration and the role of the complement system. Mol Immunol. 2015;67:43–50.
  • Bora NS, Matta B, Lyzogubov VV, et al. Relationship between the complement system, risk factors and prediction models in age-related macular degeneration. Mol Immunol. 2015;63:176–183.
  • Krathen MS, Fiorentino D, Werth VP. Dermatomyositis. Curr Dir Autoimmun. 2008;10:313–332.
  • Yuki N. Guillain-Barré syndrome and anti-ganglioside antibodies: a clinician-scientist’s journey. Proc Jpn Acad Ser B Phys Biol Sci. 2012;88:299–326.
  • Steele MR, Inman DM, Calkins DJ, et al. Microarray analysis of retinal gene expression in the DBA/2J model of glaucoma. Invest Ophthalmol Vis Sci. 2006;47:977–985.
  • Tezel G, Yang X, Luo C, et al. Oxidative Stress and the Regulation of Complement Activation in Human Glaucoma. Invest Ophthalmol Vis Sci. 2010;51:5071–5082.
  • Kusner LL, Kaminski HJ. The role of complement in experimental autoimmune myasthenia gravis. Ann N Y Acad Sci. 2012;1274:127–132.
  • Loeffler DA, Camp DM, Conant SB. Complement activation in the Parkinson’s disease substantia nigra: an immunocytochemical study. J Neuroinflammation. 2006;3:29.
  • More SV, Kumar H, Kim IS, et al. Cellular and molecular mediators of neuroinflammation in the pathogenesis of Parkinson’s disease. Mediators Inflamm. 2013;2013:952375.
  • Nguyen HX, Galvan MD, Anderson AJ. Characterization of early and terminal complement proteins associated with polymorphonuclear leukocytes in vitro and in vivo after spinal cord injury. J Neuroinflammation. 2008;5:26.
  • Arumugam TV, Tang S-C, Lathia JD, et al. Intravenous immunoglobulin (IVIG) protects the brain against experimental stroke by preventing complement-mediated neuronal cell death. Proc Natl Acad Sci U S A. 2007;104:14104–14109.
  • Arumugam TV, Woodruff TM, Lathia JD, et al. Neuroprotection in stroke by complement inhibition and immunoglobulin therapy. Neuroscience. 2009;158:1074–1089.
  • Maydan G, Noyman I, Har-Zahav A, et al. Multiple congenital anomalies-hypotonia-seizures syndrome is caused by a mutation in PIGN. J Med Genet. 2011;48:383–389.
  • Haliloglu G, Maluenda J, Sayinbatur B, et al. Early-onset chronic axonal neuropathy, strokes, and hemolysis: inherited CD59 deficiency. Neurology. 2015;84:1220–1224.
  • Nevo Y, Ben-Zeev B, Tabib A, et al. CD59 deficiency is associated with chronic hemolysis and childhood relapsing immune-mediated polyneuropathy. Blood. 2013;121:129–135.
  • Ben-Zeev B, Tabib A, Nissenkorn A, et al. Devastating recurrent brain ischemic infarctions and retinal disease in pediatric patients with CD59 deficiency. Ejpn. 2015;19:688–693.
  • Bonifati DM, Kishore U. Role of complement in neurodegeneration and neuroinflammation. Mol Immunol. 2007;44:999–1010.
  • Yang LB, Li R, Meri S, et al. Deficiency of complement defense protein CD59 may contribute to neurodegeneration in Alzheimer’s disease. J Neuroscience: Official Journal Soc Neurosci. 2000;20:7505–7509.
  • Zetterberg M, Landgren S, Andersson ME, et al. Association of complement factor H Y402H gene polymorphism with Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet. 2008;147b:720–726.
  • Yasojima K, McGeer EG, McGeer PL. Complement regulators C1 inhibitor and CD59 do not significantly inhibit complement activation in Alzheimer disease. Brain Research. 1999;833:297–301.
  • Nakashima M, Kashii H, Murakami Y, et al. Novel compound heterozygous PIGT mutations caused multiple congenital anomalies-hypotonia-seizures syndrome 3. Neurogenetics. 2014;15:193–200.
  • Saadoun S, Papadopoulos MC. Role of membrane complement regulators in neuromyelitis optica. Mult Scler. 2015;21:1644–1654.
  • Cicardi M, Zingale L, Zanichelli A, et al. C1 inhibitor: molecular and clinical aspects. Springer Semin Immunopathol. 2005;27:286–298.
  • Alexion. Soliris® (eculizumab) granted orphan drug designation in Japan for the treatment of patients with myasthenia gravis. Available from: http://investor.omeros.com/phoenix.zhtml?c=219263&p=irol-newsArticle_Print&ID=2034728. (2014).
  • Miyamoto K. [C5: eculizumab]. Brain Nerve. 2014;66:1191–1199.
  • Leung E, Landa G. Update on current and future novel therapies for dry age-related macular degeneration. Expert Rev Clin Pharmacol. 2013;6:565–579.
  • Yamaguchi N, Misawa S, Sato Y, et al. A prospective, multicenter, randomized phase II study to evaluate the efficacy and safety of eculizumab in patients with Guillain-Barré syndrome (GBS): protocol of Japanese eculizumab trial for GBS (JET-GBS). JMIR Res Protoc. 2016;5:e210.
  • Fitzpatrick AM, Mann CA, Barry S, et al. An open label clinical trial of complement inhibition in multifocal motor neuropathy. J Peripher Nerv Syst: JPNS. 2011;16:84–91.
  • Narayanan R, Kuppermann BD. Corticosteroids and Anti-Complement Therapy in Retinal Diseases. In: Barrett JE, editor. Handbook of experimental pharmacology. Berlin: Springer; 2016. DOI:10.1007/164_2016_22. Available from: http://link.springer.com/chapter/10.1007%2F164_2016_22.
  • Lee YK, Lee HW, Choi KH, et al. Ability of nafamostat mesilate to prolong filter patency during continuous renal replacement therapy in patients at high risk of bleeding: a randomized controlled study. PLoS One. 2014;9:e108737.
  • Schwertz H, Carter JM, Russ M, et al. Serine protease inhibitor nafamostat given before reperfusion reduces inflammatory myocardial injury by complement and neutrophil inhibition. J Cardiovasc Pharmacol. 2008;52:151–160.
  • Ni Z, Hui P. Emerging pharmacologic therapies for wet age-related macular degeneration. Ophthalmologica. 2009;223:401–410.
  • Shire. Shire to attain enhanced CINRYZE® manufacturing flexibility and capacity. Available from: https://www.shire.com/newsroom/2015/august/shire-to-attain-enhanced-cinryze-manufacturing-flexibility-and-capacity. (2015).
  • Behring C Berinert Available from: http://www.csl.com.au/s1/cs/auhq/1217017237558/Web_Product_C/1255923599589/ProductDetail.htm. (2012).
  • Ruconest P. Available from: http://www.pharming.com/products/ruconest. (2015).
  • Basta M. Ambivalent effect of immunoglobulins on the complement system: activation versus inhibition. Mol Immunol. 2008;45:4073–4079.
  • Frank MM, Miletic VD, Jiang H. Immunoglobulin in the control of complement action. Immunol Res. 2000;22:137–146.
  • Basta M, Dalakas MC. High-dose intravenous immunoglobulin exerts its beneficial effect in patients with dermatomyositis by blocking endomysial deposition of activated complement fragments. J Clin Invest. 1994;94:1729–1735.
  • Gilardin L, Bayry J, Kaveri SV. Intravenous immunoglobulin as clinical immune-modulating therapy. Cmaj. 2015;187:257–264.
  • Yoon M-S, Gold R, Kerasnoudis A. Subcutaneous immunoglobulin in treating inflammatory neuromuscular disorders. Ther Adv Neurol Disord. 2015;8:153–159.
  • Berger M, Allen JA. Optimizing IgG therapy in chronic autoimmune neuropathies: a hypothesis driven approach. Muscle & Nerve. 2015;51:315–326.
  • McNamara D Lampalizumab apperars safe for dry macular degeneration. Available from: http://www.medscape.com/viewarticle/811878. (2013).
  • Roche’s lampalizumab phase II data shows benefit in patients with the advanced form of dry age-related macular degeneration. Availablefrom: http://www.roche.com/investors/updates/inv-update-2013-08-27.htm (2013).
  • Opthtotech. Ophthotech Reports First Quarter 2014 Financial results and provides business update. Availablefrom: http://www.ophthotech.com/news/ophthotech-reports-first-quarter-2014-financial-results-and-provides-business-update/. (2015).
  • Ophtotech product candidates. Availablefrom: http://www.ophthotech.com/product-candidates/(2016).
  • OMEROS. OMEROS-press release. Availablefrom: http://investor.omeros.com/phoenix.zhtml?c=219263&p=irol-newsArticle_Print&ID=2080177. (2016).
  • Outsourced Pharma CR FDA clears phase II clinical trial for Omeros’ OMS721 in thrombotic microangiopathies. Availablefrom: http://www.outsourcedpharma.com/doc/fda-clears-phase-ii-clinical-trial-for-omeros-oms-in-thrombotic-microangiopathies-0001(2014).
  • Lunemann JD, Nimmerjahn F, Dalakas MC. Intravenous immunoglobulin in neurology–mode of action and clinical efficacy. Nat Rev Neurol. 2015;11:80–89.
  • Dalakas MC. Intravenous immunoglobulin in autoimmune neuromuscular diseases. Jama. 2004;291:2367–2375.
  • Lutz HU, Stammler P, Bianchi V, et al. Intravenously applied IgG stimulates complement attenuation in a complement-dependent autoimmune disease at the amplifying C3 convertase level. Blood. 2004;103:465–472.
  • Durandy A, Kaveri SV, Kuijpers TW, et al. Intravenous immunoglobulins–understanding properties and mechanisms. Clin Exp Immunol. 2009;158(Suppl 1):2–13.
  • Basta M, Van Goor F, Luccioli S, et al. F(ab)’2-mediated neutralization of C3a and C5a anaphylatoxins: a novel effector function of immunoglobulins. Nature Medicine. 2003;9:431–438.
  • Marti-Carvajal AJ, Anand V, Cardona AF, et al. Eculizumab for treating patients with paroxysmal nocturnal hemoglobinuria. Cochrane Database Syst Rev. 2014;10:CD010340.
  • Rother RP, Rollins SA, Mojcik CF, et al. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol. 2007;25:1256–1264.
  • Ramaglia V, King RHM, Nourallah M, et al. The membrane attack complex of the complement system is essential for rapid Wallerian degeneration. J Neuroscience: Official Journal Soc Neurosci. 2007;27:7663–7672.
  • Yehoshua Z, De Amorim Garcia Filho CA, Nunes RP, et al. Systemic complement inhibition with eculizumab for geographic atrophy in age-related macular degeneration: the complete study. Ophthalmology. 2014;121:693–701.
  • Inman RD, Chiu B. Nafamostat mesylate, a serine protease inhibitor, demonstrates novel antimicrobial properties and effectiveness in Chlamydia-induced arthritis. Arthritis Res Ther. 2012;14:R150.
  • Uchiba M, Okajima K, Abe H, et al. Effect of nafamostat mesilate, a synthetic protease inhibitor, on tissue factor-factor VIIa complex activity. Thromb Res. 1994;74:155–161.
  • Chen CH, Boackle RJ. A newly discovered function for C1 inhibitor, removal of the entire C1qr2s2 complex from immobilized human IgG subclasses. Clin Immunol Immunopathol. 1998;87:68–74.
  • Jiang H, Wagner E, Zhang H, et al. Complement 1 inhibitor is a regulator of the alternative complement pathway. J Exp Med. 2001;194:1609–1616.
  • Nielsen EW, Waage C, Fure H, et al. Effect of supraphysiologic levels of C1-inhibitor on the classical, lectin and alternative pathways of complement. Mol Immunol. 2007;44:1819–1826.
  • Davis AE 3rd, Mejia P, Lu F. Biological activities of C1 inhibitor. Mol Immunol. 2008;45:4057–4063.
  • Kaplan AP, Ghebrehiwet B. The plasma bradykinin-forming pathways and its interrelationships with complement. Mol Immunol. 2010;47:2161–2169.
  • Jarva H, Jokiranta TS, Wurzner R, et al. Complement resistance mechanisms of streptococci. Mol Immunol. 2003;40:95–107.
  • Lambris JD, Ricklin D, Geisbrecht BV. Complement evasion by human pathogens. Nat Rev Microbiol. 2008;6:132–142.
  • Davis AE 3rd. Hereditary angioedema: a current state-of-the-art review, III: mechanisms of hereditary angioedema. Ann Allergy Asthma Immunol. 2008;100:S7–12.
  • Cedzyński M, Madaliński K, Gregorek H, et al. Possible disease-modifying factors: the mannan-binding lectin pathway and infections in hereditary angioedema of children and adults. Arch Immunol Ther Exp (Warsz). 2008;56:69–75.
  • Pham H, Santucci S, Yang WH, et al. Successful use of daily intravenous infusion of C1 esterase inhibitor concentrate in the treatment of a hereditary angioedema patient with ascites, hypovolemic shock, sepsis, renal and respiratory failure. Allergy Asthma Clin Immunol. 2014;10:62.
  • Khan M, Agarwal K, Loutfi M, et al. Present and possible therapies for age-related macular degeneration. ISRN Ophthalmol. 2014;2014:608390.
  • Yuki N, Hartung HP. Guillain-Barré syndrome. N Engl J Med. 2012;366:2294–2304.
  • Fisher M. An unusual variant of acute idiopathic polyneuritis (syndrome of ophthalmoplegia, ataxia and areflexia). N Engl J Med. 1956;255:57–65.
  • Wakerley BR, Uncini A, Guillain-Barré YN. Miller Fisher syndromes–new diagnostic classification. Nat Rev Neurol. 2014;10:537–544.
  • Asbury AK, Arnason BG, Adams RD. The inflammatory lesion in idiopathic polyneuritis. Its role in pathogenesis. Medicine (Baltimore). 1969;48:173–215.
  • McKhann GM, Cornblath DR, Griffin JW, et al. Acute motor axonal neuropathy: a frequent cause of acute flaccid paralysis in China. Ann Neurol. 1993;33:333–342.
  • Umapathi T, Tan EY, Kokubun N, et al. Non-demyelinating, reversible conduction failure in Fisher syndrome and related disorders. J Neurol Neurosurg Psychiatry. 2012;83:941–948.
  • Wakerley BR, Yuki N. Infectious and noninfectious triggers in Guillain-Barré syndrome. Expert Rev Clin Immunol. 2013;9:627–639.
  • Cao-Lormeau VM, Blake A, Mons S, et al. Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet (London, England). 2016;387:1531–1539.
  • Rozé B, Najioullah F, Fergé JL, et al. Zika virus detection in urine from patients with Guillain-Barré syndrome on Martinique, January. Euro Surveill. 2016;21(9). doi:10.2807/1560-7917.ES.2016.21.9.30154.
  • Yuki N, Susuki K, Koga M, et al. Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain-Barré syndrome. Proc Natl Acad Sci U S A. 2004;101:11404–11409.
  • Yuki N, Taki T, Inagaki F, et al. A bacterium lipopolysaccharide that elicits Guillain-Barré syndrome has a GM1 ganglioside-like structure. J Exp Med. 1993;178:1771–1775.
  • Koga M, Takahashi M, Masuda M, et al. Campylobacter gene polymorphism as a determinant of clinical features of Guillain-Barré syndrome. Neurology. 2005;65:1376–1381.
  • Hafer-Macko CE, Sheikh KA, Li CY, et al. Immune attack on the Schwann cell surface in acute inflammatory demyelinating polyneuropathy. Ann Neurol. 1996;39:625–635.
  • Buchwald B, Weishaupt A, Toyka KV, et al. Immunoglobulin G from a patient with Miller-Fisher syndrome rapidly and reversibly depresses evoked quantal release at the neuromuscular junction of mice. Neurosci Lett. 1995;201:163–166.
  • Plomp JJ, Molenaar PC, O’Hanlon GM, et al. Miller Fisher anti-GQ1b antibodies: alpha-latrotoxin-like effects on motor end plates. Ann Neurol. 1999;45:189–199.
  • Liu JX, Willison HJ, Pedrosa-Domellof F. Immunolocalization of GQ1b and related gangliosides in human extraocular neuromuscular junctions and muscle spindles. Invest Ophthalmol Vis Sci. 2009;50:3226–3232.
  • Chiba A, Kusunoki S, Obata H, et al. Serum anti-GQ1b IgG antibody is associated with ophthalmoplegia in Miller Fisher syndrome and Guillain-Barré syndrome: clinical and immunohistochemical studies. Neurology. 1993;43:1911–1917.
  • Ogawara K, Kuwabara S, Mori M, et al. Axonal Guillain-Barré syndrome: relation to anti-ganglioside antibodies and Campylobacter jejuni infection in Japan. Ann Neurol. 2000;48:624–631.
  • Hughes RA, Van Doorn PA. Corticosteroids for Guillain-Barré syndrome. Cochrane Database Syst Rev. 2012;8:CD001446.
  • Raphael JC, Chevret S, Hughes RA, et al. Plasma exchange for Guillain-Barré syndrome. Cochrane Database Syst Rev. 2012;7:CD001798.
  • Hughes RA, Swan AV, Van Doorn PA. Intravenous immunoglobulin for Guillain-Barré syndrome. Cochrane Database Syst Rev. 2014;9:CD002063.
  • Quast I, Keller CW, Hiepe F, et al. Terminal complement activation is increased and associated with disease severity in CIDP. Ann Clin Transl Neurol. 2016;3:730–735.
  • Phongsisay V, Susuki K, Matsuno K, et al. Complement inhibitor prevents disruption of sodium channel clusters in a rabbit model of Guillain-Barré syndrome. J Neuroimmunol. 2008;205:101–104.
  • Halstead SK, Zitman FMP, Humphreys PD, et al. Eculizumab prevents anti-ganglioside antibody-mediated neuropathy in a murine model. Brain. 2008;131:1197–1208.
  • Tradtrantip L, Asavapanumas N, Verkman AS. Therapeutic cleavage of anti-aquaporin-4 autoantibody in neuromyelitis optica by an IgG-selective proteinase. Mol Pharmacol. 2013;83:1268–1275.
  • Wingerchuk DM, Lennon VA, Lucchinetti CF, et al. The spectrum of neuromyelitis optica. Lancet Neurol. 2007;6:805–815.
  • Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet (London, England). 2004;364:2106–2112.
  • Hasegawa H, Ma T, Skach W, et al. Molecular cloning of a mercurial-insensitive water channel expressed in selected water-transporting tissues. J Biol Chem. 1994;269:5497–5500.
  • Rash JE, Yasumura T, Hudson CS, et al. Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci U S A. 1998;95:11981–11986.
  • Nielsen S, Nagelhus EA, Amiry-Moghaddam M, et al. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neuroscience: Official Journal Soc Neurosci. 1997;17:171–180.
  • Koga M, Takahashi T, Kawai M, et al. A serological analysis of viral and bacterial infections associated with neuromyelitis optica. J Neurol Sci. 2011;300:19–22.
  • Varrin-Doyer M, Spencer CM, Schulze-Topphoff U, et al. Aquaporin 4-specific T cells in neuromyelitis optica exhibit a Th17 bias and recognize Clostridium ABC transporter. Ann Neurol. 2012;72:53–64.
  • Papadopoulos MC, Verkman AS. Aquaporin 4 and neuromyelitis optica. Lancet Neurol. 2012;11:535–544.
  • Papadopoulos MC, Bennett JL, Verkman AS. Treatment of neuromyelitis optica: state-of-the-art and emerging therapies. Nat Rev Neurol. 2014;10:493–506.
  • Wingerchuk DM, Hogancamp WF, O’Brien PC, et al. The clinical course of neuromyelitis optica (Devic’s syndrome). Neurology. 1999;53:1107–1114.
  • Weinshenker BG, O’Brien PC, Petterson TM, et al. A randomized trial of plasma exchange in acute central nervous system inflammatory demyelinating disease. Ann Neurol. 1999;46:878–886.
  • Trebst C, Jarius S, Berthele A, et al. Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS). J Neurol. 2014;261:1–16.
  • Misu T, Höftberger R, Fujihara K, et al. Presence of six different lesion types suggests diverse mechanisms of tissue injury in neuromyelitis optica. Acta Neuropathol. 2013;125:815–827.
  • Giavina-Bianchi P, França AT, Grumach AS, et al. Brazilian guidelines for the diagnosis and treatment of hereditary angioedema. Clinics (Sao Paulo). 2011;66:1627–1636.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.