4,547
Views
55
CrossRef citations to date
0
Altmetric
Review

Measuring cerebrovascular autoregulation in preterm infants using near-infrared spectroscopy: an overview of the literature

, , , , , & show all
Pages 801-818 | Received 08 Mar 2017, Accepted 21 Jun 2017, Published online: 29 Jun 2017

References

  • World Health Organization. Preterm birth fact sheet No 363. [cited 2015 Mar 6]. http://www.who.int/mediacentre/factsheets/fs363/en/
  • Moore T, Hennessy EM, Myles J, et al. Neurological and developmental outcome in extremely preterm children born in England in 1995 and 2006: the EPICure studies. BMJ. 2012;345:e7961.
  • Volpe JJ. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res. 2001;50(5):553–562.
  • Volpe JJ. Neurology of the newborn. Chapter 11, 524. Philadelphia, PA, USA: Saunders;2008.
  • Haruda FD. The structure of blood vessels in the germinal matrix and the autoregulation of cerebral blood flow in premature infants. Pediatrics. 2001;108(4):1050–1051.
  • Tsuji M, Saul JP, du Plessis A, et al. Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics. 2000;106(4):625–632.
  • Greisen G. Autoregulation of cerebral blood flow in newborn babies. Early Hum Dev. 2005;81(5):423–428.
  • Aaslid R, Lindegaard KF, Sorteberg W, et al. Cerebral autoregulation dynamics in humans. Stroke. 1989;20(1):45–52.
  • Lucas SJ, Tzeng YC, Galvin SD, et al. Influence of changes in blood pressure on cerebral perfusion and oxygenation. Hypertension. 2010;55(3):698–705.
  • Berg RM, Plovsing RR, Ronit A, et al. Disassociation of static and dynamic cerebral autoregulatory performance in healthy volunteers after lipopolysaccharide infusion and in patients with sepsis. Am J Physiol Regul Integr Comp Physiol. 2012;303(11):R1127–35.
  • Papile LA, Rudolph AM, Heymann MA. Autoregulation of cerebral blood flow in the preterm fetal lamb. Pediatr Res. 1985;19(2):159–161.
  • Szymonowicz W, Walker AM, Cussen L, et al. Developmental changes in regional cerebral blood flow in fetal and newborn lambs. Am J Physiol. 1988;254(1 Pt 2):H52–8.
  • Tyszczuk L, Meek J, Elwell C, et al. Cerebral blood flow is independent of mean arterial blood pressure in preterm infants undergoing intensive care. Pediatrics. 1998;102(2 Pt 1):337–341.
  • Jayasinghe D, Gill AB, Levene MI. CBF reactivity in hypotensive and normotensive preterm infants. Pediatr Res. 2003;54(6):848–853.
  • Pryds O, Greisen G, Skov LL, et al. Carbon dioxide-related changes in cerebral blood volume and cerebral blood flow in mechanically ventilated preterm neonates: comparison of near infrared spectrophotometry and 133Xenon clearance. Pediatr Res. 1990;27(5):445–449.
  • Panerai RB. Assessment of cerebral pressure autoregulation in humans – a review of measurement methods. Physiol Meas. 1998;19(3):305–338.
  • Czosnyka M, Smielewski P, Kirkpatrick P, et al. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;27(10):1829–1834.
  • Panerai RB. Transcranial Doppler for evaluation of cerebral autoregulation. Clin Auton Res. 2009;19(4):197–211.
  • Honda N, Ohgi S, Wada N, et al. Effect of therapeutic touch on brain activation of preterm infants in response to sensory punctate stimulus: a near-infrared spectroscopy-based study. Arch Dis Child Fetal Neonatal Ed. 2013;98(3):F244–8.
  • Kaiser JR, Gauss CH, Williams DK. The effects of hypercapnia on cerebral autoregulation in ventilated very low birth weight infants. Pediatr Res. 2005;58(5):931–935.
  • Fyfe KL, Yiallourou SR, Wong FY, et al. The development of cardiovascular and cerebral vascular control in preterm infants. Sleep Med Rev. 2014;18(4):299–310.
  • Brew N, Walker D, Wong FY. Cerebral vascular regulation and brain injury in preterm infants. Am J Physiol Regul Integr Comp Physiol. 2014;306(11):R773–86.
  • du Plessis AJ. Cerebrovascular injury in premature infants: current understanding and challenges for future prevention. Clin Perinatol. 2008;35(4):609–641.
  • Lou HC, Lassen NA, Friis-Hansen B. Impaired autoregulation of cerebral blood flow in the distressed newborn infant. J Pediatr. 1979;94(1):118–121.
  • Milligan DW. Failure of autoregulation and intraventricular haemorrhage in preterm infants. Lancet. 1980;1(8174):896–898.
  • Noone MA, Sellwood M, Meek JH, et al. Postnatal adaptation of cerebral blood flow using near infrared spectroscopy in extremely preterm infants undergoing high-frequency oscillatory ventilation. Acta Paediatr. 2003;92(9):1079–1084.
  • Wardle SP, Yoxall CW, Weindling AM. Determinants of cerebral fractional oxygen extraction using near infrared spectroscopy in preterm neonates. J Cereb Blood Flow Metab. 2000;20(2):272–279.
  • Boylan GB, Young K, Panerai RB, et al. Dynamic cerebral autoregulation in sick newborn infants. Pediatr Res. 2000;48(1):12–17.
  • Soul JS, Hammer PE, Tsuji M, et al. Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants. Pediatr Res. 2007;61(4):467–473.
  • Gilmore MM, Stone BS, Shepard JA, et al. Relationship between cerebrovascular dysautoregulation and arterial blood pressure in the premature infant. J Perinatol. 2011;31(11):722–729.
  • Baerts W, van Bel F, Thewissen L, et al. Tocolytic indomethacin: effects on neonatal haemodynamics and cerebral autoregulation in the preterm newborn. Arch Dis Child Fetal Neonatal Ed. 2013;98(5):F419–23.
  • Chock VY, Ramamoorthy C, Van Meurs KP. Cerebral autoregulation in neonates with a hemodynamically significant patent ductus arteriosus. J Pediatr. 2012;160(6):936–942.
  • Lemmers PM, Toet M, van Schelven LJ, et al. Cerebral oxygenation and cerebral oxygen extraction in the preterm infant: the impact of respiratory distress syndrome. Exp Brain Res. 2006;173(3):458–467.
  • Wong FY, Leung TS, Austin T, et al. Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy. Pediatrics. 2008;121(3):e604–11.
  • Verma PK, Panerai RB, Rennie JM, et al. Grading of cerebral autoregulation in preterm and term neonates. Pediatr Neurol. 2000;23(3):236–242.
  • Vanderhaegen J, Naulaers G, Van Huffel S. et al. Cerebral and systemic hemodynamic effects of intravenous bolus administration of propofol in neonates. Neonatology. 2010;98(1):57–63.
  • Riera J, Cabanas F, Serrano JJ, et al. New time-frequency method for cerebral autoregulation in newborns: predictive capacity for clinical outcomes. J Pediatr. 2014;165(5):897–902.e1.
  • Panerai RB, Dineen NE, Brodie FG, et al. Spontaneous fluctuations in cerebral blood flow regulation: contribution of PaCO2. J Appl Physiol (1985). 2010;109(6):1860–1868.
  • Vavilala MS, Lam AM. CBF reactivity to changes in MAP (cerebral autoregulation) or CO2 (CO2 reactivity) is lost in hypotensive, ventilated, preterm infants. Pediatr Res. 2004;55(5):898. author reply 898-9.
  • Schat TE, van der Laan ME, Schurink M, et al. Assessing cerebrovascular autoregulation in infants with necrotizing enterocolitis using near-infrared spectroscopy. Pediatr Res. 2016;79(1–1):76–80.
  • O’Leary H, Gregas MC, Limperopoulos C, et al. Elevated cerebral pressure passivity is associated with prematurity-related intracranial hemorrhage. Pediatrics. 2009;124(1):302–309.
  • Alderliesten T, Lemmers PM, Smarius JJ, et al. Cerebral oxygenation, extraction, and autoregulation in very preterm infants who develop peri-intraventricular hemorrhage. J Pediatr. 2013;162(4):698–704.
  • Bozzetti V, Paterlini G, van Bel F, et al. Cerebral and somatic NIRS-determined oxygenation in IUGR preterm infants during transition. J Matern Fetal Neonatal Med. 2016;29(3):443–446.
  • Tanis JC, Boelen MR, Schmitz DM, et al. Correlation between Doppler flow patterns in growth-restricted fetuses and neonatal circulation. Ultrasound obstet. Gynecol. 2016;48(2):210–216.
  • Gay AN, Lazar DA, Stoll B, et al. Near-infrared spectroscopy measurement of abdominal tissue oxygenation is a useful indicator of intestinal blood flow and necrotizing enterocolitis in premature piglets. J Pediatr Surg. 2011;46(6):1034–1040.
  • Munro MJ, Walker AM, Barfield CP. Hypotensive extremely low birth weight infants have reduced cerebral blood flow. Pediatrics. 2004;114(6):1591–1596.
  • Binder-Heschl C, Urlesberger B, Schwaberger B, et al. Borderline hypotension: how does it influence cerebral regional tissue oxygenation in preterm infants? J Matern Fetal Neonatal Med. 2016;29(14):2341–2346.
  • Mudra R, Nadler A, Keller E, et al. Analysis of near-infrared spectroscopy and indocyanine green dye dilution with Monte Carlo simulation of light propagation in the adult brain. J Biomed Opt. 2006;11(4):044009.
  • Watzman HM, Kurth CD, Montenegro LM, et al. Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiology. 2000;93(4):947–953.
  • Wong FY, Barfield CP, Campbell L, et al. Validation of cerebral venous oxygenation measured using near-infrared spectroscopy and partial jugular venous occlusion in the newborn lamb. J Cereb Blood Flow Metab. 2008;28(1):74–80.
  • Pellicer A, Del Bravo MC. Near-infrared spectroscopy: a methodology-focused review. Semin Fetal Neonatal Med. 2011;16(1):42–49.
  • Soul JS, Taylor GA, Wypij D, et al. Noninvasive detection of changes in cerebral blood flow by near-infrared spectroscopy in a piglet model of hydrocephalus. Pediatr Res. 2000;48(4):445–449.
  • Wolf M, Greisen G. Advances in near-infrared spectroscopy to study the brain of the preterm and term neonate. Clin Perinatol. 2009;36(4):807–834.
  • Tina LG, Frigiola A, Abella R, et al. Near infrared spectroscopy in healthy preterm and term newborns: correlation with gestational age and standard monitoring parameters. Curr Neurovasc Res. 2009;6(3):148–154.
  • Alderliesten T, Dix L, Baerts W, et al. Reference values of regional cerebral oxygen saturation during the first 3 days of life in preterm neonates. Pediatr Res. 2016;79(1–1):55–64.
  • Verhagen EA, Hummel LA, Bos AF, et al. Near-infrared spectroscopy to detect absence of cerebrovascular autoregulation in preterm infants. Clin Neurophysiol. 2014;125(1):47–52.
  • Wong FY, Silas R, Hew S, et al. Cerebral oxygenation is highly sensitive to blood pressure variability in sick preterm infants. PLoS One. 2012;7(8):e43165.
  • Hahn GH, Christensen KB, Leung TS, et al. Precision of coherence analysis to detect cerebral autoregulation by near-infrared spectroscopy in preterm infants. J Biomed Opt. 2010;15(3):037002.
  • Mitra S, Czosnyka M, Smielewski P, et al. Heart rate passivity of cerebral tissue oxygenation is associated with predictors of poor outcome in preterm infants. Acta Paediatr. 2014;103(9):e374–82.
  • Bauer A, Barthel P, Muller A, et al. Bivariate phase-rectified signal averaging – a novel technique for cross-correlation analysis in noisy nonstationary signals. J Electrocardiol. 2009;42(6):602–606.
  • Fujisaka S, Ozaki T, Suzuki T, et al. A clinical tissue oximeter using NIR time-resolved spectroscopy. Adv Exp Med Biol. 2016;876:427–433.
  • De Smet D, Vanderhaegen J, Naulaers G, et al. New measurements for assessment of impaired cerebral autoregulation using near-infrared spectroscopy. Adv Exp Med Biol. 2009;645:273–278.
  • Caicedo A, De Smet D, Naulaers G, et al. Cerebral tissue oxygenation and regional oxygen saturation can be used to study cerebral autoregulation in prematurely born infants. Pediatr Res. 2011;69(6):548–553.
  • Panerai RB, Dawson SL, Potter JF. Linear and nonlinear analysis of human dynamic cerebral autoregulation. Am J Physiol. 1999;277(3 Pt 2):H1089–99.
  • Taylor JA, Carr DL, Myers CW, et al. Mechanisms underlying very-low-frequency RR-interval oscillations in humans. Circulation. 1998;98(6):547–555.
  • Kuo TB, Chern CM, Sheng WY, et al. Frequency domain analysis of cerebral blood flow velocity and its correlation with arterial blood pressure. J Cereb Blood Flow Metab. 1998;18(3):311–318.
  • Brady KM, Mytar JO, Kibler KK, et al. Noninvasive autoregulation monitoring with and without intracranial pressure in the naive piglet brain. Anesth Analg. 2010;111(1):191–195.
  • Groves AM, Kuschel CA, Knight DB, et al. Echocardiographic assessment of blood flow volume in the superior vena cava and descending aorta in the newborn infant. Arch Dis Child Fetal Neonatal Ed. 2008;93(1):F24–8.
  • Steiner LA, Pfister D, Strebel SP, et al. Near-infrared spectroscopy can monitor dynamic cerebral autoregulation in adults. Neurocrit Care. 2009;10(1):122–128.
  • Hahn GH, Heiring C, Pryds O, et al. Applicability of near-infrared spectroscopy to measure cerebral autoregulation noninvasively in neonates: a validation study in piglets. Pediatr Res. 2011;70(2):166–170.
  • Claassen JA, Meel-van den Abeelen AS, Simpson DM, et al. Transfer function analysis of dynamic cerebral autoregulation: a white paper from the International Cerebral Autoregulation Research Network. J Cereb Blood Flow Metab. 2016;36(4):665–680.
  • Ainslie PN, Celi L, McGrattan K, et al. Dynamic cerebral autoregulation and baroreflex sensitivity during modest and severe step changes in arterial PCO2. Brain Res. 2008;1230:115–124.
  • Muller MW, Osterreich M. A comparison of dynamic cerebral autoregulation across changes in cerebral blood flow velocity for 200 s. Front Physiol. 2014;5:327.
  • Caicedo A, Naulaers G, Lemmers P, et al. Detection of cerebral autoregulation by near-infrared spectroscopy in neonates: performance analysis of measurement methods. J Biomed Opt. 2012;17(11):117003.
  • Morren G, Naulaers G, Lemmers P, et al. Quantitation of the concordance between cerebral intravascular oxygenation and mean arterial blood pressure for the detection of impaired autoregulation. Adv Exp Med Biol. 2003;510:403–408.
  • Eriksen VR, Hahn GH, Greisen G. Cerebral autoregulation in the preterm newborn using near-infrared spectroscopy: a comparison of time-domain and frequency-domain analyses. J Biomed Opt. 2015;20(3):037009.
  • de Smet D, Jacobs J, Ameye L, et al. The partial coherence method for assessment of impaired cerebral autoregulation using near-infrared spectroscopy: potential and limitations. Adv Exp Med Biol. 2010;662:219–224.
  • Caicedo A, Varon C, Alderliesten T, et al. Differences in the cerebral hemodynamics regulation mechanisms of premature infants with intra-ventricular hemorrhage assessed by means of phase rectified signal averaging. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:4208–4211.
  • Hahn GH, Maroun LL, Larsen N, et al. Cerebral autoregulation in the first day after preterm birth: no evidence of association with systemic inflammation. Pediatr Res. 2012;71(3):253–260.
  • Eriksen VR, Hahn GH, Greisen G. Dopamine therapy is associated with impaired cerebral autoregulation in preterm infants. Acta Paediatr. 2014;103(12):1221–1226.
  • Zhang Y, Chan GS, Tracy MB, et al. Spectral analysis of systemic and cerebral cardiovascular variabilities in preterm infants: relationship with clinical risk index for babies (CRIB). Physiol Meas. 2011;32(12):1913–1928.
  • da Costa CS, Czosnyka M, Smielewski P, et al. Monitoring of cerebrovascular reactivity for determination of optimal blood pressure in preterm infants. J Pediatr. 2015;167(1):86–91.
  • Kleiser S, Pastewski M, Hapuarachchi T, et al. Characterizing fluctuations of arterial and cerebral tissue oxygenation in preterm neonates by means of data analysis techniques for nonlinear dynamical systems. Adv Exp Med Biol. 2016;876:511–519.
  • Stammwitz A, Von Siebenthal K, Bucher HU, et al. Can the assessment of spontaneous oscillations by near infrared spectrophotometry predict neurological outcome of preterm infants? Adv Exp Med Biol. 2016;876:521–531.
  • Parry G, Tucker J, Tarnow-Mordi W, et al. CRIB II: an update of the clinical risk index for babies score. Lancet. 2003;361(9371):1789–1791.
  • Rautonen J, Makela A, Boyd H, et al. CRIB and SNAP: assessing the risk of death for preterm neonates. Lancet. 1994;343(8908):1272–1273.
  • Steiner LA, Czosnyka M, Piechnik SK, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30(4):733–738.
  • Roche-Labarbe N, Fenoglio A, Radhakrishnan H, et al. Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates. Neuroimage. 2014;85:279–286.
  • Ferradal SL, Yuki K, Vyas R, et al. Non-invasive assessment of cerebral blood flow and oxygen metabolism in neonates during hypothermic cardiopulmonary bypass: feasibility and clinical implications. Sci Rep. 2017;7:44117.