864
Views
58
CrossRef citations to date
0
Altmetric
Review

Pharmacological therapeutics in Friedreich ataxia: the present state

, , , , , , & show all
Pages 895-907 | Received 17 May 2017, Accepted 14 Jul 2017, Published online: 26 Jul 2017

References

  • Lynch DR, Farmer JM, Balcer LJ, et al. Friedreich ataxia: effects of genetic understanding on clinical evaluation and therapy. Arch Neurol. 2002;59(5):743–747.
  • Harding AE. Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain. 1981;104(3):589–620.
  • Parkinson MH, Boesch S, Nachbauer W, et al. Clinical features of Friedreich’s ataxia: classical and atypical phenotypes. J Neurochem. 2013;126(Suppl.1):103–117.
  • Stolle CA, Frackelton EC, McCallum J, et al. Novel, complex interruptions of the GAA repeat in small, expanded alleles of two affected siblings with late-onset. Friedreich Ataxia. 2008;23:1303–1306.
  • Dürr A, Cossee M, Agid Y, et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med. 1996;335(16):169–1175.
  • Tsou AY, Paulsen EK, Lagedrost SJ, et al. Mortality in Friedreich ataxia. J Neurol Sci. 2011;307(1–2):46–49.
  • Nachbauer W, Bodner T, Boesch S, et al. Friedreich ataxia: executive control is related to disease onset and GAA repeat length. Cerebellum. 2014;13(1):9–16.
  • Corben LA, Klopper F, Stagnitti M, et al. Measuring inhibition and cognitive flexibility in Friedreich ataxia. Cerebellum. 2017;16(4):757–763.
  • Campuzano V, Montermini L, Moltò MD, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271(5254):1423–1427.
  • Pandolfo M. Molecular pathogenesis of Friedreich ataxia. Arch Neurol. 1999;56(10):1201–1208.
  • Metz G, Coppard N, Cooper JM, et al. Rating disease progression of Friedreich’s ataxia by the International Cooperative Ataxia Rating Scale: analysis of a 603-patient database. Brain. 2013;136(Pt 1):259–268.
  • Friedman LS, Farmer JM, Perlman S, et al. Measuring the rate of progression in Friedreich ataxia: implications for clinical trial design. Mov Disord. 2010;25(4):426–432.
  • Patel M, Isaacs CJ, Seyer L, et al. Progression of Friedreich ataxia: quantitative characterization over 5 years. Ann Clin Transl Neurol. 2016;3:684–694.
  • Reetz K, Dogan I, Costa AS, et al. Biological and clinical characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS) cohort: a cross-sectional analysis of baseline data. Lancet Neurol. 2015;14:174–182.
  • Reetz K, Dogan I, Hilgers RD, et al. Progression characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS): a 2 year cohort study. Lancet Neurol. 2016;15:1346–1354.
  • Chiang S, Kovacevic Z, Sahni S, et al. Frataxin and the molecular mechanism of mitochondrial iron-loading in Friedreich’s ataxia. Clin Sci (Lond.). 2016;130(11):853–870.
  • González-Cabo P, Palau F. Mitochondrial pathophysiology in Friedreich’s ataxia. J Neurochem. 2013;126(Suppl 1):53–64.
  • Trouillas P, Takayanagi T, Hallett M, et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci. 1997;145(2):205–211.
  • Subramony SH, May W, Lynch D, et al. Measuring Friedreich ataxia: interrater reliability of a neurologic rating scale. Neurology. 2005;64(7):1261–1262.
  • Lynch DR, Farmer JM, Tsou AY, et al. Measuring Friedreich ataxia: complementary features of examination and performance measures. Neurology. 2006;66(11):1711–1716.
  • Bürk K, Mälzig U, Wolf S, et al. Comparison of three clinical rating scales in Friedreich ataxia (FRDA). Mov Disord. 2009;24(12):1779–1784.
  • Suno M, Nakaoka A. Inhibition of lipid peroxidation by a novel compound, idebenone (CV-2619). Jap J Pharmacol. 1984;35(2):196–198.
  • Parkinson MH, Schulz JB, Giunti P. Co-enzyme Q10 and idebenone use in Friedreich’s ataxia. J Neurochem. 2013;126(Suppl. 1):125–141.
  • Myers L, Farmer JM, Wilson RB, et al. Antioxidant use in Friedreich ataxia. J Neurol Sci. 2008;267(1–2):174–176.
  • Strawser CJ, Schadt KA, Lynch DR. Therapeutic approaches for the treatment of Friedreich’s ataxia. Expert Rev Neurother. 2014;14(8):949–957.
  • Rustin P, von Kleist-Retzow JC, Chantrel-Groussard K, et al. Effect of idebenone on cardiomyopathy in Friedreich’s ataxia: a preliminary study. Lancet. 1999;354(9177):477–479.
  • Hausse AO, Aggoun Y, Bonnet D, et al. Idebenone and reduced cardiac hypertrophy in Friedreich’s ataxia. Heart. 2002;87(4):346–349.
  • Buyse G, Mertens L, Di Salvo G, et al. Idebenone treatment in Friedreich’s ataxia: neurological, cardiac, and biochemical monitoring. Neurology. 2003;60(10):1679–1681.
  • Lagedrost SJ, Sutton MS, Cohen MS, et al. Idebenone in Friedreich ataxia cardiomyopathy—results from a 6-month phase III study (IONIA). Am Heart J. 2011;161(3):639–645.
  • Artuch R, Aracil A, Mas A, et al. Friedreich’s ataxia: idebenone treatment in early stage patients. Neuropediatrics. 2002;33(4):190–193.
  • Pineda M, Arpa J, Montero R, et al. Idebenone treatment in paedeatric and adult patients with Friedreich’s ataxia: long-term follow-up. Eur J Paediatr Neurol. 2008;12(6):470–475.
  • Lynch DR, Perlman SL, Meier, T. A phase 3, double-blind, placebo-controlled trial of idebenone in Friedreich ataxia. Arch Neurol. 2010;67(8):941–947.
  • Lodi R, Hart PE, Rajagopalan B, et al. Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich’s ataxia. Ann Neurol. 2001;49(5):590–596.
  • Cooper JM, Schapira AH. Friedreich’s ataxia: disease mechanisms, antioxidant and coenzyme Q10 therapy. Biofactors. 2003;18(1–4):163–171.
  • Hart PE, Lodi R, Rajagopalan B, et al. Antioxidant treatment of patients with Friedreich ataxia: four-year follow-up. Arch Neurol. 2005;62(4):621–626.
  • Lynch DR, Willi SM, Wilson RB, et al. A0001 in Friedreich ataxia: biochemical characterization and effects in a clinical trial. Mov Disord. 2012;27(8):1026–1033.
  • Martinelli D, Catteruccia M, Piemonte F, et al. EPI-743 reverses the progression of the pediatric mitochondrial diseases—genetically defined Leigh syndrome. Mol Genet Metab. 2010;107(3):383–388.
  • Sadun AA, Chicani CF, Ross-Cisneros FN, et al. Effect of EPI-743 on the clinical course of the mitochondrial disease Leber hereditary optic neuropathy. Arch Neurol. 2012;69(3):331–338.
  • Enns GM, Kinsman SL, Perlman SL, et al. Initial experience in the treatment of inherited mitochondrial disease with EPI-743. Mol Genet Metab. 2012;105(1):91–102.
  • Zesiewicz T, Perlman S, Sullivan K, et al. EPI-743 (alpha-tocotrienol quinone) demonstrates long-term improvement in neurological function and disease progression in Friedreich’s ataxia (S17.005). Neurology. 2017;88(16):SupplementS17.005.
  • Sullivan K, Freeman M, Shaw J, et al. EPI-743 for Friedreichs ataxia patients with point mutations. Neurology. 2016;86(16):Supplement P5.388.
  • Elsden SR, Hilton MG, Waller JM. The end products of the metabolism of aromatic amino acids by clostridia. Arch Microbiol. 1976;107:283–288.
  • Bendheim PE, Poeggeler B, Neria E, et al. Development of indole-3-propionic acid (OXIGON) for Alzheimer’s disease. J Mol Neurosci. 2002;19(1–2):213–217.
  • Hwang IK, Yoo KY, Li H, et al. Indole-3-propionic acid attenuates neuronal damage and oxidative stress in the ischemic hippocampus. J Neurosci Res. 2009;87(9):2126–2137.
  • Chyan YJ, Poeggeler B, Omar RA, et al. Potent neuroprotective properties against the Alzheimer beta-amyloid by an endogenous melatonin-related indole structure, indole-3-propionic acid. J Biol Chem. 1999;274(31):21937–21942.
  • ClinicalTrials.gov: Safety and Pharmacology Study of VP 20629 in Adults With Friedreich’s Ataxia. Available from: https://clinicaltrials.gov/ct2/show/results/NCT01898884?term=vp-20629&rank=1
  • Cotticelli MG, Crabbe AM, Wilson RB, et al. Insights into the role of oxidative stress in the pathology of Friedreich ataxia using peroxidation resistant polyunsaturated fatty acids. Redox Biol. 2013;1:398–404.
  • Shchepinov MS, Chou VP, Pollock E, et al. Isotopic reinforcement of essential polyunsaturated fatty acids diminishes nigrostriatal degeneration in a mouse model of Parkinson’s disease. Toxicol Lett. 2011;207(2):97–103.
  • ClinicalTrials.gov A First in Human Study of RT001 in Patients With Friedreich’s Ataxia. Available from: https://www.clinicaltrials.gov/ct2/show/NCT02445794
  • Retrotope Announces Phase I/II Clinical Trial Results of RT001 in Treatment of Friedreich’s Ataxia. Available from: https://static1.squarespace.com/static/549af14ae4b004237f7bb71a/t/57dd7786f7e0ab741930775f/1474131955350/PR±Retrotope±Phase±1±Results.pdf
  • FARA Research pipeline. Available from: www.curefa.org/pipeline.html
  • Costantini A, Laureti T, Pala MI, et al. Long-term treatment with thiamine as possible medical therapy for Friedreich ataxia. J Neurol. 2016;263(11):2170–2178.
  • Breuer W, Ermers MJ, Pootrakul P, et al. Desferrioxamine-chelatable iron, a component of serum non-transferrin-bound iron, used for assessing chelation therapy. Blood. 2001;97:792–798.
  • Koeppen AH, Ramirez RL, Becker AB, et al. The pathogenesis of cardiomyopathy in Friedreich ataxia. PLoS. 2006;10(3):e0116396.
  • Smith JC, Kushner JP, Bromberg M. et al. Evidence for mitochondrial iron overload in patients with Friedreich’s ataxia. Proceedings of the Friedreich’s Ataxia Research Conference; Bethesda (MD): National Institutes of Health; 1999.
  • Pandolfo M, Hausmann L. Deferiprone for the treatment of Friedreich’s ataxia. J Neurochem. 2013;126(Suppl 1):142–146.
  • Velasco-Sánchez D, Aracil A, Montero R, et al. Combined therapy with idebenone and deferiprone in patients with Friedreich’s ataxia. Cerebellum. 2011;10(1):1–8.
  • Arpa J, Sanz-Gallego I, Rodríguez-de-Rivera FJ, et al. Triple therapy with deferiprone, idebenone and riboflavin in Friedreich’s ataxia - open-label trial. Acta Neurol Scand. 2014;129:32–40.
  • Wilson RB, Lynch DR, Fischbeck KH. Normal serum iron and ferritin concentrations in patients with Friedreich’s ataxia. Ann Neurol. 1998;44:132–134.
  • Coppola G, Marmolino D, Lu D, et al. Functional genomic analysis of frataxin deficiency reveals tissue-specific alterations and identifies the PPARgamma pathway as a therapeutic target in Friedreich’s ataxia. Hum Mol Genet. 2009;18(13):2452–2461.
  • Marmolino D, Manto M, Acquaviva F, et al. PGC-1alpha down-regulation affects the antioxidant response in Friedreich’s ataxia. PLoS One. 2010;5(4):e10025.
  • Shin JH, Ko HS, Kang H, et al. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell. 2011;144(5):689–702.
  • Holmström K, Kostov R, Dinkova-Kostova A. The multifaceted role of Nrf2 in mitochondrial function. Curr Opin Toxicol. 2016;1:80–91.
  • Probst BL, Trevino I, McCauley L, et al. RTA 408, A novel synthetic triterpenoid with broad anticancer and anti-inflammatory activity. PLoS ONE. 2015;10(4):e0122942.
  • Chen PC, Vargas MR, Pank AK, et al. Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson’s disease: critical role for the astrocyte. Proc Natl Acad Sci USA. 2009;106:2933–2938.
  • Kim HV, Kim HY, Ehrlich HY, et al. Amelioration of Alzheimer’s disease by neuroprotective effect of sulforaphane in animal model. Amyloid. 2013;20:7–12.
  • Quinti L, Casale M, Moniot S, et al. SIRT2- and NRF2-targeting thiazole-containing compound with therapeutic activity in Huntington’s disease models. Cell Chem Biol. 2016;23:849–861.
  • D’Oria V, Petrini S, Travaglini L, et al. Frataxin deficiency leads to reduced expression and impaired translocation of NF-E2-related factor (Nrf2) in cultured motor neurons. Int J Mol Sci. 2013;14:7853–7865.
  • Paupe V, Dassa EP, Goncalves S, et al. Impaired nuclear Nrf2 translocation undermines the oxidative stress response in Friedreich ataxia. PLoS One. 2009;4:4253–4264.
  • Shan Y, Schoenfeld RA, Hayashi G, et al. Frataxin deficiency leads to defects in expression of antioxidants and Nrf2 expression in dorsal root ganglia of the Friedreich’s ataxia YG8R mouse model. Antioxid Redox Signal. 2013;19:131481–131493.
  • Albeti R, Uzun E, Renganathan I, et al. Targeting lipid peroxidation and mitochondrial imbalance in Friedreich’s ataxia. Pharmacol Res. 2015;99:344–350.
  • Sahdeo S, Scott BD, McMackin MZ, et al. Dyclonine rescues frataxin deficiency in animal models and buccal cells of patients with Friedreich’s ataxia. Hum Mol Genet. 2014;23(25):6848–6862.
  • Reata Pharmaceuticals, Inc. Announces positive data from part one of moxie trial of omaveloxolone for Friedreich’s ataxia. Available from: http://investors.reatapharma.com/phoenix.zhtml?c=254306&p=irol-newsArticle&ID=2278245
  • Yiu EM, Tai G, Peverill RE, et al. An open-label trial in Friedreich ataxia suggests clinical benefit with high-dose resveratrol, without effect on frataxin levels. J Neurol. 2015;262(5):1344–1353.
  • Smoliga JM, Blanchard O. Enhancing the delivery of resveratrol in humans: if low bioavailability is the problem, what is the solution? Molecules. 2014;19(11):17154–17172.
  • Sturm B, Stupphann D, Kaun C, et al. Recombinant human erythropoietin: effects on frataxin expression in vitro. Eur J Clin Invest. 2005;35(11):711–717.
  • Boesch S, Sturm B, Hering S, et al. Neurological effects of recombinant human erythropoietin in Friedreich’s ataxia: a clinical pilot trial. Mov Disord. 2008;23(13):1940–1944.
  • Saccà F, Piro R, De Michele G, et al. Epoetin alfa increases frataxin production in Friedreich’s ataxia without affecting hematocrit. Mov Disord. 2011;26(4):739–742.
  • Nachbauer W, Hering S, Seifert M, et al. Effects of erythropoietin on frataxin levels and mitochondrial function in Friedreich ataxia–a dose-response trial. Cerebellum. 2011;10(4):763–769.
  • Mariotti C, Fancellu R, Caldarazzo S, et al. Erythropoietin in Friedreich ataxia: no effect on frataxin in a randomized controlled trial. Mov Disord. 2012;27(3):446–449.
  • Boesch S, Nachbauer W, Mariotti C, et al. Safety and tolerability of carbamylated erythropoietin in Friedreich’s ataxia. Mov Disord. 2014;29:935–939.
  • Miller JL, Rai M, Frigon NL, et al. Erythropoietin and small molecule agonists of the tissue-protective erythropoietin receptor increase FXN expression in neuronal cells in vitro and in Fxn-deficient KIKO mice in vivo. Neuropharmacology. 2017;123:34–45.
  • Tomassini B, Arcuri G, Fortuni S, et al. Interferon gamma upregulates frataxin and corrects the functional deficits in a Friedreich ataxia model. Hum Mol Genet. 2012;21(13):2855–2861.
  • Seyer L, Greeley N, Foerster D, et al. Open label pilot study of interferon gamma-1b in Friedreich ataxia. Acta Neurol Scand. 2014;132(1):7–15.
  • Wells M, Seyer L, Schadt K, et al. IFN-y for Friedreich ataxia: present evidence. Neurodegener Dis Manag. 2015;5(6):497–504.
  • Marcotulli C, Fortuni S, Arcuri G, et al. GIFT-1, a phase IIa clinical trial to test the safety and efficacy of IFN-y administration in FRDA patients. Neurol Sci. 2016;37(3):361–364.
  • ClinicalTrials.gov Safety, Tolerability and Efficacy of ACTIMMUNE® Dose Escalation in Friedreich’s Ataxia (STEADFAST). Available from: https://www.clinicaltrials.gov/ct2/show/NCT02415127
  • Horizon Pharma: Horizon Pharma plc Announces Topline Results from Phase 3 Study of ACTIMMUNE® (interferon gamma-1b) in Friedreich’s Ataxia. Available from: http://ir.horizon-pharma.com/releasedetail.cfm?ReleaseID=1003338
  • Vyas PM, Tomamichel WJ, Pride PM, et al. A TAT-Frataxin fusion protein increases lifespan and cardiac function in a conditional Friedreich’s ataxia mouse model. Hum Mol Genet. 2011;21.6:1230–1247.
  • Kim MJ, Kim DW, Jeong HJ, et al. Tat-frataxin protects dopaminergic neuronal cells against MPTP-induced toxicity in a mouse model of Parkinson’s disease. Biochimie. 2012;94:2448–2456.
  • Nabhan JF, Wood KM, Rao VP, et al. Intrathecal delivery of frataxin mRNA encapsulated in lipid nanoparticles to dorsal root ganglia as a potential therapeutic for Friedreich’s ataxia. Sci Rep. 2016;6:20019.
  • Kemp K, Serminara N, Hares K, et al. Cytokine therapy-mediated neuroprotection in a Friedreich’s ataxia mouse model. Ann Neurol. 2017;81(2):212–226.
  • Rufini A, Cavallo F, Condò I, et al. Highly specific ubiquitin-competing molecules effectively promote frataxin accumulation and partially rescue the aconitase defect in Friedreich ataxia cells. Neurobiol Dis. 2015;75:91–99.
  • Benini M, Fortuni S, Condò I, et al. E3 ligase RNF126 directly ubiquitinates frataxin, promoting its degradation: identification of a potential therapeutic target for Friedreich ataxia. Cell Rep. 2017;18(8):2007–2017.
  • Nabhan JF, Gooch RL, Piatnitski Chekler EL, et al. Perturbation of cellular proteostasis networks identifies pathways that modulate precursor and intermediate but not mature levels of frataxin. Sci Rep. 2015;5:18251.
  • Clark E, Butler J, Isaacs C, et al. Selected missense mutations impair frataxin processing in Friedreich ataxia. Annals Clin and Trans Neurol. 2017. DOI:10.1002/acn3.433
  • Soragni E, Xu C, Plasterer HL, et al. Rationale for the development of 2-aminobenzamide histone deacetylase inhibitors as therapeutics for Friedreich ataxia. J Child Neurol. 2012;27(9):1164–1173.
  • Chutake YK, Lam CC, Costello WN, et al. Reversal of epigenetic promoter silencing in Friedreich ataxia by a class I histone deacetylase inhibitor. Nucleic Acids Res. 2016;44(11):5095–5104.
  • Coedazzi F, Hu A, Rai M, et al. Friedreich ataxia-induced pluripotent stem cell-derived neurons show a cellular phenotype that is corrected by a benzamide HDAC inhibitor. Hum Mol Genet. 2016;25(22):4847–4855.
  • Rai M, Soragni E, Jenssen K, et al. HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS One. 2008;3(4):e1958.
  • Soragni, E, Miao W, Iudicello M, et al. Epigenetic therapy for Friedreich ataxia. Ann Neurol. 2014;76:489–508.
  • Chan PK, Torres R, Yandim C, et al. Heterochromatinization induced by GAA-repeat hyperexpansion in Friedreich’s ataxia can be reduced upon HDAC inhibition by vitamin B3. Hum Mol Genet. 2013;22(13):2662–2675.
  • Libri V, Yandim C, Athanasopoulos S, et al. Epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich’s ataxia: an exploratory, open-label, dose-escalation study. Lancet. 2014;384:504–513.
  • Bidichandani SI, Ashizawa T, Patel PI. The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet. 1998;62.1:111–121.
  • Groh M, Lufino MMP, Wade-Martins R, et al. R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome. PLoS Genet. 2014;10:e1004318.
  • Li L, Matsui M, Corey DR. Activating frataxin expression by repeat-targeted nucleic acids. Nat Commun. 2016;7:10606.
  • Ozsolak F, Sandhu K, Wood S. et al. Targeting the GAA-repeat region with oligonucleotides for the treatment of Friedreich’s ataxia. Presented at the International Ataxia Research Conference (ARC); Windsor, UK; 2015.
  • Chiriboga CSK, Darras BT, Iannaccone ST. Results from a phase 1 study of nusinersen (ISIS-SMNRX) in children with spinal muscular atrophy. Neurology. 2016;86(10):890–897.
  • Ottesen EW. ISS-N1 makes the first FDA-approved drug for spinal muscular atrophy. Transl Neurosci. 2017;8:1–6.
  • Sardone V, Zhou H, Muntoni F, et al. Antisense oligonucleotide-based therapy for neuromuscular disease. Molecules. 2017;22(4):563.
  • Hayashi G, Jasoliya M, Saccà F, et al. Dimethyl fumarate mediates Nrf2-dependent mitochondrial biogenesis in mice and humans. Hum Mol Genet. 2017. DOI:10.1093/hmg/ddx167
  • Evans-Galea MV, Lockhart PJ, Galea CA, et al. Beyond loss of frataxin: the complex molecular pathology of Friedreich ataxia. Discov Med. 2014;17(91):25–35.
  • Koeppen AH, Ramirez RL, Becker AB, et al. Dorsal root ganglia in Friedreich ataxia: satellite cell proliferation and inflammation. Acta Neuropathol Commun. 2016;4:46.
  • Michael S, Petrocine SV, Qian J, et al. Iron and iron-responsive proteins in the cardiomyopathy of Friedreich’s ataxia. Cerebellum. 2006;5(4):257–267.
  • Shinnick JE, Isaacs CJ, Vivlaid S, et al. Friedreich ataxia and nephrotic syndrome: a series of two patients. BMC Neurol. 2016;16(3):1–6.
  • Pane M, Fanelli L, Mazzone ES, et al. Benefits of glucocorticoids in non-ambulant boys/men with Duchenne muscular dystrophy: a multicentric longitudinal study using the performance of upper limb test. Neuromuscul Disord. 2015;25(10):749–753.
  • Reeves EK, Rayavarapu S, Damsker JM, et al. Glucocorticoid analogues: potential therapeutic alternatives for treating inflammatory muscle diseases. Endocr Metab Immune Disord Drug Targets. 2012;12(1):95–103.
  • ClinicalTrials.gov Methylprednisolone Treatment of Friedreich Ataxia. Available from: https://clinicaltrials.gov/ct2/show/NCT02424435
  • Miranda CJ, Santos MM, Ohshima K, et al. Frataxin overexpressing mice. FEBS Lett. 2004;572(1–3):281–288.
  • Li Y, Polak U, Bhalla AD, et al. Excision of expanded GAA repeats alleviates the molecular phenotype of Friedreich’s ataxia. Mol Ther. 2015;23(6):1055–1065.
  • Ouellet DL, Cherif K, Rousseau J, et al. Deletion of the GAA repeats from the human frataxin gene using the CRISPR-Cas9 system in YG8R-derived cells and mouse models of Friedreich ataxia. Gene Ther. 2017;24(5):265–274.
  • Perdomini M, Belbellaa B, Monassier L, et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich’s ataxia. Nat Med. 2014;20(5):542–547.
  • Gérard C, Xiao X, Filali M, et al. An AAV9 coding for frataxin clearly improved the symptoms and prolonged the life of Friedreich ataxia mouse models. Mol Ther Meth Clin. 2014;1:14044.
  • Gomez-Sebastian S, Gimenez-Cassina A, Diaz-Nido J, et al. Infectious delivery and expression of a 135 kb human FRDA genomic DNA locus complements Friedreich’s ataxia deficiency in human cells. Mol Ther. 2007;15(2):248–254.
  • Gimenez-Cassina A, Wade-Martins R, Gomez-Sebastian S, et al. Infectious delivery and long-term persistence of transgene expression in the brain by a 135-kb iBAC-FXN genomic DNA expression vector. Gene Ther. 2011;18(10):1015–1019.
  • Lim F, Palomo GM, Mauritz C, et al. Functional recovery in a Friedreich’s ataxia mouse model by frataxin gene transfer using an HSV-1 amplicon vector. Mol Ther. 2007;15(6):1072–1078.
  • Chapdelaine P, Coulombe Z, Chikh A, et al. A potential new therapeutic approach for Friedreich ataxia: induction of frataxin expression with TALE proteins. Mol Ther Nucleic Acids. 2013;2:e119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.