469
Views
12
CrossRef citations to date
0
Altmetric
Review

Potential clinical utility of multiple system atrophy biomarkers

Pages 1189-1208 | Received 16 Aug 2017, Accepted 11 Oct 2017, Published online: 23 Oct 2017

References

  • Fanciulli A, Wenning GK. Multiple-system atrophy. N Engl J Med. 2015;372:249–263.
  • Graham JG, Oppenheimer DR. Orthostatic hypotension and nicotine sensitivity in a case of multiple system atrophy. J Neurol Neurosurg Psychiatry. 1969;32:28–34.
  • Spillantini MG, Gedert M. Synucleinopathies: past, present and future. Neuropathol Appl Neurobiol. 2016;42:3–5.
  • Goedert M, Jakes R, Spillantini MG. The synucleinopathies: twenty years on. J Parkinsons Dis. 2017;7:S53–S71.
  • Koga S, Dickson DW. Recent advances in neuropathology, biomarkers and therapeutic approach of multiple system atrophy. J Neurol Neurosurg Psychiatry. 2017.
  • Jellinger KA. Multiple system atrophy: an oligodendroglioneural synucleinopathy in print. J Alzheimer’s Dis. 2017. DOI:10.3233/JAD-170397.
  • Jellinger KA, Lantos PL. Papp-Lantos inclusions and the pathogenesis of multiple system atrophy: an update. Acta Neuropathol. 2010;119:657–667.
  • Trojanowski JQ, Revesz T. Proposed neuropathological criteria for the post mortem diagnosis of multiple system atrophy. Neuropathol Appl Neurobiol. 2007;33:615–620.
  • Jellinger KA, Wenning GK. Multiple system atrophy: pathogenic mechanisms and biomarkers. J Neural Transm (Vienna). 2016;123:555–572.
  • Ahmed Z, Asi YT, Sailer A, et al. The neuropathology, pathophysiology and genetics of multiple system atrophy. Neuropathol Appl Neurobiol. 2012;38:4–24.
  • Cykowski MD, Coon EA, Powell SZ, et al. Expanding the spectrum of neuronal pathology in multiple system atrophy. Brain. 2015;138:2293–2309.
  • Gilman S, Wenning GK, Low PA, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 2008;71:670–676.
  • Lyoo CH, Jeong Y, Ryu YH, et al. Effects of disease duration on the clinical features and brain glucose metabolism in patients with mixed type multiple system atrophy. Brain. 2008;131:438–446.
  • Wenning GK, Geser F, Krismer F, et al. The natural history of multiple system atrophy: a prospective European cohort study. Lancet Neurol. 2013;12:264–274.
  • Yabe I, Soma H, Takei A, et al. MSA-C is the predominant clinical phenotype of MSA in Japan: analysis of 142 patients with probable MSA. J Neurol Sci. 2006;249:115–121.
  • Watanabe H, Saito Y, Terao S, et al. Progression and prognosis in multiple system atrophy: an analysis of 230 Japanese patients. Brain. 2002;125:1070–1083.
  • Ozawa T, Onodera O. Multiple system atrophy: clinicopathological characteristics in Japanese patients. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93:251–258.
  • Bower JH, Maraganore DM, McDonnell SK, et al. Incidence of progressive supranuclear palsy and multiple system atrophy in Olmsted County, Minnesota, 1976 to 1990. Neurology. 1997;49:1284–1288.
  • Quinn N. Multiple system atrophy–the nature of the beast. J Neurol Neurosurg Psychiatry. 1989;Suppl:78–89.
  • Jecmenica-Lukic M, Poewe W, Tolosa E, et al. Premotor signs and symptoms of multiple system atrophy. Lancet Neurol. 2012;11:361–368.
  • Xie T, Kang UJ, Kuo S-H, et al. Comparison of clinical features in pathologically confirmed PSP and MSA patients followed at a tertiary center. Npj Parkinson’s Dis. 2015;1:15007.
  • Brown RC, Lockwood AH, Sonawane BR. Neurodegenerative diseases: an overview of environmental risk factors. Environ Health Perspect. 2005;113:1250–1256.
  • Fujioka S, Ogaki K, Tacik PM, et al. Update on novel familial forms of Parkinson’s disease and multiple system atrophy. Parkinsonism Relat Disord. 2014;20(Suppl 1):S29–34.
  • Vidal JS, Vidailhet M, Derkinderen P, et al. Familial aggregation in atypical Parkinson’s disease: a case control study in multiple system atrophy and progressive supranuclear palsy. J Neurol. 2010;257:1388–1393.
  • Wenning GK, Stefanova N. Recent developments in multiple system atrophy. J Neurol. 2009;256:1791–1808.
  • Ozawa T. Pathology and genetics of multiple system atrophy: an approach to determining genetic susceptibility spectrum. Acta Neuropathol. 2006;112:531–538.
  • Federoff M, Schottlaender LV, Houlden H, et al. Multiple system atrophy: the application of genetics in understanding etiology. Clin Auton Res. 2015;25:19–36.
  • Sailer A, Scholz SW, Nalls MA, et al. A genome-wide association study in multiple system atrophy. Neurology. 2016;87:1591–1598.
  • Nussbaum RL. Genetics of synucleinopathies. Cold Spring Harb Perspect Med; 2017 Feb 17, doi 10.1101/cshperspect.a024109.
  • Dehay B, Vila M, Bezard E, et al. Alpha-synuclein propagation: new insights from animal models. Mov Disord. 2016;31:161–168.
  • McCann H, Cartwright H, Halliday GM. Neuropathology of alpha-synuclein propagation and Braak hypothesis. Mov Disord. 2016;31:152–160.
  • Woerman AL, Watts JC, Aoyagi A, et al. alpha-Synuclein: multiple system atrophy prions. Cold Spring Harb Perspect Med. 2017. in print. DOI:10.1101/cshperspect.a024588.
  • Goedert M, Masuda-Suzukake M, Falcon B. Like prions: the propagation of aggregated tau and alpha-synuclein in neurodegeneration. Brain. 2017;140:266–278.
  • Rohan Z, Milenkovic I, Lutz MI, et al. Shared and distinct patterns of oligodendroglial response in alpha-synucleinopathies and tauopathies. J Neuropathol Exp Neurol. 2016;75:1100–1109.
  • Jellinger KA. Multiple system atrophy - a synucleinopathy with specific glioneuronal degeneration. Austin J Clin Neurol. 2015;2:1071.
  • Jellinger KA. What’s new in multiple system atrophy. Curr Neurobio. 2015;6:11–14.
  • Bleasel JM, Halliday GM, Kim WS. Animal modeling an oligodendrogliopathy - multiple system atrophy. Acta Neuropathol Commun. 2016;4:12.
  • Wenning GK, Stefanova N, Jellinger KA, et al. Multiple system atrophy: a primary oligodendrogliopathy. Ann Neurol. 2008;64:239–246.
  • Halliday GM. Re-evaluating the glio-centric view of multiple system atrophy by highlighting the neuronal involvement. Brain. 2015;138:2116–2119.
  • Burn DJ, Jaros E. Multiple system atrophy: cellular and molecular pathology. Mol Pathol. 2001;54:419–426.
  • Asi YT, Simpson JE, Heath PR, et al. Alpha-synuclein mRNA expression in oligodendrocytes in MSA. Glia. 2014;62:964–970.
  • Reyes JF, Rey NL, Bousset L, et al. Alpha-synuclein transfers from neurons to oligodendrocytes. Glia. 2014;62:387–398.
  • Rey NL, George S, Brundin P, et al. the word: precise animal models and validated methods are vital when evaluating prion-like behaviour of alpha-synuclein. Neuropathol Appl Neurobiol. 2016;42:51–76.
  • Ubhi K, Rockenstein E, Mante M, et al. Neurodegeneration in a transgenic mouse model of multiple system atrophy is associated with altered expression of oligodendroglial-derived neurotrophic factors. J Neurosci. 2010;30:6236–6246.
  • Goedert M. Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Abeta, tau, and alpha-synuclein. Science. 2015;349:1255555.
  • Brettschneider J, Del Tredici K, Lee VM, et al. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci. 2015;16:109–120.
  • Prusiner SB, Woerman AL, Mordes DA, et al. Evidence for alpha-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci USA. 2015;112:E5308–17.
  • Peelaerts W, Bousset L, Van Der Perren A, et al. α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature. 2015;522:340–344.
  • Melki R. Role of different alpha-synuclein strains in synucleinopathies, similarities with other neurodegenerative diseases. J Parkinsons Dis. 2015;5:217–227.
  • Peelaerts W, Baekelandt V. α-Synuclein strains and the variable pathologies of synucleinopathies. J Neurochem. 2016;139, Suppl 1:256–274.
  • Walsh DM, Selkoe DJ. A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nat Rev Neurosci. 2016;17:251–260.
  • Bendor JT, Logan TP, Edwards RH. The function of alpha-synuclein. Neuron. 2013;79:1044–1066.
  • Guo JL, Lee VM. Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat Med. 2014;20:130–138.
  • Desplats P, Lee HJ, Bae EJ, et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci U S A. 2009;106:13010–13015.
  • Luk KC, Kehm V, Carroll J, et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 2012;338:949–953.
  • Luk KC, Kehm VM, Zhang B, et al. Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med. 2012;209:975–986.
  • Valdinocci D, Radford RA, Siow SM, et al. Potential modes of intercellular alpha-synuclein transmission. Int J Mol Sci. 2017;18:469.
  • Shimozawa A, Ono M, Takahara D, et al. Propagation of pathological alpha-synuclein in marmoset brain. Acta Neuropathol Commun. 2017;5:12.
  • Tofaris GK, Goedert M, Spillantini MG. The transcellular propagation and intracellular trafficking of alpha-synuclein. Cold Spring Harb Perspect Med. 2016. in print. DOI:10.1101/cshperspect.a024380.
  • Hasegawa M, Nonaka T, Masuda-Suzukake M. alpha-Synuclein: experimental pathology. Cold Spring Harb Perspect Med. 2016;6. DOI:10.1101/cshperspect.a024273
  • Bassil F, Guerin PA, Dutheil N, et al. Viral-mediated oligodendroglial alpha-synuclein expression models multiple system atrophy. Mov Disord. 2017;32:1230-1239.
  • Mandel RJ, Marmion DJ, Kirik D, et al. Novel oligodendroglial alpha synuclein viral vector models of multiple system atrophy: studies in rodents and nonhuman primates. Acta Neuropathol Commun. 2017;5:47.
  • Beraud D, Hathaway HA, Trecki J, et al. Microglial activation and antioxidant responses induced by the Parkinson’s disease protein alpha-synuclein. J Neuroimmune Pharmacol. 2013;8:94–117.
  • Ota K, Obayashi M, Ozaki K, et al. Relocation of p25alpha/tubulin polymerization promoting protein from the nucleus to the perinuclear cytoplasm in the oligodendroglia of sporadic and COQ2 mutant multiple system atrophy. Acta Neuropathol Commun. 2014;2:136.
  • Oláh J, Bertrand P, Ovadi J. Role of the microtubule-associated TPPP/p25 in Parkinson’s and related diseases and its therapeutic potential. Expert Rev Proteomics. 2017;14:301–309.
  • Grigoletto J, Pukass K, Gamliel A, et al. Higher levels of myelin phospholipids in brains of neuronal alpha-synuclein transgenic mice precede myelin loss. Acta Neuropathol Commun. 2017;5:37.
  • Don AS, Hsiao JH, Bleasel JM, et al. Altered lipid levels provide evidence for myelin dysfunction in multiple system atrophy. Acta Neuropathol Commun. 2014;2:150.
  • Wong JH, Halliday GM, Kim WS. Exploring myelin dysfunction in multiple system atrophy. Exp Neurobiol. 2014;23:337–344.
  • Ettle B, Schlachetzki JC, Winkler J. Oligodendroglia and myelin in neurodegenerative diseases: more than just bystanders? Mol Neurobiol. 2016;53:3046–3062.
  • Bassil F, Monvoisin A, Canron MH, et al. Region-specific alterations of matrix metalloproteinase activity in multiple system atrophy. Mov Disord. 2015;30:1802–1812.
  • Ubhi K, Rockenstein E, Kragh C, et al. Widespread microRNA dysregulation in multiple system atrophy - disease-related alteration in miR-96. Eur J Neurosci. 2014;39:1026–1041.
  • Bleasel JM, Wong JH, Halliday GM, et al. Lipid dysfunction and pathogenesis of multiple system atrophy. Acta Neuropathol Commun. 2014;2:15.
  • Bi C, Qian H. Cholesterol homeostasis and the pathogenesis of multiple system atrophy. J Alzheimers Dis Parkinsonism. 2017;7:3.
  • Chen Y, Cao B, Yang J, et al. Analysis and meta-analysis of five polymorphisms of the LINGO1 and LINGO2 genes in Parkinson’s disease and multiple system atrophy in a Chinese population. J Neurol. 2015;262:2478–2483.
  • Soma H, Yabe I, Takei A, et al. Associations between multiple system atrophy and polymorphisms of SLC1A4, SQSTM1, and EIF4EBP1 genes. Mov Disord. 2008;23:1161–1167.
  • Stefanova N, Reindl M, Neumann M, et al. Microglial activation mediates neurodegeneration related to oligodendroglial alpha-synucleinopathy: implications for multiple system atrophy. Mov Disord. 2007;22:2196–2203.
  • Fellner L, Stefanova N. The role of glia in alpha-synucleinopathies. Mol Neurobiol. 2013;47:575–586.
  • Miki Y, Tanji K, Mori F, et al. AMBRA1, a novel alpha-synuclein-binding protein, is implicated in the pathogenesis of multiple system atrophy. Brain Pathol. 2017. in print. DOI:10.1111/bpa.12461.
  • Ubhi K, Lee PH, Adame A, et al. Mitochondrial inhibitor 3-nitroproprionic acid enhances oxidative modification of alpha-synuclein in a transgenic mouse model of multiple system atrophy. J Neurosci Res. 2009;87:2728–2739.
  • Federoff M. Multiple system atrophy: moving towards a multi-mechanistic hypothesis. Int J Neurol Neurother. 2016;3:046.
  • Krismer F, Wenning GK. Multiple system atrophy: insights into a rare and debilitating movement disorder. Nat Rev Neurol. 2017;13:232–243.
  • Batla A, Stamelou M, Mensikova K, et al. Markedly asymmetric presentation in multiple system atrophy. Parkinsonism Relat Disord. 2013;19:901–905.
  • Kaindlstorfer C, Granata R, Wenning GK. Tremor in multiple system atrophy - a review. Tremor Other Hyperkinet Mov (N Y). 2013;3. DOI:10.7916/D8NV9GZ9.
  • Köllensperger M, Geser F, Ndayisaba JP, et al. Presentation, diagnosis, and management of multiple system atrophy in Europe: final analysis of the European multiple system atrophy registry. Mov Disord. 2010;25:2604–2612.
  • Köllensperger M, Geser F, Seppi K, et al. Red flags for multiple system atrophy. Mov Disord. 2008;23:1093–1099.
  • Wenning GK, Ben-Shlomo Y, Hughes A, et al. What clinical features are most useful to distinguish definite multiple system atrophy from Parkinson’s disease? J Neurol Neurosurg Psychiatry. 2000;68:434–440.
  • Eschlböck S, Benke T, Boesch S, et al. Non-motor symptoms and gender differences in multiple system atrophy (abstr.). NeuroLogisch. 2017;Suppl 1:8.
  • Jimenez-Jimenez FJ, Alonso-Navarro H, Garcia-Martin E, et al. Cerebrospinal fluid biochemical studies in patients with Parkinson’s disease: toward a potential search for biomarkers for this disease. Front Cell Neurosci. 2014;8:369.
  • Colosimo C. Nonmotor presentations of multiple system atrophy. Nat Rev Neurol. 2011;7:295–298.
  • Papatsoris AG, Papapetropoulos S, Singer C, et al. Urinary and erectile dysfunction in multiple system atrophy (MSA). Neurourol Urodyn. 2008;27:22–27.
  • Pavy-Le Traon A, Piedvache A, Perez-Lloret S, et al. New insights into orthostatic hypotension in multiple system atrophy: a European multicentre cohort study. J Neurol Neurosurg Psychiatry. 2016;87:554–561.
  • Lipp A, Sandroni P, Ahlskog JE, et al. Prospective differentiation of multiple system atrophy from Parkinson disease, with and without autonomic failure. Arch Neurol. 2009;66:742–750.
  • Shindo K, Tsuchiya M, Ichinose Y, et al. Vasomotor regulation in patients with multiple system atrophy. J Neural Transm (Vienna). 2017;124:477–481.
  • Anderson T, Luxon L, Quinn N, et al. Oculomotor function in multiple system atrophy: clinical and laboratory features in 30 patients. Mov Disord. 2008;23:977–984.
  • Videnovic A. Management of sleep disorders in Parkinson’s disease and multiple system atrophy. Mov Disord. 2017;32:659–668.
  • Moreno-Lopez C, Santamaria J, Salamero M, et al. Excessive daytime sleepiness in multiple system atrophy (SLEEMSA study). Arch Neurol. 2011;68:223–230.
  • Palma JA, Fernandez-Cordon C, Coon EA, et al. Prevalence of REM sleep behavior disorder in multiple system atrophy: a multicenter study and meta-analysis. Clin Auton Res. 2015;25:69–75.
  • Iranzo A, Santamaria J, Rye DB, et al. Characteristics of idiopathic REM sleep behavior disorder and that associated with MSA and PD. Neurology. 2005;65:247–252.
  • Ghorayeb I, Dupouy S, Tison F, et al. Restless legs syndrome in multiple system atrophy. J Neural Transm (Vienna). 2014;121:1523–1527.
  • Ghorayeb I, Bioulac B, Tison F. Relationship between stridor and sleep apnoea syndrome: is it as simple as that? J Neurol Neurosurg Psychiatry. 2004;75:512–513.
  • Ohshima Y, Nakayama H, Matsuyama N, et al. Natural course and potential prognostic factors for sleep-disordered breathing in multiple system atrophy. Sleep Med. 2017;34:13–17.
  • Shimohata T, Aizawa N, Nakayama H, et al. Mechanisms and prevention of sudden death in multiple system atrophy. Parkinsonism Relat Disord. 2016;30:1–6.
  • Silber MH, Levine S. Stridor and death in multiple system atrophy. Mov Disord. 2000;15:699–704.
  • Bak TH, Caine D, Hearn VC, et al. Visuospatial functions in atypical parkinsonian syndromes. J Neurol Neurosurg Psychiatry. 2006;77:454–456.
  • Burk K, Daum I, Rub U. Cognitive function in multiple system atrophy of the cerebellar type. Mov Disord. 2006;21:772–776.
  • Fiorenzato E, Weis L, Seppi K, et al. Brain structural profile of multiple system atrophy patients with cognitive impairment. J Neural Transm (Vienna). 2017;124:293–302.
  • Roncevic D, Palma JA, Martinez J, et al. Cerebellar and parkinsonian phenotypes in multiple system atrophy: similarities, differences and survival. J Neural Transm. 2014;121:507–512.
  • Figueroa JJ, Singer W, Parsaik A, et al. Multiple system atrophy: prognostic indicators of survival. Mov Disord. 2014;29:1151–1157.
  • Koga S, Aoki N, Uitti RJ, et al. When DLB, PD, and PSP masquerade as MSA: an autopsy study of 134 patients. Neurology. 2015;85:404–412.
  • Matsushima M, Yabe I, Takahashi I, et al. Validity and reliability of a pilot scale for assessment of multiple system atrophy symptoms. Cerebellum Ataxias. 2017;4:11.
  • Kim HJ, Jeon BS, Jellinger KA. Diagnosis and differential diagnosis of MSA: boundary issues. J Neurol. 2015;262:1801–1813.
  • Kim HJ, Stamelou M, Jeon B. Multiple system atrophy-mimicking conditions: diagnostic challenges. Parkinsonism Relat Disord. 2016;22(Suppl 1):S12–5.
  • Mestre TA, Gupta A, Lang AE. MRI signs of multiple system atrophy preceding the clinical diagnosis: the case for an imaging-supported probable MSA diagnostic category. J Neurol Neurosurg Psychiatry. 2016;87:443–444.
  • Rizzo G, Copetti M, Arcuti S, et al. Accuracy of clinical diagnosis of Parkinson disease: A systematic review and meta-analysis. Neurology. 2016;86:566–576.
  • Krismer F, Jellinger KA, Scholz SW, et al. Multiple system atrophy as emerging template for accelerated drug discovery in alpha-synucleinopathies. Parkinsonism Relat Disord. 2014;20:793–799.
  • Kanazawa M, Tada M, Onodera O, et al. Early clinical features of patients with progressive supranuclear palsy with predominant cerebellar ataxia. Parkinsonism Relat Disord. 2013;19:1149–1151.
  • Joutsa J, Gardberg M, Roytta M, et al. Diagnostic accuracy of parkinsonism syndromes by general neurologists. Parkinsonism Relat Disord. 2014;20:840–844.
  • Osaki Y, Ben-Shlomo Y, Lees AJ, et al. A validation exercise on the new consensus criteria for multiple system atrophy. Mov Disord. 2009;24:2272–2276.
  • Antenora A, Rinaldi C, Roca A, et al. The multiple faces of spinocerebellar ataxia type 2. Ann Clin Transl Neurol. 2017;4:687–695.
  • Kim HJ, Jeon BS, Shin J, et al. Should genetic testing for SCAs be included in the diagnostic workup for MSA? Neurology. 2014;83:1733–1738.
  • Kamm C, Healy DG, Quinn NP, et al. The fragile X tremor ataxia syndrome in the differential diagnosis of multiple system atrophy: data from the EMSA Study Group. Brain. 2005;128:1855–1860.
  • Ogaki K, Koga S, Aoki N, et al. Adult-onset cerebello-brainstem dominant form of X-linked adrenoleukodystrophy presenting as multiple system atrophy: case report and literature review. Neuropathology 2016;36:64–76
  • Algarni MA, Stoessl AJ. The role of biomarkers and imaging in Parkinson’s disease. Expert Rev Neurother. 2016;16:187–203.
  • Delenclos M, Jones DR, McLean PJ, et al. Biomarkers in Parkinson’s disease: advances and strategies. Parkinsonism Relat Disord. 2016;22(Suppl 1):S106–10.
  • Kang JH, Korecka M, Figurski MJ, et al. The Alzheimer’s disease neuroimaging initiative 2 biomarker core: a review of progress and plans. Alzheimers Dement. 2015;11:772–791.
  • Majbour NK, Vaikath NN, Van Dijk KD, et al. Oligomeric and phosphorylated alpha-synuclein as potential CSF biomarkers for Parkinson’s disease. Mol Neurodegener. 2016;11:7.
  • Molinuevo JL, Blennow K, Dubois B, et al. The clinical use of cerebrospinal fluid biomarker testing for Alzheimer’s disease diagnosis: a consensus paper from the Alzheimer’s biomarkers standardization initiative. Alzheimers Dement. 2014;10:808–817.
  • Mollenhauer B, Parnetti L, Rektorova I, et al. Biological confounders for the values of cerebrospinal fluid proteins in Parkinson’s disease and related disorders. J Neurochem. 2016;139(Suppl 1):290–317.
  • Parnetti L, Cicognola C, Eusebi P, et al. Value of cerebrospinal fluid alpha-synuclein species as biomarker in Parkinson’s diagnosis and prognosis. Biomark Med. 2016;10:35–49.
  • Simonsen AH, Kuiperij B, El-Agnaf OM, et al. The utility of alpha-synuclein as biofluid marker in neurodegenerative diseases: a systematic review of the literature. Biomark Med. 2016;10:19–34.
  • Saeed U, Compagnone J, Aviv RI, et al. Imaging biomarkers in Parkinson’s disease and Parkinsonian syndromes: current and emerging concepts. Transl Neurodegener. 2017;6:8.
  • Magdalinou NK, Noyce AJ, Pinto R, et al. Identification of candidate cerebrospinal fluid biomarkers in parkinsonism using quantitative proteomics. Parkinsonism Relat Disord. 2017;37:65–71.
  • Arneric SP, Batrla-Utermann R, Beckett L, et al. Cerebrospinal fluid biomarkers for Alzheimer’s disease: a view of the regulatory science qualification landscape from the Coalition Against Major Diseases CSF biomarker team. J Alzheimers Dis. 2017;55:19–35.
  • Bao W, Jia H, Finnema S, et al. PET imaging for early detection of Alzheimer’s disease: from pathologic to physiologic biomarkers. PET Clin. 2017;12:329–350.
  • Frisoni GB, Boccardi M, F B, et al. Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. Lancet Neurol. 2017;16:661–676.
  • Gupta VB, Hone E, Pedrini S, et al. Altered levels of blood proteins in Alzheimer’s disease longitudinal study: results from Australian Imaging Biomarkers Lifestyle Study of Ageing cohort. Alzheimers Dement (Amst). 2017;8:60–72.
  • Gwinn K, David KK, Swanson-Fischer C, et al. Parkinson’s disease biomarkers: perspective from the NINDS Parkinson’s Disease Biomarkers Program. Biomark Med. 2017;11:451–473.
  • El Kadmiri N, Said N, Slassi I, et al. Biomarkers for Alzheimer disease: classical and novel candidates’ review. Neuroscience. 2017;online Jul 17: doi 10.1016/j.neuroscience.2017.1007.1017.
  • Mantzavinosa V, Alexiou A, Greig NH, et al. Biomarkers for Alzheimer’s disease diagnosis. Curr Alzheimer Res. 2017;14:1149–1154.
  • Olsson B, Schott JM, Blennow K, et al. The use of cerebrospinal fluid biomarkers to measure change in neurodegeneration in Alzheimer’s disease clinical trials. Expert Rev Neurother. 2017;17:767–775.
  • Sharma S, Lipincott W. Biomarkers in Alzheimer’s disease-recent update. Curr Alzheimer Res. 2017 Feb 20. doi: 10.2174/1567205014666170220141822.
  • Lewczuk P, Riederer P, O’Bryant S, et al. Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: an update of the consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry. World J Biol Psychiatry. 2017. submitted.
  • Simonsen AH, Herukka SK, Andreasen N, et al. Recommendations for CSF AD biomarkers in the diagnostic evaluation of dementia. Alzheimers Dement. 2017;13:274–284.
  • Trojanowski JQ, Growdon JH A new consensus report on biomarkers for the early antemortem diagnosis of Alzheimer disease: current status, relevance to drug discovery, and recommendations for future research. J Neuropathol Exp Neurol 1998;57:643–644
  • Andersen AD, Binzer M, Stenager E, et al. Cerebrospinal fluid biomarkers for Parkinson’s disease - a systematic review. Acta Neurol Scand. 2017;135:34–56.
  • Laurens B, Constantinescu R, Freeman R, et al. Fluid biomarkers in multiple system atrophy: a review of the MSA Biomarker Initiative. Neurobiol Dis. 2015;80:29–41.
  • Levin J, Maass S, Schuberth M, et al. Multiple system atrophy. In: Falup-Pecurariu C, Ferreira J, Martinez-Martin P, et al., Eds. Movement disorders curricula. Wien: Springer; 2017. p. 183–192.
  • Krismer F, Pinter B, Mueller C, et al. Sniffing the diagnosis: olfactory testing in neurodegenerative parkinsonism. Parkinsonism Relat Disord. 2017;35:36–41.
  • Abele M, Riet A, Hummel T, et al. Olfactory dysfunction in cerebellar ataxia and multiple system atrophy. J Neurol. 2003;250:1453–1455.
  • Brooks SH, Klier EM, Red SD, et al. Slowed prosaccades and increased antisaccade errors as a potential behavioral biomarker of multiple system atrophy. Front Neurol. 2017;8:261.
  • Terao Y, Fukuda H, Tokushige S, et al. Is multiple system atrophy with cerebellar ataxia (MSA-C) like spinocerebellar ataxia and multiple system atrophy with parkinsonism (MSA-P) like Parkinson’s disease? - A saccade study on pathophysiology. Clin Neurophysiol. 2016;127:1491–1502.
  • Low PA, Tomalia VA, Park KJ. Autonomic function tests: some clinical applications. J Clin Neurol. 2013;9:1–8.
  • Vodusek DB. How to diagnose MSA early: the role of sphincter EMG. J Neural Transm (Vienna). 2005;112:1657–1668.
  • Ding Y, Hu YQ, Zhan SQ, et al. Comparison study of polysomnographic features in multiple system atrophy-cerebellar types combined with and without rapid eye movement sleep behavior disorder. Chin Med J (Engl). 2016;129:2173–2177.
  • Schrag A, Sheikh S, Quinn NP, et al. A comparison of depression, anxiety, and health status in patients with progressive supranuclear palsy and multiple system atrophy. Mov Disord. 2010;25:1077–1081.
  • Burton EJ, McKeith IG, Burn DJ, et al. Cerebral atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with Lewy bodies and controls. Brain. 2004;127:791–800.
  • Summerfield C, Junque C, Tolosa E, et al. Structural brain changes in Parkinson disease with dementia: a voxel-based morphometry study. Arch Neurol. 2005;62:281–285.
  • Chen S, Tan HY, Wu ZH, et al. Imaging of olfactory bulb and gray matter volumes in brain areas associated with olfactory function in patients with Parkinson’s disease and multiple system atrophy. Eur J Radiol. 2014;83:564–570.
  • Schulz JB, Skalej M, Wedekind D, et al. Magnetic resonance imaging-based volumetry differentiates idiopathic Parkinson’s syndrome from multiple system atrophy and progressive supranuclear palsy. Ann Neurol. 1999;45:65–74.
  • Pitcher TL, Melzer TR, Macaskill MR, et al. Reduced striatal volumes in Parkinson’s disease: a magnetic resonance imaging study. Transl Neurodegener. 2012;1:17.
  • Peran P, Cherubini A, Assogna F, et al. Magnetic resonance imaging markers of Parkinson’s disease nigrostriatal signature. Brain. 2010;133:3423–3433.
  • Wieler M, Gee M, Camicioli R, et al. Freezing of gait in early Parkinson’s disease: nigral iron content estimated from magnetic resonance imaging. J Neurol Sci. 2016;361:87–91.
  • Boelmans K, Bodammer NC, Suchorska B, et al. Diffusion tensor imaging of the corpus callosum differentiates corticobasal syndrome from Parkinson’s disease. Parkinsonism Relat Disord. 2010;16:498–502.
  • Cochrane CJ, Ebmeier KP. Diffusion tensor imaging in parkinsonian syndromes: a systematic review and meta-analysis. Neurology. 2013;80:857–864.
  • Vaillancourt DE, Spraker MB, Prodoehl J, et al. High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology. 2009;72:1378–1384.
  • Scherfler C, Schocke MF, Seppi K, et al. Voxel-wise analysis of diffusion weighted imaging reveals disruption of the olfactory tract in Parkinson’s disease. Brain. 2006;129:538–542.
  • Rolheiser TM, Fulton HG, Good KP, et al. Diffusion tensor imaging and olfactory identification testing in early-stage Parkinson’s disease. J Neurol. 2011;258:1254–1260.
  • Meijer FJ, Steens SC, Van Rumund A, et al. Nigrosome-1 on susceptibility weighted imaging to differentiate Parkinson’s disease from atypical parkinsonism: an in vivo and ex vivo pilot study. Pol J Radiol. 2016;81:363–369.
  • Firbank MJ, Harrison RM, O’Brien JT. A comprehensive review of proton magnetic resonance spectroscopy studies in dementia and Parkinson’s disease. Dement Geriatr Cogn Disord. 2002;14:64–76.
  • Camicioli RM, Hanstock CC, Bouchard TP, et al. Magnetic resonance spectroscopic evidence for presupplementary motor area neuronal dysfunction in Parkinson’s disease. Mov Disord. 2007;22:382–386.
  • Taylor-Robinson SD, Turjanski N, Bhattacharya S, et al. A proton magnetic resonance spectroscopy study of the striatum and cerebral cortex in Parkinson’s disease. Metab Brain Dis. 1999;14:45–55.
  • Tha KK, Terae S, Tsukahara A, et al. Hyperintense putaminal rim at 1.5 T: prevalence in normal subjects and distinguishing features from multiple system atrophy. BMC Neurol. 2012;12:39.
  • Ramli N, Nair SR, Ramli NM, et al. Differentiating multiple-system atrophy from Parkinson’s disease. Clin Radiol. 2015;70:555–564.
  • Feng JY, Huang B, Yang WQ, et al. The putaminal abnormalities on 3.0T magnetic resonance imaging: can they separate parkinsonism-predominant multiple system atrophy from Parkinson’s disease? Acta Radiol. 2015;56:322–328.
  • Kasahara S, Miki Y, Kanagaki M, et al. “Hot cross bun” sign in multiple system atrophy with predominant cerebellar ataxia: a comparison between proton density-weighted imaging and T2-weighted imaging. Eur J Radiol. 2012;81:2848–2852.
  • Massey LA, Micallef C, Paviour DC, et al. Conventional magnetic resonance imaging in confirmed progressive supranuclear palsy and multiple system atrophy. Mov Disord. 2012;27:1754–1762.
  • Brooks DJ, Seppi K. Proposed neuroimaging criteria for the diagnosis of multiple system atrophy. Mov Disord. 2009;24:949–964.
  • Sako W, Murakami N, Izumi Y, et al. The difference in putamen volume between MSA and PD: evidence from a meta-analysis. Parkinsonism Relat Disord. 2014;20:873–877.
  • Brenneis C, Seppi K, Schocke MF, et al. Voxel-based morphometry detects cortical atrophy in the Parkinson variant of multiple system atrophy. Mov Disord. 2003;18:1132–1138.
  • Barbagallo G, Sierra-Pena M, Nemmi F, et al. Multimodal MRI assessment of nigro-striatal pathway in multiple system atrophy and Parkinson disease. Mov Disord. 2016;31:325–334.
  • Meijer FJ, Van Rumund A, Tuladhar AM, et al. Conventional 3T brain MRI and diffusion tensor imaging in the diagnostic workup of early stage parkinsonism. Neuroradiology. 2015;57:655–669.
  • Ito M, Watanabe H, Kawai Y, et al. Usefulness of combined fractional anisotropy and apparent diffusion coefficient values for detection of involvement in multiple system atrophy. J Neurol Neurosurg Psychiatry. 2007;78:722–728.
  • Oishi K, Konishi J, Mori S, et al. Reduced fractional anisotropy in early-stage cerebellar variant of multiple system atrophy. J Neuroimaging. 2009;19:127–131.
  • Shiga K, Yamada K, Yoshikawa K, et al. Local tissue anisotropy decreases in cerebellopetal fibers and pyramidal tract in multiple system atrophy. J Neurol. 2005;252:589–596.
  • Pellecchia MT, Barone P, Mollica C, et al. Diffusion-weighted imaging in multiple system atrophy: a comparison between clinical subtypes. Mov Disord. 2009;24:689–696.
  • Blain CR, Barker GJ, Jarosz JM, et al. Measuring brain stem and cerebellar damage in parkinsonian syndromes using diffusion tensor MRI. Neurology. 2006;67:2199–2205.
  • Watanabe H, Fukatsu H, Katsuno M, et al. Multiple regional 1H-MR spectroscopy in multiple system atrophy: NAA/Cr reduction in pontine base as a valuable diagnostic marker. J Neurol Neurosurg Psychiatry. 2004;75:103–109.
  • Plotkin M, Amthauer H, Klaffke S, et al. Combined 123I-FP-CIT and 123I-IBZM SPECT for the diagnosis of parkinsonian syndromes: study on 72 patients. J Neural Transm (Vienna). 2005;112:677–692.
  • Im JH, Chung SJ, Kim JS, et al. Differential patterns of dopamine transporter loss in the basal ganglia of progressive supranuclear palsy and Parkinson’s disease: analysis with [(123)I]IPT single photon emission computed tomography. J Neurol Sci. 2006;244:103–109.
  • Klaffke S, Kuhn AA, Plotkin M, et al. Dopamine transporters, D2 receptors, and glucose metabolism in corticobasal degeneration. Mov Disord. 2006;21:1724–1727.
  • Politis M. Neuroimaging in Parkinson disease: from research setting to clinical practice. Nat Rev Neurol. 2014;10:708–722.
  • O’Brien JT, Colloby S, Fenwick J, et al. Dopamine transporter loss visualized with FP-CIT SPECT in the differential diagnosis of dementia with Lewy bodies. Arch Neurol. 2004;61:919–925.
  • Walker Z, Costa DC, Walker RW, et al. Differentiation of dementia with Lewy bodies from Alzheimer’s disease using a dopaminergic presynaptic ligand. J Neurol Neurosurg Psychiatry. 2002;73:134–140.
  • Kim YJ, Ichise M, Ballinger JR, et al. Combination of dopamine transporter and D2 receptor SPECT in the diagnostic evaluation of PD, MSA, and PSP. Mov Disord. 2002;17:303–312.
  • Brucke T, Asenbaum S, Pirker W, et al. Measurement of the dopaminergic degeneration in Parkinson’s disease with [123I] beta-CIT and SPECT. Correlation with clinical findings and comparison with multiple system atrophy and progressive supranuclear palsy. J Neural Transm Suppl. 1997;50:9–24.
  • Niccolini F, Politis M. A systematic review of lessons learned from PET molecular imaging research in atypical parkinsonism. Eur J Nucl Med Mol Imaging. 2016;43:2244–2254.
  • Van Royen E, Verhoeff NF, Speelman JD, et al. Multiple system atrophy and progressive supranuclear palsy. Diminished striatal D2 dopamine receptor activity demonstrated by 123I-IBZM single photon emission computed tomography. Arch Neurol. 1993;50:513–516.
  • Ichise M, Kim YJ, Ballinger JR, et al. SPECT imaging of pre- and postsynaptic dopaminergic alterations in L-dopa-untreated PD. Neurology. 1999;52:1206–1214.
  • Pirker S, Perju-Dumbrava L, Kovacs GG, et al. Dopamine D2 receptor SPECT in corticobasal syndrome and autopsy-confirmed corticobasal degeneration. Parkinsonism Relat Disord. 2013;19:222–226.
  • Brooks DJ, Ibanez V, Sawle GV, et al. Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol. 1990;28:547–555.
  • Ghaemi M, Hilker R, Rudolf J, et al. Differentiating multiple system atrophy from Parkinson’s disease: contribution of striatal and midbrain MRI volumetry and multi-tracer PET imaging. J Neurol Neurosurg Psychiatry. 2002;73:517–523.
  • Antonini A, Schwarz J, Oertel WH, et al. [11C]raclopride and positron emission tomography in previously untreated patients with Parkinson’s disease: influence of L-dopa and lisuride therapy on striatal dopamine D2-receptors. Neurology. 1994;44:1325–1329.
  • Rinne UK, Laihinen A, Rinne JO, et al. Positron emission tomography demonstrates dopamine D2 receptor supersensitivity in the striatum of patients with early Parkinson’s disease. Mov Disord. 1990;5:55–59.
  • Brooks DJ, Ibanez V, Sawle GV, et al. Striatal D2 receptor status in patients with Parkinson’s disease, striatonigral degeneration, and progressive supranuclear palsy, measured with 11C-raclopride and positron emission tomography. Ann Neurol. 1992;31:184–192.
  • Antonini A, Leenders KL, Vontobel P, et al. Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson’s disease. Brain. 1997;120(Pt 12):2187–2195.
  • Edison P, Rowe CC, Rinne JO, et al. Amyloid load in Parkinson’s disease dementia and Lewy body dementia measured with [11C]PIB positron emission tomography. J Neurol Neurosurg Psychiatry. 2008;79:1331–1338.
  • Gomperts SN, Locascio JJ, Marquie M, et al. Brain amyloid and cognition in Lewy body diseases. Mov Disord. 2012;27:965–973.
  • Foster ER, Campbell MC, Burack MA, et al. Amyloid imaging of Lewy body-associated disorders. Mov Disord. 2010;25:2516–2523.
  • Donaghy P, Thomas AJ, O’Brien JT. Amyloid PET Imaging in Lewy body disorders. Am J Geriatr Psychiatry. 2015;23:23–37.
  • Perez-Soriano A, Arena JE, Dinelle K, et al. PBB3 imaging in Parkinsonian disorders: evidence for binding to tau and other proteins. Mov Disord. 2017;32:1016–1024.
  • Ono M, Sahara N, Kumata K, et al. Distinct binding of PET ligands PBB3 and AV-1451 to tau fibril strains in neurodegenerative tauopathies. Brain. 2017;140:764–780.
  • Hansen AK, Knudsen K, Lillethorup TP, et al. In vivo imaging of neuromelanin in Parkinson’s disease using 18F-AV-1451 PET. Brain. 2016;139:2039–2049.
  • Koga S, Ono M, Sahara N, et al. Fluorescence and autoradiographic evaluation of tau PET ligand PBB3 to alpha-synuclein pathology. Mov Disord. 2017;32:884–892.
  • Gerhard A, Banati RB, Goerres GB, et al. [11C](R)-PK11195 PET imaging of microglial activation in multiple system atrophy. Neurology. 2003;61:686–689.
  • Gerhard A, Pavese N, Hotton G, et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis. 2006;21:404–412.
  • Ouchi Y, Yoshikawa E, Sekine Y, et al. Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol. 2005;57:168–175.
  • Edison P, Ahmed I, Fan Z, et al. Microglia, amyloid, and glucose metabolism in Parkinson’s disease with and without dementia. Neuropsychopharmacology. 2013;38:938–949.
  • Gerhard A, Watts J, Trender-Gerhard I, et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in corticobasal degeneration. Mov Disord. 2004;19:1221–1226.
  • Fan Z, Aman Y, Ahmed I, et al. Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia. Alzheimers Dement. 2015;11(608–21):e7.
  • Oka H, Toyoda C, Yogo M, et al. Cardiovascular dysautonomia in de novo Parkinson’s disease without orthostatic hypotension. Eur J Neurol. 2011;18:286–292.
  • Taki J, Nakajima K, Hwang EH, et al. Peripheral sympathetic dysfunction in patients with Parkinson’s disease without autonomic failure is heart selective and disease specific. [email protected]. Eur J Nucl Med. 2000;27:566–573.
  • Takatsu H, Nishida H, Matsuo H, et al. Cardiac sympathetic denervation from the early stage of Parkinson’s disease: clinical and experimental studies with radiolabeled MIBG. J Nucl Med. 2000;41:71–77.
  • Taki J, Yoshita M, Yamada M, et al. Significance of 123I-MIBG scintigraphy as a pathophysiological indicator in the assessment of Parkinson’s disease and related disorders: it can be a specific marker for Lewy body disease. Ann Nucl Med. 2004;18:453–461.
  • Hanyu H, Shimizu S, Hirao K, et al. The role of 123I-metaiodobenzylguanidine myocardial scintigraphy in the diagnosis of Lewy body disease in patients with dementia in a memory clinic. Dement Geriatr Cogn Disord. 2006;22:379–384.
  • Berg D, Siefker C, Becker G. Echogenicity of the substantia nigra in Parkinson’s disease and its relation to clinical findings. J Neurol. 2001;248:684–689.
  • Walter U, Dressler D, Probst T, et al. Transcranial brain sonography findings in discriminating between parkinsonism and idiopathic Parkinson disease. Arch Neurol. 2007;64:1635–1640.
  • Gaenslen A, Unmuth B, Godau J, et al. The specificity and sensitivity of transcranial ultrasound in the differential diagnosis of Parkinson’s disease: a prospective blinded study. Lancet Neurol. 2008;7:417–424.
  • Walter U, Dressler D, Wolters A, et al. Sonographic discrimination of dementia with Lewy bodies and Parkinson’s disease with dementia. J Neurol. 2006;253:448–454.
  • Walter U, Dressler D, Wolters A, et al. Sonographic discrimination of corticobasal degeneration vs progressive supranuclear palsy. Neurology. 2004;63:504–509.
  • Sadowski K, Serafin-Krol M, Szlachta K, et al. Basal ganglia echogenicity in tauopathies. J Neural Transm (Vienna). 2015;122:863–865.
  • Ebentheuer J, Canelo M, Trautmann E, et al. Substantia nigra echogenicity in progressive supranuclear palsy. Mov Disord. 2010;25:773–777.
  • Behnke S, Berg D, Naumann M, et al. Differentiation of Parkinson’s disease and atypical parkinsonian syndromes by transcranial ultrasound. J Neurol Neurosurg Psychiatry. 2005;76:423–425.
  • Heller J, Brcina N, Dogan I, et al. Brain imaging findings in idiopathic REM sleep behavior disorder (RBD) – a systematic review on potential biomarkers for neurodegeneration. Sleep Med Rev. 2017;34:23–33.
  • Pradhan S, Tandon R. Relevance of non-specific MRI features in multiple system atrophy. Clin Neurol Neurosurg. 2017;159:29–33.
  • Matsusue E, Fujii S, Kanasaki Y, et al. Putaminal lesion in multiple system atrophy: postmortem MR-pathological correlations. Neuroradiology. 2008;50:559–567.
  • Sugiyama A, Ito S, Suichi T, et al. Putaminal hypointensity on T2*-weighted MR imaging is the most practically useful sign in diagnosing multiple system atrophy: a preliminary study. J Neurol Sci. 2015;349:174–178.
  • Lee JH, Kim TH, Mun CW, et al. Progression of subcortical atrophy and iron deposition in multiple system atrophy: a comparison between clinical subtypes. J Neurol. 2015;262:1876–1882.
  • Deguchi K, Ikeda K, Kume K, et al. Significance of the hot-cross bun sign on T2*-weighted MRI for the diagnosis of multiple system atrophy. J Neurol. 2015;262:1433–1439.
  • Wadia PM, Howard P, Ribeirro MQ, et al. The value of GRE, ADC and routine MRI in distinguishing Parkinsonian disorders. Can J Neurol Sci. 2013;40:389–402.
  • Hwang I, Sohn CH, Kang KM, et al. Differentiation of parkinsonism-predominant multiple system atrophy from idiopathic Parkinson disease using 3T susceptibility-weighted MR imaging, focusing on putaminal change and lesion asymmetry. AJNR Am J Neuroradiol. 2015;36:2227–2234.
  • Schwarz ST, Afzal M, Morgan PS, et al. The ‘swallow tail’ appearance of the healthy nigrosome – a new accurate test of Parkinson’s disease: a case-control and retrospective cross-sectional MRI study at 3T. PLoS One. 2014;9:e93814.
  • Wang N, Yang H, Li C, et al. Using ‘swallow-tail’ sign and putaminal hypointensity as biomarkers to distinguish multiple system atrophy from idiopathic Parkinson’s disease: a susceptibility-weighted imaging study. Eur Radiol. 2017;27:3174–3180.
  • Wang PS, Yeh CL, Lu CF, et al. The involvement of supratentorial white matter in multiple system atrophy: a diffusion tensor imaging tractography study. Acta Neurol Belg. 2017;117:213–220.
  • De Marzi R, Bajaj S, Krismer F, et al. Putaminal diffusion imaging for the differential diagnosis of the parkinsoniao variant of multiple system atrophy from Parkinson’s disease: impact of segmentation accuracy (abstr.). NeuroLogisch. 2017;Suppl 1:8–9.
  • Planetta PJ, Kurani AS, Shukla P, et al. Distinct functional and macrostructural brain changes in Parkinson’s disease and multiple system atrophy. Hum Brain Mapp. 2015;36:1165–1179.
  • Krismer F, Wenning GK. Investigations. In: Wenning GK, Fanciulli A, Eds. Multiple system atrophy. Vienna: Springer-Verlag; 2014. p. 143–168.
  • Hara D, Maki F, Tanaka S, et al. MRI-based cerebellar volume measurements correlate with the International Cooperative Ataxia Rating Scale score in patients with spinocerebellar degeneration or multiple system atrophy. Cerebellum Ataxias. 2016;3:14.
  • Guevara C, Bulatova K, Soruco W, et al. Retrospective diagnosis of parkinsonian syndromes using whole-brain atrophy rates. Front Aging Neurosci. 2017;9:99.
  • Focke NK, Helms G, Pantel PM, et al. Differentiation of typical and atypical Parkinson syndromes by quantitative MR imaging. AJNR Am J Neuroradiol. 2011;32:2087–2092.
  • Wang Y, Butros SR, Shuai X, et al. Different iron-deposition patterns of multiple system atrophy with predominant parkinsonism and idiopathetic Parkinson diseases demonstrated by phase-corrected susceptibility-weighted imaging. AJNR Am J Neuroradiol. 2012;33:266–273.
  • Cnyrim CD, Kupsch A, Ebersbach G, et al. Diffusion tensor imaging in idiopathic Parkinson’s disease and multisystem atrophy (Parkinsonian type). Neurodegener Dis. 2014;13:1–8.
  • Chen B, Fan G, Sun W, et al. Usefulness of diffusion-tensor MRI in the diagnosis of Parkinson variant of multiple system atrophy and Parkinson’s disease: a valuable tool to differentiate between them? Clin Radiol. 2017;72:610e9–610 e15.
  • Worker A, Blain C, Jarosz J, et al. Diffusion tensor imaging of Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy: a tract-based spatial statistics study. PLoS One. 2014;9:e112638.
  • Sako W, Murakami N, Izumi Y, et al. The difference of apparent diffusion coefficient in the middle cerebellar peduncle among parkinsonian syndromes: evidence from a meta-analysis. J Neurol Sci. 2016;363:90–94.
  • Takado Y, Igarashi H, Terajima K, et al. Brainstem metabolites in multiple system atrophy of cerebellar type: 3.0-T magnetic resonance spectroscopy study. Mov Disord. 2011;26:1297–1302.
  • Ji L, Wang Y, Zhu D, et al. White matter differences between multiple system atrophy (parkinsonian type) and Parkinson’s disease: a diffusion tensor image study. Neuroscience. 2015;305:109–116.
  • Nocker M, Seppi K, Donnemiller E, et al. Progression of dopamine transporter decline in patients with the Parkinson variant of multiple system atrophy: a voxel-based analysis of [123I]beta-CIT SPECT. Eur J Nucl Med Mol Imaging. 2012;39:1012–1020.
  • Perju-Dumbrava LD, Kovacs GG, Pirker S, et al. Dopamine transporter imaging in autopsy-confirmed Parkinson’s disease and multiple system atrophy. Mov Disord. 2012;27:65–71.
  • Kraemmer J, Kovacs GG, Perju-Dumbrava L, et al. Correlation of striatal dopamine transporter imaging with post mortem substantia nigra cell counts. Mov Disord. 2014;29:1767–1773.
  • Kim HW, Kim JS, Oh M, et al. Different loss of dopamine transporter according to subtype of multiple system atrophy. Eur J Nucl Med Mol Imaging. 2016;43:517–525.
  • Oh M, Kim JS, Kim JY, et al. Subregional patterns of preferential striatal dopamine transporter loss differ in Parkinson disease, progressive supranuclear palsy, and multiple-system atrophy. J Nucl Med. 2012;53:399–406.
  • McKinley J, O’Connell M, Farrell M, et al. Normal dopamine transporter imaging does not exclude multiple system atrophy. Parkinsonism Relat Disord. 2014;20:933–934.
  • Lewis SJ, Pavese N, Rivero-Bosch M, et al. Brain monoamine systems in multiple system atrophy: a positron emission tomography study. Neurobiol Dis. 2012;46:130–136.
  • Tsukamoto K, Matsusue E, Kanasaki Y, et al. Significance of apparent diffusion coefficient measurement for the differential diagnosis of multiple system atrophy, progressive supranuclear palsy, and Parkinson’s disease: evaluation by 3.0-T MR imaging. Neuroradiology. 2012;54:947–955.
  • Brajkovic L, Kostic V, Sobic-Saranovic D, et al. The utility of FDG-PET in the differential diagnosis of Parkinsonism. Neurol Res. 2017;39:675–684.
  • Meyer PT, Frings L, Rucker G, et al. 18F-FDG PET in parkinsonism: differential diagnosis and cognitive impairment in Parkinson’s disease. J Nucl Med. 2017 Sept 14. online.
  • Tang CC, Poston KL, Eckert T, et al. Differential diagnosis of parkinsonism: a metabolic imaging study using pattern analysis. Lancet Neurol. 2010;9:149–158.
  • Poston KL, Eidelberg D. Functional brain networks and abnormal connectivity in the movement disorders. Neuroimage. 2012;62:2261–2270.
  • Juh R, Kim J, Moon D, et al. Different metabolic patterns analysis of Parkinsonism on the 18F-FDG PET. Eur J Radiol. 2004;51:223–233.
  • Eckert T, Barnes A, Dhawan V, et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage. 2005;26:912–921.
  • Sakurai K, Imabayashi E, Ito K, et al. The utility of cerebral perfusion SPECT analysis using SPM8, eZIS and vbSEE for the diagnosis of multiple system atrophy-parkinsonism. Ann Nucl Med. 2015;29:206–213.
  • Baudrexel S, Seifried C, Penndorf B, et al. The value of putaminal diffusion imaging versus 18-fluorodeoxyglucose positron emission tomography for the differential diagnosis of the Parkinson variant of multiple system atrophy. Mov Disord. 2014;29:380–387.
  • Matsuda H, Imabayashi E, Kuji I, et al. Evaluation of both perfusion and atrophy in multiple system atrophy of the cerebellar type using brain SPECT alone. BMC Med Imaging. 2010;10:17.
  • Coakeley SStrafella AP. Imaging tau pathology in parkinsonisms. Npj parkinsons Dis. 2017;3:22.
  • Cho H, Choi JY, Lee SH, et al. 18 F-AV-1451 binds to putamen in multiple system atrophy. Mov Disord. 2017;32:171–173.
  • Gasnier B, Roisin MP, Scherman D, et al. Uptake of meta-iodobenzylguanidine by bovine chromaffin granule membranes. Mol Pharmacol. 1986;29:275–280.
  • Treglia G, Stefanelli A, Cason E, et al. Diagnostic performance of iodine-123-metaiodobenzylguanidine scintigraphy in differential diagnosis between Parkinson’s disease and multiple-system atrophy: a systematic review and a meta-analysis. Clin Neurol Neurosurg. 2011;113:823–829.
  • King AE, Mintz J, Royall DR. Meta-analysis of 123I-MIBG cardiac scintigraphy for the diagnosis of Lewy body-related disorders. Mov Disord. 2011;26:1218–1224.
  • Orimo S, Suzuki M, Inaba A, et al. 123I-MIBG myocardial scintigraphy for differentiating Parkinson’s disease from other neurodegenerative parkinsonism: a systematic review and meta-analysis. Parkinsonism Relat Disord. 2012;18:494–500.
  • Kaindlstorfer C, Krismer F, Fanciulli A, et al. Diagnostic value of cardiac 123I-MIBG SPECT and CT co-registration in PD and MSA-P (Poster). NeuroLogisch. 2016;Suppl 1:38.
  • Nagayama H, Ueda M, Yamazaki M, et al. Abnormal cardiac [(123)I]-meta-iodobenzylguanidine uptake in multiple system atrophy. Mov Disord. 2010;25:1744–1747.
  • Orimo S, Kanazawa T, Nakamura A, et al. Degeneration of cardiac sympathetic nerve can occur in multiple system atrophy. Acta Neuropathol. 2007;113:81–86.
  • Rascol O, Schelosky L. 123I-metaiodobenzylguanidine scintigraphy in Parkinson’s disease and related disorders. Mov Disord. 2009;24(Suppl 2):S732–41.
  • Baschieri F, Calandra-Buonaura G, Cecere A, et al. Iodine-123-meta-iodobenzylguanidine myocardial scintigraphy in isolated autonomic failure: potential red flag for future multiple system atrophy. Front Neurol. 2017;8:225.
  • Li X, Xue S, Jia S, et al. Transcranial sonography in idiopathic REM sleep behavior disorder and multiple system atrophy. Psychiatry Clin Neurosci. 2017;71:238–246.
  • Shi M, Bradner J, Hancock AM, et al. Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Ann Neurol. 2011;69:570–580.
  • Wang Y, Shi M, Chung KA, et al. Phosphorylated alpha-synuclein in Parkinson’s disease. Sci Transl Med. 2012;4:121ra20.
  • Hall S, Ohrfelt A, Constantinescu R, et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch Neurol. 2012;69:1445–1452.
  • Herbert MK, Eeftens JM, Aerts MB, et al. CSF levels of DJ-1 and tau distinguish MSA patients from PD patients and controls. Parkinsonism Relat Disord. 2014;20:112–115.
  • Herbert MK, Aerts MB, Beenes M, et al. CSF neurofilament light chain but not FLT3 ligand discriminates Parkinsonian disorders. Front Neurol. 2015;6:91.
  • Magdalinou NK, Paterson RW, Schott JM, et al. A panel of nine cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes. J Neurol Neurosurg Psychiatry. 2015;86:1240–1247.
  • Shah A, Hiew KW, Han P, et al. Alpha-synuclein in bio fluids and tissues as a potential biomarker for Parkinson’s disease. J Alzheimers Parkinsonism Dem. 2017;2:013.
  • Goldstein DS, Holmes C, Bentho O, et al. Biomarkers to detect central dopamine deficiency and distinguish Parkinson disease from multiple system atrophy. Parkinsonism Relat Disord. 2008;14:600–607.
  • Goldstein DS, Holmes C, Sharabi Y. Cerebrospinal fluid biomarkers of central catecholamine deficiency in Parkinson’s disease and other synucleinopathies. Brain. 2012;135:1900–1913.
  • Salvesen L, Bech S, Lokkegaard A, et al. The DJ-1 concentration in cerebrospinal fluid does not differentiate among Parkinsonian syndromes. Parkinsonism Relat Disord. 2012;18:899–901.
  • Kikuchi A, Takeda A, Onodera H, et al. Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol Dis. 2002;9:244–248.
  • Mondello S, Constantinescu R, Zetterberg H, et al. CSF alpha-synuclein and UCH-L1 levels in Parkinson’s disease and atypical parkinsonian disorders. Parkinsonism Relat Disord. 2014;20:382–387.
  • Silajdzic E, Constantinescu R, Holmberg B, et al. Flt3 ligand does not differentiate between Parkinsonian disorders. Mov Disord. 2014;29:1319–1322.
  • Wang Y, Hancock AM, Bradner J, et al. Complement 3 and factor h in human cerebrospinal fluid in Parkinson’s disease, Alzheimer’s disease, and multiple-system atrophy. Am J Pathol. 2011;178:1509–1516.
  • Tateno F, Sakakibara R, Kawai T, et al. Alpha-synuclein in the cerebrospinal fluid differentiates synucleinopathies (Parkinson disease, dementia with Lewy bodies, multiple system atrophy) from Alzheimer disease. Alzheimer Dis Assoc Disord. 2012;26:213–216.
  • Mollenhauer B, Locascio JJ, Schulz-Schaeffer W, et al. Alpha-synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol. 2011;10:230–240.
  • Foulds PG, Yokota O, Thurston A, et al. Post mortem cerebrospinal fluid alpha-synuclein levels are raised in multiple system atrophy and distinguish this from the other alpha-synucleinopathies, Parkinson’s disease and Dementia with Lewy bodies. Neurobiol Dis. 2012;45:188–195.
  • Gao L, Tang H, Nie K, et al. Cerebrospinal fluid alpha-synuclein as a biomarker for Parkinson’s disease diagnosis: a systematic review and meta-analysis. Int J Neurosci. 2015;125:645–654.
  • Eusebi P, Giannandrea DBiscetti L, et al. Diagnostic utility of cerebrospinal fluid alpha-synuclein in Parkinson's disease: A systematic review and meta-analysis. Mov Disord. 2017; online Sep 7: doi doi:10.1002/mds.27110.
  • Constantinescu R, Rosengren L, Johnels B, et al. Consecutive analyses of cerebrospinal fluid axonal and glial markers in Parkinson’s disease and atypical Parkinsonian disorders. Parkinsonism Relat Disord. 2010;16:142–145.
  • Holmberg B, Johnels B, Blennow K, et al. Cerebrospinal fluid Abeta42 is reduced in multiple system atrophy but normal in Parkinson’s disease and progressive supranuclear palsy. Mov Disord. 2003;18:186–190.
  • Paik MJ, Ahn YH, Lee PH, et al. Polyamine patterns in the cerebrospinal fluid of patients with Parkinson’s disease and multiple system atrophy. Clin Chim Acta. 2010;411:1532–1535.
  • Brouillette AM, Oz G, Gomez CM. Cerebrospinal fluid biomarkers in spinocerebellar ataxia: a pilot study. Dis Markers. 2015;2015:413098.
  • Süssmuth SD, Uttner I, Landwehrmeyer B, et al. Differential pattern of brain-specific CSF proteins tau and amyloid-beta in Parkinsonian syndromes. Mov Disord. 2010;25:1284–1288.
  • Abdo WF, Bloem BR, Van Geel WJ, et al. CSF neurofilament light chain and tau differentiate multiple system atrophy from Parkinson’s disease. Neurobiol Aging. 2007;28:742–747.
  • Bech S, Hjermind LE, Salvesen L, et al. Amyloid-related biomarkers and axonal damage proteins in parkinsonian syndromes. Parkinsonism Relat Disord. 2012;18:69–72.
  • Sako W, Murakami N, Izumi Y, et al. Neurofilament light chain level in cerebrospinal fluid can differentiate Parkinson’s disease from atypical parkinsonism: evidence from a meta-analysis. J Neurol Sci. 2015;352:84–87.
  • Hu X, Yang Y, Gong D. Cerebrospinal fluid levels of neurofilament light chain in multiple system atrophy relative to Parkinson’s disease: a meta-analysis. Neurol Sci. 2017;38:407–414.
  • Abdo WF, Van De Warrenburg BP, Kremer HP, et al. CSF biomarker profiles do not differentiate between the cerebellar and parkinsonian phenotypes of multiple system atrophy. Parkinsonism Relat Disord. 2007;13:480–482.
  • Constantinescu R, Andreasson U, Li S, et al. Proteomic profiling of cerebrospinal fluid in parkinsonian disorders. Parkinsonism Relat Disord. 2010;16:545–549.
  • Petzold A, Thompson EJ, Keir G, et al. Longitudinal one-year study of levels and stoichiometry of neurofilament heavy and light chain concentrations in CSF in patients with multiple system atrophy. J Neurol Sci. 2009;279:76–79.
  • Martinez-Rodriguez JE, Seppi K, Cardozo A, et al. Cerebrospinal fluid hypocretin-1 levels in multiple system atrophy. Mov Disord. 2007;22:1822–1824.
  • Ishigami N, Tokuda T, Ikegawa M, et al. Cerebrospinal fluid proteomic patterns discriminate Parkinson’s disease and multiple system atrophy. Mov Disord. 2012;27:851–857.
  • Vallelunga A, Ragusa M, Di Mauro S, et al. Identification of circulating microRNAs for the differential diagnosis of Parkinson’s disease and multiple system atrophy. Front Cell Neurosci. 2014;8:156.
  • Singer W, Schmeichel A, Goldstein D, et al. Spinal fluid biomarkers for multiple system atrophy - a pilot study (abstr.). Neurology. 2016;86(Suppl):S18.002.
  • Marques TM, Kuiperij HB, Bruinsma IB, et al. MicroRNAs in cerebrospinal fluid as potential biomarkers for Parkinson’s disease and multiple system atrophy. Mol Neurobiol. 2016.
  • Lee PH, Lee G, Park HJ, et al. The plasma alpha-synuclein levels in patients with Parkinson’s disease and multiple system atrophy. J Neural Transm (Vienna). 2006;113:1435–1439.
  • Sun ZF, Xiang XS, Chen Z, et al. Increase of the plasma alpha-synuclein levels in patients with multiple system atrophy. Mov Disord. 2014;29:375–379.
  • Hansson O, Janelidze S, Hall S, et al. Blood-based NfL: a biomarker for differential diagnosis of parkinsonian disorder. Neurology. 2017;88:930–937.
  • Chen D, Wei X, Zou J, et al. Contra-directional expression of serum homocysteine and uric acid as important biomarkers of multiple system atrophy severity: a cross-sectional study. Front Cell Neurosci. 2015;9:247.
  • Zhou L, Jiang Y, Zhu C, et al. Oxidative stress and environmental exposures are associated with multiple system atrophy in Chinese patients. Can J Neurol Sci. 2016;43:703–709.
  • Guo Y, Zhuang XD, Xian WB, et al. Serum Klotho, vitamin D, and homocysteine in combination predict the outcomes of Chinese patients with multiple system atrophy. CNS Neurosci Ther. 2017;23:657–666.
  • Numao A, Suzuki K, Miyamoto M, et al. Clinical correlates of serum insulin-like growth factor-1 in patients with Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy. Parkinsonism Relat Disord. 2014;20:212–216.
  • Pellecchia MT, Salvatore E, Pivonello R, et al. Stimulation of growth hormone release in multiple system atrophy, Parkinson’s disease and idiopathic cerebellar ataxia. Neurol Sci. 2001;22:79–80.
  • Pellecchia MT, Pivonello R, Longo K, et al. Multiple system atrophy is associated with changes in peripheral insulin-like growth factor system. Mov Disord. 2010;25:2621–2626.
  • Kasai T, Tokuda T, Ohmichi T, et al. Serum levels of coenzyme Q10 in patients with multiple system atrophy. PLoS One. 2016;11:e0147574.
  • Mitsui J, Matsukawa T, Yasuda T, et al. Plasma coenzyme Q10 levels in patients with multiple system atrophy. JAMA Neurol. 2016;73:977–980.
  • Barca E, Kleiner G, Tang G, et al. Decreased coenzyme Q10 levels in multiple system atrophy cerebellum. J Neuropathol Exp Neurol. 2016;75:663–672.
  • Brodacki B, Staszewski J, Toczylowska B, et al. Serum interleukin (IL-2, IL-10, IL-6, IL-4), TNFalpha, and INFgamma concentrations are elevated in patients with atypical and idiopathic parkinsonism. Neurosci Lett. 2008;441:158–162.
  • Kaufman E, Hall S, Surova Y, et al. Proinflammatory cytokines are elevated in serum of patients with multiple system atrophy. PLoS One. 2013;8:e62354.
  • Mahlknecht P, Stemberger S, Sprenger F, et al. An antibody microarray analysis of serum cytokines in neurodegenerative Parkinsonian syndromes. Proteome Sci. 2012;10:71.
  • Yamagishi Y, Saigoh K, Saito Y, et al. Diagnosis of Parkinson’s disease and the level of oxidized DJ-1 protein. Neurosci Res. 2017; online July 10: doi 10.1016/j.neures.2017.1006.1008.
  • Shi M, Liu C, Cook TJ, et al. Plasma exosomal alpha-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol. 2014;128:639–650.
  • Scherzer CR, Grass JA, Liao Z, et al. GATA transcription factors directly regulate the Parkinson’s disease-linked gene alpha-synuclein. Proc Natl Acad Sci U S A. 2008;105:10907–10912.
  • Goldstein DS, Kopin IJ, Sharabi Y, et al. Plasma biomarkers of decreased vesicular storage distinguish Parkinson disease with orthostatic hypotension from the parkinsonian form of multiple system atrophy. Clin Auton Res. 2015;25:61–67.
  • Quinzii CM, Lopez LC, Naini A, et al. Human CoQ10 deficiencies. Biofactors. 2008;32:113–118.
  • Chen YP, Zhao B, Cao B, et al. Mutation scanning of the COQ2 gene in ethnic Chinese patients with multiple-system atrophy. Neurobiol Aging. 2015;36(1222):e7–11.
  • Ogaki K, Fujioka S, Heckman MG, et al. Analysis of COQ2 gene in multiple system atrophy. Mol Neurodegener. 2014;9:44.
  • Kuo SH, Quinzii CM. Coenzyme Q10 as a peripheral biomarker for multiple system atrophy. JAMA Neurol. 2016;73:917–919.
  • Doppler K, Weis J, Karl K, et al. Distinctive distribution of phospho-alpha-synuclein in dermal nerves in multiple system atrophy. Mov Disord. 2015;30:1688–1692.
  • Zange L, Noack C, Hahn K, et al. Phosphorylated alpha-synuclein in skin nerve fibres differentiates Parkinson’s disease from multiple system atrophy. Brain. 2015;138:2310–2321.
  • Nakamura K, Mori F, Kon T, et al. Filamentous aggregations of phosphorylated alpha-synuclein in Schwann cells (Schwann cell cytoplasmic inclusions) in multiple system atrophy. Acta Neuropathol Commun. 2015;3:29.
  • Kuzdas-Wood D, Irschick R, Theurl M, et al. Involvement of peripheral nerves in the transgenic plp-alpha-syn model of multiple system atrophy: extending the phenotype. PLoS One. 2015;10:e0136575.
  • Haga R, Sugimoto K, Nishijima H, et al. Clinical utility of skin biopsy in differentiating between Parkinson’s disease and multiple system atrophy. Parkinsons Dis. 2015;2015:167038.
  • Mori F, Inenaga C, Yoshimoto M, et al. Alpha-synuclein immunoreactivity in normal and neoplastic Schwann cells. Acta Neuropathol. 2002;103:145–151.
  • Provitera V, Nolano M, Caporaso G, et al. Postganglionic sudomotor denervation in patients with multiple system atrophy. Neurology. 2014;82:2223–2229.
  • Chung SJ, Kim J, Lee HJ, et al. Alpha-synuclein in gastric and colonic mucosa in Parkinson’s disease: limited role as a biomarker. Mov Disord. 2016;31:241–249.
  • Beach TG, Adler CH, Sue LI, et al. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol. 2010;119:689–702.
  • Böttner M, Zorenkov D, Hellwig I, et al. Expression pattern and localization of alpha-synuclein in the human enteric nervous system. Neurobiol Dis. 2012;48:474–480.
  • Del Tredici K, Hawkes CH, Ghebremedhin E, et al. Lewy pathology in the submandibular gland of individuals with incidental Lewy body disease and sporadic Parkinson’s disease. Acta Neuropathol. 2010;119:703–713.
  • Adler CH, Dugger BN, Hinni ML, et al. Submandibular gland needle biopsy for the diagnosis of Parkinson disease. Neurology. 2014;82:858–864.
  • Pouclet H, Lebouvier T, Coron E, et al. Analysis of colonic alpha-synuclein pathology in multiple system atrophy. Parkinsonism Relat Disord. 2012;18:893–895.
  • Valera E, Spencer B, Fields JA, et al. Combination of alpha-synuclein immunotherapy with anti-inflammatory treatment in a transgenic mouse model of multiple system atrophy. Acta Neuropathol Commun. 2017;5:2.
  • Valera E, Monzio Compagnoni G, Masliah E. Review: novel treatment strategies targeting alpha-synuclein in multiple system atrophy as a model of synucleinopathy. Neuropathol Appl Neurobiol. 2016;42:95–106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.