227
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic regulatory modifications in genetic and sporadic frontotemporal dementia

ORCID Icon, ORCID Icon & ORCID Icon
Pages 469-475 | Received 13 Feb 2018, Accepted 23 May 2018, Published online: 05 Jun 2018

References

  • Bang J, Spina S, Miller BL. Frontotemporal dementia. Lancet. 2015;386:1672–1682.
  • Snowden J, Neary D, Mann D. Frontotemporal lobar degeneration: clinical and pathological relationships. Acta Neuropathol. 2007;114:31–38.
  • Rademakers R, Neumann M, Mackenzie IR. Advances in understanding the molecular basis of frontotemporal dementia. Nat Rev Neurol. 2012;8:423–434.
  • Pottier C, Ravenscroft TA, Sanchez-Contreras M, et al. Genetics of FTLD: overview and what else we can expect from genetic studies. J Neurochem. 2016;138:32–53.
  • Hodges J. Familial frontotemporal dementia and amyotrophic lateral sclerosis associated with the C9ORF72 hexanucleotide repeat. Brain. 2012;135:652–655.
  • Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457–463.
  • Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–45. [cited 2018 Jan 26].
  • Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab. 2010;21:214–222.
  • Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–254.
  • Goll MG, Bestor TH. Eurkaryotic cytosine methyltransferases. Annu Rev Biochem. 2005;74:481–514.
  • Okano M, Bell DW, Haber DA, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–257.
  • Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31:89–97.
  • Weber M, Schübeler D. Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr Opin Cell Biol. 2007;19:273–280.
  • Guo JU, Su Y, Shin JH, et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci. 2014;17:215–222.
  • Banzhaf-Strathmann J, Claus R, Mücke O, et al. Promoter DNA methylation regulates progranulin expression and is altered in FTLD. Acta Neuropathol Commun. 2013;1:16. [cited 2018 Jan 31].
  • Galimberti D, D’Addario C, Dell’Osso B, et al. Progranulin gene (GRN) promoter methylation is increased in patients with sporadic frontotemporal lobar degeneration. Neurol Sci. 2013;34:899–903.
  • Finch N, Baker M, Crook R, et al. Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members. Brain. 2009;132:583–591.
  • Li Y, Chen JA, Sears RL, et al. An epigenetic signature in peripheral blood associated with the haplotype on 17q21.31, a risk factor for neurodegenerative tauopathy. copenhaver GP, editor. PLoS Genet. 2014;10:e1004211.
  • Taskesen E, Mishra A, Van Der Sluis S, et al. Susceptible genes and disease mechanisms identified in frontotemporal dementia and frontotemporal dementia with amyotrophic lateral sclerosis by DNA-methylation and GWAS. Sci Rep. 2017;7:8899.
  • Ferri E, Arosio B, D’Addario C, et al. Gene promoter methylation and expression of pin1 differ between patients with frontotemporal dementia and alzheimer’s disease. J Neurol Sci. 2016;362:283–286.
  • Liu EY, Russ J, Wu K, et al. C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD. Acta Neuropathol. 2014;128:525–541.
  • Xi Z, Van Blitterswijk M, Zhang M, et al. Jump from pre-mutation to pathologic expansion in C9orf72. Am J Hum Genet. 2015;96:962–970.
  • Xi Z, Rainero I, Rubino E, et al. Hypermethylation of the CpG-island near the C9orf72 G4C2-repeat expansion in FTLD patients. Hum Mol Genet. 2014;23:5630–5637.
  • Xi Z, Zhang M, Bruni AC, et al. The C9orf72 repeat expansion itself is methylated in ALS and FTLD patients. Acta Neuropathol. 2015;129:715–727.
  • Dieker J, Muller S. Epigenetic histone code and autoimmunity. Clin Rev Allergy Immunol. 2010;39:78–84.
  • Brooks WH, Le Dantec C, Pers J-O, et al. Epigenetics and autoimmunity. J Autoimmun. 2010;34:J207–J219.
  • McDevitt MA. Clinical applications of epigenetic markers and epigenetic profiling in myeloid malignancies. Semin Oncol. 2012;39:109–122.
  • Ammollo CT, Semeraro F, Xu J, et al. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost. 2011;9:1795–1803.
  • Xu J, Zhang X, Pelayo R, et al. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15:1318–1321.
  • Belzil VV, Bauer PO, Prudencio M, et al. Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathol. 2013;126:895–905.
  • She A, Kurtser I, Reis SA, et al. Selectivity and kinetic requirements of hdac inhibitors as progranulin enhancers for treating frontotemporal dementia. Cell Chem Biol. 2017;24:892–906.e5.
  • Fass DM, Reis SA, Ghosh B, et al. Crebinostat: a novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity. Neuropharmacology. 2013;64:81–96.
  • Almeida S, Gao F, Coppola G, et al. Suberoylanilide hydroxamic acid increases progranulin production in iPSC-derived cortical neurons of frontotemporal dementia patients. Neurobiol Aging. 2016;42:35–40.
  • Sanchez-Elsner T, Gou D, Kremmer E, et al. Noncoding RNAs of trithorax response elements recruit drosophila Ash1 to ultrabithorax. Science. 2006;311:1118–1123.
  • Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22:1775–1789.
  • Bernstein E, Allis CD. RNA meets chromatin. Genes Dev. 2005;19:1635–1655.
  • Sevignani C, Calin GA, Siracusa LD, et al. Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome. 2006;17:189–202.
  • Hwang H-W, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer. 2007;96(Suppl):R40–4.
  • Fabbri M, Ivan M, Cimmino A, et al. Regulatory mechanisms of microRNAs involvement in cancer. Expert Opin Biol Ther. 2007;7:1009–1019.
  • Chang T-C, Mendell JT. microRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet. 2007;8:215–239.
  • Belzil VV, Gendron TF, Petrucelli L. RNA-mediated toxicity in neurodegenerative disease. Mol Cell Neurosci. 2013;56:406–419.
  • Rademakers R, Eriksen JL, Baker M, et al. Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Hum Mol Genet. 2008;17:3631–3642.
  • Wang W-X, Wilfred BR, Madathil SK, et al. miR-107 regulates granulin/progranulin with implications for traumatic brain injury and neurodegenerative disease. Am J Pathol. 2010;177:334–345.
  • Jiao J, Herl LD, Farese RV, et al. MicroRNA-29b regulates the expression level of human progranulin, a secreted glycoprotein implicated in frontotemporal dementia. Cookson MR, editor. PLoS One. 2010;5:e10551.
  • Chen-Plotkin AS, Unger TL, Gallagher MD, et al. TMEM106B, the risk gene for frontotemporal dementia, is regulated by the microrna-132/212 cluster and affects progranulin pathways. J Neurosci. 2012;32:11213–11227.
  • Sheinerman KS, Toledo JB, Tsivinsky VG, et al. Circulating brain-enriched microRNAs as novel biomarkers for detection and differentiation of neurodegenerative diseases. Alzheimers Res Ther. 2017;9:89.
  • Galimberti D, Villa C, Fenoglio C, et al. Circulating miRNAs as potential biomarkers in alzheimer’s disease. J Alzheimers Dis. 2014;42:1261–1267.
  • Fenoglio C, Ridolfi E, Galimberti D, et al. An emerging role for long non-coding RNA dysregulation in neurological disorders. Int J Mol Sci. 2013;14:20427–20442, *Review on lncRNA.
  • Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer Discov. 2011;1:391–407.
  • Faghihi MA, Modarresi F, Khalil AM, et al. Expression of a noncoding RNA is elevated in alzheimer’s disease and drives rapid feed-forward regulation of β-secretase. Nat Med. 2008;14:723–730.
  • Mus E, Hof PR, Tiedge H. Dendritic BC200 RNA in aging and in alzheimer’s disease. Proc Natl Acad Sci U S A. 2007;104:10679–10684.
  • Tripathi V, Ellis JD, Shen Z, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39:925–938.
  • Bernard D, Prasanth KV, Tripathi V, et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 2010;29:3082–3093.
  • Tollervey JR, Curk T, Rogelj B, et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci. 2011;14:452–458.
  • Lourenco GF, Janitz M, Huang Y, et al. Long noncoding RNAs in TDP-43 and FUS/TLS-related frontotemporal lobar degeneration (FTLD). Neurobiol Dis. 2015;82:445–454.
  • Grunau C, Clark SJ, Rosenthal A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res. 2001;29:E65–5.
  • Idda ML, Munk R, Abdelmohsen K, et al. Noncoding RNAs in alzheimer’s disease. Wiley Interdiscip Rev RNA. 2018;9:e1463.
  • Riva P, Ratti A, Venturin M. the long non-coding RNAs in neurodegenerative diseases: novel mechanisms of pathogenesis. Curr Alzheimer Res. 2016;13:1219–1231.
  • Saraiva C, Esteves M, Bernardino L. MicroRNA: basic concepts and implications for regeneration and repair of neurodegenerative diseases. Biochem Pharmacol. 2017;141:118–131.
  • Pasyukova EG, Vaiserman AM. HDAC inhibitors: a new promising drug class in anti-aging research. Mech Ageing Dev. 2017;166:6–15.
  • Lu X, Wang L, Yu C, et al. Histone acetylation modifiers in the pathogenesis of alzheimerâ€TMs disease. Front Cell Neurosci. 2015;9:226.
  • Sharma S, Taliyan R. Targeting histone deacetylases: a novel approach in parkinson’s disease. Parkinsons Dis. 2015;2015:303294.
  • Pirooznia SK, Elefant F. Targeting specific HATs for neurodegenerative disease treatment: translating basic biology to therapeutic possibilities. Front Cell Neurosci. 2013;7:30.
  • Roche J, Bertrand P. Inside HDACs with more selective HDAC inhibitors. Eur J Med Chem. 2016;121:451–483.
  • Rodenhiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical applications. Can Med Assoc J. 2006;174:341–348.
  • Schoch KM, Miller TM. Antisense oligonucleotides: translation from mouse models to human neurodegenerative diseases. Neuron. 2017;94:1056–1070.
  • Rabal O, Sánchez-Arias JA, Cuadrado-Tejedor M, et al. Design, synthesis, and biological evaluation of first-in-class dual acting histone deacetylases (hdacs) and phosphodiesterase 5 (pde5) inhibitors for the treatment of alzheimer’s disease. J Med Chem. 2016;59:8967–9004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.