276
Views
0
CrossRef citations to date
0
Altmetric
Review

New discoveries in progressive myoclonus epilepsies: a clinical outlook

&
Pages 649-667 | Received 25 May 2018, Accepted 20 Jul 2018, Published online: 09 Aug 2018

References

  • Berkovic SF, Andermann F, Carpenter S, et al. Progressive myoclonus epilepsies: specific causes and diagnosis. N Engl J Med. 1986;315:296–305.
  • Franceschetti S, Michelucci R, Canafoglia L, et al. Progressive myoclonic epilepsies definitive and still undetermined causes. Neurology. 2014;82:405–411.
  • Minassian BA, Striano P, Avanzini G. Progressive myoclonus epilepsies: state of the art. Vol. 30. John Libbey Eurotext. Montrouge, France; 2017.
  • Tassinari CA, Rubboli G, Shibasaki H. Neurophysiology of positive and negative myoclonus. Electroencephalogr Clin Neurophysiol. 1998;107:181–195.
  • Damiano JA, Afawi Z, Bahlo M, et al. Mutation of the nuclear lamin gene LMNB2 in progressive myoclonus epilepsy with early ataxia. Hum Mol Genet. 2015;24:4483–4490.
  • Muona M, Berkovic SF, Dibbens LM, et al. A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet. 2015;47:39–46.
  • Oliver KL, Franceschetti S, Milligan CJ, et al. Myoclonus epilepsy and ataxia due to KCNC1 mutation: analysis of 20 cases and K+ channel properties. Annals of Neurology. 2017;81:677–689.
  • Vilchez D, Ros S, Cifuentes D, et al. Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat. Neurosci. 2007;10:1407–1413.
  • Valles-Ortega J, Duran J, GarciaRocha M, et al. Neurodegeneration and functional impairments associated with glycogen synthase accumulation in a mouse model of Lafora disease. EMBO Mol Med. 2011;3:667–681.
  • Genton P. Unverricht-Lundborg disease (PME1). Rev Neurol (Paris). 2006;162:819–826.
  • Unverricht H. Die Myoclonie. Leipzig, Vienna: Franz Deuticke; 1891.
  • Lundborg H. Die progressive myoclonusepilepsie (Unverrichts myoklonie). Uppsala: Almqvist and Wiskell; 1903.
  • Pennachio LA, Lehesjoki AE, Stone NE, et al. Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy. Science. 1996;271:1731–1734.
  • Virtaneva K, D’Amato E, Miao J, et al. Unstable minisatellite expansion causing recessively inherited myoclonus epilepsy, EPM1. Nat Genet. 1997;15:393–396.
  • Lalioti MD, Scott HS, Buresi C, et al. Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy. Nature. 1997;386:847–851.
  • Turk V, Bode W. The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett. 1991;285:213–219.
  • Koskenkorva P, Hyppönen J, Äikiä M, et al. Severer phenotype in Unverricht-Lundborg disease (EPM1) patients compound heterozygous for the dodecamer repeat expansion and the c.202C>T mutation in the CSTB gene. Neurodegener Dis. 2011;8:515–522.
  • Lehesjoki AE, Kälviäinen R. “Unverricht-Lundborg disease. In: Pagon RA, Adam MP, Ardinger HH, et al. eds. GeneReviews (Internet). Seattle: University of Washington; 2004 Jun 24 [Updated 2014 Nov 26]. p. 1993–2018.
  • Assenza G, Benvenga A, Gennaro E, et al. A novel c132-134del mutation in Unverricht-Lundborg disease and the review of literature of heterozygous compound patients. Epilepsia. 2017;58:e31–e35.
  • Berkovic SF, Mazarib A, Walid S, et al. A new clinical and molecular form of Unverricht-Lundborg disease localized by homozygosity mapping. Brain. 2005;128:652–658.
  • Hyppönen J, Äikiä M, Joensuu T, et al. Refining the phenotype of Unverricht-Lundborg disease (EPM1) A population-wide Finnish study. Neurology. 2015;84:1529–1536.
  • Pennacchio LA, Bouley DM, Higgins KM, et al. Progressive ataxia, myoclonic epilepsy and cerebellar apoptosis in cystatin B-deficient mice. Nat Genet. 1998;20:251–258.
  • Shannon P, Pennacchio LA, Houseweart MK, et al. Neuropathological changes in a mouse model of progressive myoclonus epilepsy: cystatin B deficiency and Unverricht-Lundborg disease. J Neuropathol Exp Neurol. 2002;61:1085–1091.
  • Lehtinen MK, Tegelberg S, Schipper H, et al. Cystatin B deficiency sensitizes neurons to oxidative stress in progressive myoclonus epilepsy, EPM1. J Neurosci. 2009;29:5910–5915.
  • Rinne R, Saukko P, Jarvinen M, et al. Reduced cystatin B activity correlates with enhanced cathepsin activity in progressive myoclonus epilepsy. Ann Med. 2002;34:380–385.
  • Crespel A, Ferlazzo E, Franceschetti S, et al. Unverricht‐Lundborg disease. Epileptic Disorders. 2016;18:S28–S37.
  • Kopra O, Joensuu T, Lehesjoki AE. Mouse model of Unverricht-Lundborg disease. Mov disord genetics and models. Second ed. Mark LeDoux: Academic Press, Elsevier Inc; 2015. p. 671–679.
  • Cohen NR, Hammans SR, Macpherson J, et al. New neuropathological findings in Unverricht–lundborg disease: neuronal intranuclear and cytoplasmic inclusions. Acta Neuropathol. 2011;121:421–427.
  • Delgado-Escueta AV, Ganesh S, Yamakawa K. Advances in the genetics of progressive myoclonus epilepsy. Am J Med Genet. 2001;106:129–138.
  • Lafora GR, Glueck B. Contribution to the histopathology and pathogenesis of myoclonic epilepsy. Bull Gov Hosp Insane. 1911;3:96–111.
  • Singh S, Ganesh S. Lafora progressive myoclonus epilepsy: a meta-analysis of reported mutations in the first decade following the discovery of the EPM2A and NHLRC1 genes. Hum Mutat. 2009;30:715–723.
  • Serratosa JM, Delgado-Escueta AV, Posada I, et al. The gene for progressive myoclonus epilepsy of the Lafora type maps to chromosome 6q. Hum Mol Genet. 1995;4:1657–1663.
  • Minassian BA, Lee JR, Herbrick JA, et al. Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy. Nat Genet. 1998;20:171–174.
  • Ganesh S, Agarwala KL, Ueda K, et al. Laforin, defective in the progressive myoclonus epilepsy of Lafora type, is a dual-specificity phosphatase associated with polyribosomes. Hum Mol Genet. 2000;9:2251–2261.
  • Chan EM, Young EJ, Ianzano L, et al. Mutations in NHLRC1 cause progressive myoclonus epilepsy. Nat Genet. 2003;35:125–127.
  • Gentry MS, Worby CA, Dixon JE. Insights into lafora disease: malin is an E3 ubiquitin ligase that ubiquitinates and promotes the degradation of laforin. Proc Natl Acad Sci. 2005;102:8501–8506.
  • Chan EM, Omer S, Ahmed M, et al. Progressive myoclonus epilepsy with polyglucosans (Lafora disease): evidence for a third locus. Neurology. 2004;63:565–567.
  • Turnbull J, Girard JM, Lohi H, et al. Early-onset Lafora body disease. Brain. 2012;135:2684–2698.
  • Inoue M, Iwai R, Yamanishi E, et al. Deletion of Prdm8 impairs development of upper-layer neocortical neurons. Genes Cells. 2015;20:758–770.
  • Turnbull J, Tiberia E, Striano P, et al. Lafora disease. Epileptic Disord. 2016;18:38–62.
  • Minassian BA, Ianzano L, Meloche M, et al. Mutation spectrum and predicted function of laforin in Lafora’s progressive myoclonus epilepsy. Neurology. 2000;55:341–346.
  • Guerrero R, Vernia S, Sanz R, et al. A PTG variant contributes to a milder phenotype in Lafora disease. PLoS One. 2011;6:e21294.
  • Wang JY, Stuckey JA, Wishart MJ, et al. A unique carbohydrate binding domain targets the lafora disease phosphatase to glycogen. J Biol Chem. 2002;277:2377–2380.
  • Gayarre J, Duran-Trio L, Garcia OC, et al. The phosphatase activity of laforin is dispensable to rescue Epm2a-/- mice from lafora disease. Brain. 2014;137:806–818.
  • Garyali P, Siwach P, Singh PK, et al. The malin–laforin complex suppresses the cellular toxicity of misfolded proteins by promoting their degradation through the ubiquitin–proteasome system. Hum Mol Genet. 2008;18:688–700.
  • Turnbull J, DePaoli-Roach AA, Zhao XC, et al. PTG depletion removes lafora bodies and rescues the fatal epilepsy of lafora disease. PLoS Genet. 2011;7:e1002037.
  • Turnbull J, Epp JR, Goldsmith D, et al. PTG protein depletion rescues malin-deficient lafora disease in mouse. Ann Neurol. 2014;75:442–446.
  • Duran J, Gruart A, Garcia-Rocha M, et al. Glycogen accumulation underlies neurodegeneration and autophagy impairment in lafora disease. Hum Mol Genet. 2014;23:3147–3156.
  • Puri R, Suzuki T, Yamakawa K, et al. Hyperphosphorylation and aggregation of Tau in laforin-deficient mice, an animal model for Lafora disease. J Biol Chem. 2009;284:22657–22663.
  • Sengupta S, Badhwar I, Upadhyay M, et al. Malin and laforin are essential components of a protein complex that protects cells from thermal stress. J Cell Sci. 2011;124:2277–2286.
  • Garyali P, Segvich DM, DePaoli-Roach AA, et al. Protein degradation and quality control in cells from laforin and malin knockout mice. J Biol Chem. 2014;289:20606–20614.
  • Upadhyay M, Agarwal S, Bhadauriya P, et al. Loss of laforin or malin results in increased Drp1 level and concomitant mitochondrial fragmentation in Lafora disease mouse models. Neurobiol Dis. 2017;100:39–51.
  • Puri R, Suzuki T, Yamakawa K, et al. Dysfunctions in endosomal-lysosomal and autophagy pathways underlie neuropathology in a mouse model for Lafora disease. Hum Mol Genet. 2012;21:175–184.
  • Jain N, Mishra R, Ganesh S. FoxO3a-mediated autophagy is down-regulated in the laforin deficient mice, an animal model for Lafora progressive myoclonus epilepsy. Biochem Biophys Res Commun. 2016;474:321–327.
  • Mittal S, Dubey D, Yamakawa K, et al. Lafora disease proteins malin and laforin are recruited to aggresomes in response to proteasomal impairment. Hum Mol Genet. 2007;16:753–762.
  • Singh PK, Singh S, Ganesh S. The laforin-malin complex negatively regulates glycogen synthesis by modulating cellular glucose uptake via glucose transporters. Mol Cell Biol. 2012;32:652–663.
  • Dienel GA, Cruz NF. Contributions of glycogen to astrocytic energetics during brain activation. Metab Brain Dis. 2015;30:281–298.
  • DiNuzzo M, Mangia S, Maraviglia B, et al. Does abnormal glycogen structure contribute to increased susceptibility to seizures in epilepsy? Metab Brain Dis. 2015;30:307–316.
  • López-Ramos JC, Duran J, Gruart A, et al. Role of brain glycogen in the response to hypoxia and in susceptibility to epilepsy. Front Cell Neurosci. 2015;9:431.
  • Rai A, Singh PK, Singh V, et al. Glycogen synthase protects neurons from cytotoxicity of mutant huntingtin by enhancing the autophagy flux. Cell Death Dis. 2018;9:201.
  • Andrade DM, Ackerley CA, Minett TS, et al. Skin biopsy in Lafora disease: genotype-phenotype correlations and diagnostic pitfalls. Neurology. 2003;61:611–614.
  • Kollmann K, Uusi-Rauva K, Scifo E, et al. Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. BBA-Molecular Basis of Disease. 2013;1832:1866–1881.
  • Nita DA, Mole SE, Minassian BA. Neuronal ceroid lipofuscinoses. Epileptic Disord. 2016;18:S73–S88.
  • Stengel OC. Beretnig om et maerkeligt Sygdomstilfaelde hos fire Sødskende I Nærheden af Roraas. Eyr. 1826;1:347–352.
  • Mole SE, Cotman SL. Genetics of the neuronal ceroid lipofuscinoses (Batten disease). BBA-Molecular Basis of Disease. 2015;1852:2237–2241.
  • Cárcel-Trullols J, Kovács AD, Pearce DA. Cell biology of the NCL proteins: what they do and don’t do. BBA-Molecular Basis of Disease. 2015;1852:2242–2255.
  • Koskiniemi M, Donner M, Majuri H, et al. Progressive myoclonus epilepsy. A clinical and histopathological study. Acta Neurol Scand. 1974;50:307–332.
  • Koskiniemi M, Toivakka E, Donner M. Progressive myoclonus epilepsy. Electroencephalographical findings. Acta Neurol Scand. 1974;50:333–359.
  • Mascalchi M, Michelucci R, Cosottini M, et al. Brainstem involvement in Unverricht-Lundborg disease (EPM1): an MRI and (1)H MRS study. Neurology. 2002;58:1686–1689.
  • Koskenkorva P, Khyuppenen J, Niskanen E, et al. Bilateral atrophy of the motor cortex and thalami in Unverricht-Lundborg disease: a voxel-based morphometric study. Neurology. 2009;73:606–611.
  • Magaudda A, Ferlazzo E, Nguyen VH, et al. Unverricht-Lundborg disease, a condition with self-limited progression: long-term follow-up of 20 patients. Epilepsia. 2006;47:860–866.
  • Canafoglia L, Ciano C, Visani E, et al. Short and long interval cortical inhibition in patients with Unverricht-Lundborg and Lafora body disease. Epilepsy Res. 2010;89:232–237.
  • Striano P, Zara F, Turnbull J, et al. Typical progression of myoclonic epilepsy of the Lafora type, a case report. Nat Clin Pract Neurol. 2008;4:106–111.
  • Ganesh S, Puri R, Singh S, et al. Recent advances in the molecular basis of Lafora’s progressive myoclonus epilepsy. J Hum Genet. 2006;51:1–8.
  • Kohlschütter A, Schulz A, Denecke J. Epilepsy in neuronal ceroid lipofuscinoses. J Pediatr Epilepsy. 2014;3:199–206.
  • Minassian BA. The progressive myoclonus epilepsies. Prog Brain Res. 2014;213:113–122.
  • Jalanko A, Braulke T. Neuronal ceroid lipofuscinoses. BBA-Molecular Res. 2009;1793:697–699.
  • Magrinelli F, Pezzini F, Moro F, et al. Diagnostic methods and emerging treatments for adult neuronal ceroid lipofuscinoses (Kufs disease). Expert Opin Orphan Drugs. 2017;5:487–501.
  • Ç Ö, Gündüz A, Coşkun T, et al. Long-term follow-up of two siblings with adult-onset neuronal ceroid lipofuscinosis, Kufs type A. Epileptic Disord. 2017;19:147–151.
  • Anderson GW, Goebel HH, Simonati A. Human pathology in NCL. BBA Molecular Basis Disease. 2013;1832:1807–1826.
  • Siintola E, Partanen S, Strömme P, et al. Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis. Brain. 2006;129:1438–1445.
  • Di Fabio R, Colonnese C, Santorelli FM, et al. Brain imaging in Kufs disease type B. BMC Neurol. 2015;15:102.
  • Mancuso M, Orsucci D, Angelini C et al. Phenotypic heterogeneity of the 8344A> G mtDNA “MERRF” mutation. Neurology. 2013;80:2049–2054.
  • Lamperti C, Zeviani M. Myoclonus epilepsy in mitochondrial disorders. Epileptic Disord. 2016;18:S94–102.
  • DiMauro S, Hirano M, Kaufmann P, et al. Clinical features and genetics of myoclonic epilepsy with ragged red fibers. Adv Neurol. 2002;89:217–229.
  • Rapin I, Goldfischer S, Katzman R, et al. The cherry-red spot-myoclonus syndrome. Ann Neurol. 1978;3:234–242.
  • Tomiyasu H, Yoshii F, Ohnuki Y, et al. The brainstem and thalamic lesions in dentatorubral pallidoluysian atrophy: an MRI study. Neurology. 1998;50:1887–1890.
  • Sugiyama A, Sato N, Nakata Y, et al. Clinical and magnetic resonance imaging features of elderly onset dentatorubral–pallidoluysian atrophy. J Neurol. 2018;265:322–329.
  • Lehesjoki AE, Gardiner M. Progressive myoclonus epilepsy: unverricht-Lundborg disease and neuronal ceroid lipofuscinoses. In: editor, Noebels JL, Avoli M, Rogawski MA, et al. Jasper’s basic mechanisms of the epilepsies [Internet]. 4th ed. Bethesda (MD): National Center for Biotechnology Information (US); 2012.
  • Haltia M, Goebel HH. The neuronal ceroid-lipofuscinoses: a historical introduction. Biochim Biophys Acta. 2013;1832:1795–1800.
  • Schulz A, Kohlschütter A, Mink J, et al. NCL diseases—clinical perspectives. BBA-Molecular Basis of Disease. 2013;1832:1801–1806.
  • Liu Y, Yi F, Kumar AB, et al. Multiplex tandem mass spectrometry enzymatic activity assay for newborn screening of the mucopolysaccharidoses and type 2 neuronal ceroid lipofuscinosis. Clin Chem. 2017;63:1118–1126.
  • DiMauro S, Michio H. M, Adam MP, et al. editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2004 Jun 24 [Updated 2014 Nov 26]. p. 1993–2018.
  • Rosing HS, Hopkins LC, Wallace DC, et al. Maternally inherited mitochondrial myopathy and myoclonic epilepsy. Ann Neurol. 1985;17:228–237.
  • Berkovic SF, Shoubridge EA, Andermann F, et al. Clinical spectrum of mitochondrial DNA mutation at base pair 8344. Lancet. 1991;338:457.
  • Wallace DC, Zheng X, Lott MT, et al. Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell. 1988;55:601–610.
  • Chomyn A, Meola G, Bresolin N, et al. In vitro genetic transfer of protein synthesis and respiration defects to mitochondrial DNA-less cells with myopathy-patient mitochondria. Mol Cell Biol. 1991;11:2236–2244.
  • Folbergrová J, Kunz WS. Mitochondrial dysfunction in epilepsy. Mitochondrion. 2012;12:35–40.
  • Lorenzoni PJ, Scola RH, Kay CS, et al. When should MERRF (myoclonus epilepsy associated with ragged-red fibers) be the diagnosis? Arq Neuropsiquiatr. 2014;72:803–811.
  • Mancuso M, Petrozzi L, Filosto M, et al. MERRF syndrome without ragged-red fibers: the need for molecular diagnosis.”. Biochem Biophys Res Commun. 2007;354:1058–1060.
  • Durand P, Gatti R, Cavalieri S, et al. Sialidosis (mucolipidosis I). Helv Paediatr Acta. 1977;32:391–400.
  • Franceschetti S, Canafoglia L. Sialidoses. Epileptic Disord. 2016;18:89–93.
  • Bonten EJ, Arts WF, Beck M, et al. Novel mutations in lysosomal neuraminidase identify functional domains and determine clinical severity in sialidosis. Hum Mol Genet. 2000;9:2715–2725.
  • Buchholz T, Molitor G, Lukong KE, et al. Clinical presentation of congenital sialidosis in a patient with a neuraminidase gene frameshift mutation. Eur J Pediatr. 2001;160:26–30.
  • d’Azzo A, Machado E, Annunziata I. Pathogenesis, emerging therapeutic targets and treatment in sialidosis. Expert Opin Orphan Drugs. 2015;3:491–494.
  • Lukong KE, Landry K, Elsliger MA, et al. Mutations in sialidosis impair sialidase binding to the lysosomal multienzyme complex. J Biol Chem. 2001;276:17286–17290.
  • De Geest N, Bonten E, Mann L, et al. Systemic and neurologic abnormalities distinguish the lysosomal disorders sialidosis and galactosialidosis in mice. Hum Mol Genet. 2002;11:1455–1464.
  • Bonten EJ, Yogalingam G, Hu H, et al. Chaperone-mediated gene therapy with recombinant AAV-PPCA in a new mouse model of type I sialidosis. Biochim Biophys Acta. 2013;1832:1784–1792.
  • Wang IH, Lin TY, Kao ST. Optical coherence tomography features in a case of Type I sialidosis. Taiwan J Ophthalmol. 2017;7:108–111.
  • Canafoglia L, Franceschetti S, Uziel G, et al. Characterization of severe action myoclonus in sialidoses. Epilepsy Res. 2011;94:86–93.
  • Koide R, Ikeuchi T, Onodera O, et al. Unstable expansion of CAG repeat in hereditary dentatorubral–pallidoluysian atrophy (DRPLA). Nat Genet. 1994;6:9–13.
  • Yamada M. Dentatorubral-pallidoluysian atrophy (DRPLA). Neuropathology. 2010;30:453–457.
  • Wardle M, Morris HR, Robertson NP. Clinical and genetic characteristics of non-Asian dentatorubral–pallidoluysian atrophy: a systematic review. Mov Disord. 2009;24:1636–1640.
  • Nagafuchi S, Yanagisawa H, Ohsaki E, et al. Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA). Nature Genet. 1994;8:177–182.
  • Veneziano L, Frontali M. DRPLA. GeneReviews. In: Adam MP, Ardinger HH, Pagon RA, et al. editors. GeneReviews® [Internet]. Seattle (WA): University of Washington; 2004 Jun 24 [Updated 2016 Nov 26]. p. 1993–2018.
  • Suzuki Y, Nakayama K, Hashimoto N, et al. Proteolytic processing regulates pathological accumulation in dentatorubral-pallidoluysian atrophy. FEBS J. 2010;277:4873–4887.
  • Yamada M, Tsuji S, Takahashi H. Pathology of CAG repeat diseases. Neuropathology. 2000;20:319–325.
  • Hatano K, Ishiura H, Date H, et al. Search for target genes of transcriptional regulation by Dentatorubral-pallidoluysian atrophy protein that acts as a transcriptional co-regulator. J Neurol Sci. 2017;381:57.
  • Ahmad K, Baig MH, Gupta GK, et al. Identification of common therapeutic targets for selected neurodegenerative disorders: an in silico approach. J Comput Sci. 2016;17:292–296.
  • Tunc S, Tadic V, Zühlke C, et al. Pearls & Oy-sters: family history of Huntington disease disguised a case of dentatorubral-pallidoluysian atrophy. Neurology. 2018;90:142–143.
  • Iivanainen M, Himberg JJ. Valproate and clonazepam in the treatment of severe progressive myoclonus epilepsy. Arch Neurol. 1982;39:236–238.
  • Chowdhury A, Brodie MJ. Pharmacological outcomes in juvenile myoclonic epilepsy: support for sodium valproate. Epilepsy Res. 2016;119:62–66.
  • Ferlazzo E, Trenite DK, De Haan GJ, et al. Update on pharmacological treatment of progressive myoclonus epilepsies. Curr Pharm Des. 2017;23:5662–5666.
  • Lam CW, Lau CH, Williams JC, et al. Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) triggered by valproate therapy. Eur J Pediatr. 1997;156:562–564.
  • Tein I, DiMauro S, Xie ZW, et al. Valproic acid impairs carnitine uptake in cultured human skin fibroblasts. an in vitro model for the pathogenesis of valproic acid–associated carnitine deficiency. Pediatr Res. 1993;34:281–287.
  • Bromley RL, Calderbank R, Cheyne CP, et al. Cognition in school-age children exposed to levetiracetam, topiramate, or sodium valproate. Neurology. 2016;87:1943–1953.
  • Nanda RN, Johnson RH, Keogh HJ, et al. Treatment of epilepsy with clonazepam and its effect on other anticonvulsants. J Neurol Neurosurg Psychiatry. 1977;40:538–543.
  • Michelucci R, Pasini E, Riguzzi P, et al. Myoclonus and seizures in progressive myoclonus epilepsies: pharmacology and therapeutic trials. Epileptic Disorders. 2016;18:S145–S153.
  • Brown P, Steiger MJ, Thompson PD, et al. Effectiveness of piracetam in cortical myoclonus. Mov Disord. 1993;8:63–68.
  • Koskiniemi M, Van Vleymen B, Hakamies L, et al. Piracetam relieves symptoms in progressive myoclonus epilepsy: a multicentre, randomized, double blind, crossover study comparing the efficacy and safety of three dosages of oral piracetam vs placebo. J Neurol Neurosurg Psychiatry. 1998;64:344–348.
  • Fedi M, Reutens D, Dubeau F, et al. Long-term efficacy and safety of piracetam in the treatment of progressive myoclonus epilepsies. Arch Neurol. 2001;58:781–786.
  • Magaudda A, Gelisse P, Genton P. Antimyoclonic effect of levetiracetam in 13 patients with Unverricht–lundborg disease: clinical observations. Epilepsia. 2004;45:678–681.
  • Klein P, Diaz A, Gasalla T, et al. A review of the pharmacology and clinical efficacy of brivaracetam. Clin Pharmacol. 2018;10:1–22.
  • Rogawski MA. AMPA receptors as a molecular target in epilepsy therapy. Acta Neurol Scand Suppl. 2013;197:9–18.
  • Aykutlu E, Baykan B, Gürses C, et al. Add-on therapy with topiramate in progressive myoclonic epilepsy. Epilepsy Behav. 2005;6:260–263.
  • Vossler DG, Conry JA, Murphy JV, et al. Zonisamide for the treatment of myoclonic seizures in progressive myoclonus epilepsy: an open label study. Epileptic Disord. 2008;10:31–34.
  • Italiano D, Pezzella M, Coppola A, et al. A pilot open-label trial of zonisamide in Unverricht-Lundborg disease. Mov Disord. 2011;26:341–343.
  • Tsai JJ, Wu T, Leung H, et al. Perampanel, an AMPA receptor antagonist: from clinical research to practice in clinical settings. Acta Neurol Scand. 2018;137:378–391.
  • Goldsmith D, Minassian BA. Efficacy and tolerability of perampanel in ten patients with Lafora disease. Epilepsy Behav. 2016;62:132–135.
  • Shiraishi H, Egawa K, Ito T, et al. Efficacy of perampanel for controlling seizures and improving neurological dysfunction in a patient with dentatorubral-pallidoluysian atrophy (DRPLA). Epilepsy Behav Case Rep. 2017;8:44–46.
  • Faulkner MA. Spotlight on perampanel in the management of seizures: design, development and an update on place in therapy. Drug Des Devel Ther. 2017;11:2921–2930.
  • Brodie MJ, Yuen AW. Lamotrigine substitution study: evidence for synergism with sodium valproate? 105 Study Group. Epilepsy Res. 1997;26:423–432.
  • Miyahara A, Saito Y, Sugai K, et al. Reassessment of phenytoin for treatment of late stage progressive myoclonus epilepsy complicated with status epilepticus. Epilepsy Res. 2009;84:201–209.
  • Sánchez-Elexpuru G, Serratosa JM, Sanz P, et al. 4-Phenylbutyric acid and metformin decrease sensitivity to pentylenetetrazol-induced seizures in a malin knockout model of Lafora disease. NeuroReport. 2017;28:268–271.
  • Tomson T, Battino D, Bonizzoni E, et al. Comparative risk of major congenital malformations with eight different antiepileptic drugs: a prospective cohort study of the EURAP registry. Lancet Neurol. 2018;17:530–538.
  • Hurd RW, Wilder BJ, Helveston WR, et al. Treatment of four siblings with progressive myoclonus epilepsy of the Unverricht-Lundborg type with N acetylcysteine. Neurology. 1996;47:1264–1268.
  • Sánchez‐Elexpuru G, Serratosa JM, Sánchez MP. Sodium selenate treatment improves symptoms and seizure susceptibility in a malin-deficient mouse model of Lafora disease. Epilepsia. 2017;58:467–475.
  • Strzelczyk A, Reif PS, Bauer S, et al. Intravenous initiation and maintenance of ketogenic diet: proof of concept in super-refractory status epilepticus. Seizure. 2013;22:581–583.
  • Geraets RD, Yon Koh S, Ml H, et al. Moving towards effective therapeutic strategies for Neuronal Ceroid Lipofuscinosis. Orphanet J Rare Dis. 2016;11:40.
  • Hajnsek S, Gadze ZP, Borovecki F, et al. Vagus nerve stimulation in Lafora body disease. Epilepsy Behav Case Rep. 2013;1:150–152.
  • Sebastiano DR, Magaudda A, Quartarone A, et al. Effect of repetitive transcranial magnetic stimulation on action myoclonus: a pilot study in patients with EPM1. Epilepsy Behav. 2018;80:33–36.
  • Minassian BA. Post-modern therapeutic approaches for progressive myoclonus epilepsy. Epileptic Disord. 2016;18:S154–S158.
  • Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147:728–741.
  • Aguado C, Sarkar S, Korolchuk VI, et al. Laforin, the most common protein mutated in Lafora disease, regulates autophagy. Hum Mol Genet. 2010;19:2867–2876.
  • Singh PK, Singh S, Ganesh S. Activation of serum/glucocorticoid-induced kinase 1 (SGK1) underlies increased glycogen levels, mTOR activation, and autophagy defects in Lafora disease. Mol Biol Cell. 2013;24:3776–3786.
  • Seranova E, Connolly KJ, Zatyka M, et al. Dysregulation of autophagy as a common mechanism in lysosomal storage diseases. Essays Biochem. 2017;61:733–749.
  • Seino J, Wang L, Harada Y, et al. Basal autophagy is required for the efficient catabolism of sialyloligosaccharides. J Biol Chem. 2013;288:26898–26907.
  • Settembre C, Di Malta C, Polito VA, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011;332:1429–1433.
  • Baron O, Boudi A, Dias C, et al. Stall in canonical autophagy-lysosome pathways prompts nucleophagy-based nuclear breakdown in neurodegeneration. Curr Biol. 2017;27:3626–3642.
  • Yuan JH, Sakiyama Y, Higuchi I, et al. Mitochondrial myopathy with autophagic vacuoles in patients with the m. 8344A> G mutation. J Clin Pathol. 2013;66:659–664.
  • Zlotogora J, Grotto I, Kaliner E, et al. The Israeli national population program of genetic carrier screening for reproductive purposes. Genet Med. 2015;18:203–206.
  • Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nat Rev Genet. 2018;19:299–310.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.