414
Views
24
CrossRef citations to date
0
Altmetric
Review

Identifying risk factors for cognitive issues in multiple sclerosis

, &
Pages 333-347 | Received 22 Oct 2018, Accepted 28 Feb 2019, Published online: 14 Mar 2019

References

  • Filippi M, Bar- A, Piehl F, et al. Multiple sclerosis. Nat Rev Dis Prim. 2018;4:1–27.
  • Charcot JM. In: Lectures on the diseases of the nervous system, Part II: Paralysis Agitans and Disseminated Sclerosis, Sigerson GT, editor. London: New Sydenham Society; 1877;160-161.
  • Jensen K, Knudsen L, Stenager E, et al. Mental disorders and cognitive deficits in multiple sclerosis. London: John Libbey & Co. Ltd.; 1989.
  • Sumowski JF, Benedict R, Enzinger C, et al. Cognition in multiple sclerosis: state of the field and priorities for the future. Neurology. 2018;90:278–288.
  • Amato MP, Krupp LB, Charvet LE, et al. Pediatric multiple sclerosis: cognition and mood. Neurology. 2016. DOI:10.1212/WNL.0000000000002883
  • Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale EDSS. Neurology 1983. doi:10.1212/WNL.33.11.1444
  • Patti F, Amato MP, Trojano M, et al. Cognitive impairment and its relation with disease measures in mildly disabled patients with relapsing-remitting multiple sclerosis: baseline results from the cognitive impairment in multiple sclerosis ({COGIMUS}) study. Mult Scler. 2009;15:779–788.
  • Reuter F, Zaaraoui W, Crespy L, et al. Frequency of cognitive impairment dramatically increases during the first 5 years of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2011. DOI:10.1136/jnnp.2010.213744.
  • Amato MP, Zipoli V, Portaccio E. Multiple sclerosis-related cognitive changes: a review of cross-sectional and longitudinal studies. J Neurol Sci. 2006. DOI:10.1016/j.jns.2005.08.019. .
  • Ruano L, Portaccio E, Goretti B, et al. Age and disability drive cognitive impairment in multiple sclerosis across disease subtypes. Mult Scler. 2017;23:1258–1267.
  • Planche V, Ruet A, Coupé P, et al. Hippocampal microstructural damage correlates with memory impairment in clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler. 2017;23:1214–1224.
  • Glanz BI, Holland CM, Gauthier SA, et al. Cognitive dysfunction in patients with clinically isolated syndromes or newly diagnosed multiple sclerosis. Mult Scler. 2007. DOI:10.1177/1352458507077943.
  • Amato MP, Hakiki B, Goretti B, et al. Association of MRI metrics and cognitive impairment in radiologically isolated syndromes. Neurology. 2012;78:309–314.
  • Amato MP, Zipoli V, Goretti B, et al. Benign multiple sclerosis: cognitive, psychological and social aspects in a clinical cohort. J Neurol. 2006. DOI:10.1007/s00415-006-0161-8.
  • Razzolini L, Portaccio E, Stromillo ML, et al. The dilemma of benign multiple sclerosis: can we predict the risk of losing the “benign status”? A 12-year follow-up study. Mult Scler Relat Disord. 2018. DOI:10.1016/j.msard.2018.08.011.
  • Portaccio E, Stromillo ML, Goretti B, et al. Neuropsychological and MRI measures predict short-term evolution in benign multiple sclerosis. Neurology. 2009. DOI:10.1212/WNL.0b013e3181b351fd.
  • Amato MP, Portaccio E, Stromillo ML, et al. Cognitive assessment and quantitative magnetic resonance metrics can help to identify benign multiple sclerosis. Neurology. 2008. DOI:10.1212/01.wnl.0000324621.58447.00.
  • Pardini M, Uccelli A, Grafman J, et al. Isolated cognitive relapses in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2014;85:1035–1037.
  • Zipoli V, Goretti B, Hakiki B, et al. Cognitive impairment predicts conversion to multiple sclerosis in clinically isolated syndromes. Mult Scler. 2010. DOI:10.1177/1352458509350311.
  • Amato MP, Ponziani G, Siracusa G, et al. Cognitive dysfunction in early-onset multiple sclerosis: a reappraisal after 10 years. Arch Neurol. 2001. DOI:10.1001/archneur.58.10.1602.
  • Fischer M, Kunkel A, Bublak P, et al. How reliable is the classification of cognitive impairment across different criteria in early and late stages of multiple sclerosis?. J Neurol Sci. 2014. DOI:10.1016/j.jns.2014.05.042.
  • Kalb R, Beier M, Benedict RHB, et al. Recommendations for cognitive screening and management in multiple sclerosis care. Mult Scler J. 2018. DOI:10.1177/1352458518803785.
  • Amato MP, Portaccio E, Goretti B, et al. The Rao’s brief repeatable battery and stroop test: normative values with age, education and gender corrections in an Italian population. Mult Scler J. 2006;12:787–793.
  • Chiaravalloti ND, DeLuca J. Cognitive impairment in multiple sclerosis. Lancet Neurol. 2008;7:1139–1151.
  • Grzegorski T, Losy J. Cognitive impairment in multiple sclerosis - A review of current knowledge and recent research. Rev Neurosci. 2017. DOI:10.1515/revneuro-2017-0011
  • Leavitt VM, Tosto G, Riley CS. Cognitive phenotypes in multiple sclerosis. J Neurol. 2018;265:562–566.
  • Filippi M, Rocca MA, Barkhof F, et al. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol. 2012. DOI:10.1016/S1474-4422(12)70003-0.
  • Rocca MA, Amato MP, De Stefano N, et al. Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurol. 2015;14:302–317 .
  • Summers M, Swanton J, Fernando K, et al. Cognitive impairment in multiple sclerosis can be predicted by imaging early in the disease. J Neurol Neurosurg Psychiatry. 2008. DOI:10.1136/jnnp.2007.138685.
  • Summers MM, Fisniku LK, Anderson VM, et al. Cognitive impairment in relapsing - Remitting multiple sclerosis can be predicted by imaging performed several years earlier. Mult Scler. 2008. DOI:10.1177/1352458507082353
  • Penny S, Khaleeli Z, Cipolotti L, et al. Early imaging predicts later cognitive impairment in primary progressive multiple sclerosis. Neurology. 2010. DOI:10.1212/WNL.0b013e3181cff6a6
  • Audoin B, Ibarrola D, Ranjeva JP, et al. Compensatory cortical activation observed by fMRI during a cognitive task at the earliest stage of MS. Hum Brain Mapp. 2003. DOI:10.1002/hbm.10128.
  • Mainero C, Caramia F, Pozzilli C, et al. fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis. Neuroimage. 2004. DOI:10.1016/j.neuroimage.2003.10.004.
  • Rocca MA, Valsasina P, Ceccarelli A, et al. Structural and functional MRI correlates of stroop control in benign MS. Hum Brain Mapp. 2009. DOI:10.1002/hbm.20504.
  • Rocca MA, De Meo E, Filippi M. Functional MRI in investigating cognitive impairment in multiple sclerosis. Acta Neurol Scand. 2016;134:39–46. John Wiley & Sons, Ltd (10.1111).
  • Rao SM, the CFSG of the NMSS. A manual for brief repeatable battery of the neuropsychological tests in multiple sclerosis. Milwaukee, WI: Medical College of Wisconsin; 1990.
  • Benedict RHB, Fischer JS, Beatty WW, et al. Minimal neuropsychological assessment of MS patients: a consensus approach. Clin Neuropsychol. 2002. Neuropsychology, Dev Cogn Sect D. DOI:10.1076/clin.16.3.381.13859.
  • Langdon DW, Amato MP, Boringa J, et al. Recommendations for a brief international cognitive assessment for multiple sclerosis (BICAMS). Mult Scler. 2012;18:891–898.
  • Lapshin H, Audet B, Feinstein A. Detecting cognitive dysfunction in a busy multiple sclerosis clinical setting: a computer generated approach. Eur J Neurol. 2014. DOI:10.1111/ene.12292
  • Patel VP, Shen L, Rose J, et al. Taking the tester out of the SDMT: a proof of concept fully automated approach to assessing processing speed in people with MS. Mult Scler J. 2018. DOI:10.1177/1352458518792772
  • Grant D, Berg E. Wisconsin card sorting test. Psychological Assess Resour. 1981;1.
  • Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. 1935. DOI:10.1037/h0054651
  • Gronwall DMA. Paced auditory serial-addition task: a measure of recovery from concussion. Percept Mot Skills. 1977. DOI:10.2466/pms.1977.44.2.367
  • Rosti E, Hämäläinen P, Koivisto K, et al. PASAT in detecting cognitive impairment in relapsing-remitting MS. Appl Neuropsychol. 2007. DOI:10.1080/09084280701319938
  • Deloire MS, Bonnet MC, Salort E, et al. How to detect cognitive dysfunction at early stages of multiple sclerosis? Mult Scler J. 2006;12:445–452.
  • Brooks JBB, Giraud VO, Saleh YJ, et al. Paced auditory serial addition test (PASAT): a very difficult test even for individuals with high intellectual capability. Arq Neuropsiquiatr. 2011. DOI:10.1590/S0004-282X2011000400014
  • Roar M, Illes Z, Sejbaek T. Practice effect in symbol digit modalities test in multiple sclerosis patients treated with natalizumab. Mult Scler Relat Disord. 2016;10:116–122.
  • Sonder JM, Burggraaff J, Knol DL, et al. Comparing long-term results of PASAT and SDMT scores in relation to neuropsychological testing in multiple sclerosis. Mult Scler J. 2014;20:481–488.
  • López-Góngora M, Querol L, Escartín A. A one-year follow-up study of the Symbol Digit Modalities Test (SDMT) and the Paced Auditory Serial Addition Test (PASAT) in relapsing-remitting multiple sclerosis: an appraisal of comparative longitudinal sensitivity. BMC Neurol. 2015. DOI:10.1186/s12883-015-0296-2
  • Ontaneda D, Cohen JA, Amato MP. Clinical outcome measures for progressive MS trials. Mult Scler. 2017. DOI:10.1177/1352458517729465
  • Patti F, Morra VB, Amato MP, et al. Subcutaneous interferon $β$-1a may protect against cognitive impairment in patients with relapsing-remitting multiple sclerosis: 5-year follow-up of the {COGIMUS} study. PLoS One. 2013;8:e74111.
  • Iaffaldano P, Viterbo RG, Paolicelli D, et al. Impact of natalizumab on cognitive performances and fatigue in relapsing multiple sclerosis: a prospective, open-label, two years observational study. PLoS One. 2012. DOI:10.1371/journal.pone.0035843.
  • Pitteri M, Magliozzi R, Bajrami A, et al. Potential neuroprotective effect of Fingolimod in multiple sclerosis and its association with clinical variables. Expert Opin Pharmacother. 2018;19:387–395.
  • Riepl E, Pfeuffer S, Ruck T, et al. Alemtuzumab improves cognitive processing speed in active multiple {Sclerosis-A} longitudinal observational study. Front Neurol. 2017;8:730.
  • Amato MP, Langdon D, Montalban X, et al. Treatment of cognitive impairment in multiple sclerosis: position paper. J Neurol. 2013;260:1452–1468.
  • Roy S, Benedict RHB, Drake AS, et al. Impact of pharmacotherapy on cognitive dysfunction in patients with multiple sclerosis. CNS Drugs. 2016;30:209–225.
  • Bellman S. Pharmacological treatment for memory disorder in multiple sclerosis. Int J Evid Based Healthc. 2017. DOI:10.1097/XEB.0000000000000123
  • Jensen HB, Ravnborg M, Mamoei S, et al. Changes in cognition, arm function and lower body function after slow-release fampridine treatment. Mult Scler J. 2014. DOI:10.1177/1352458514533844
  • Pavsic K, Pelicon K, Ledinek AH, et al. Short-term impact of fampridine on motor and cognitive functions, mood and quality of life among multiple sclerosis patients. Clin Neurol Neurosurg. 2015. DOI:10.1016/j.clineuro.2015.08.023
  • Broicher SD, Filli L, Geisseler O, et al. Positive effects of fampridine on cognition, fatigue and depression in patients with multiple sclerosis over 2 years. J Neurol. 2018. DOI:10.1007/s00415-018-8796-9.
  • Korsen M, Kunz R, Schminke U, et al. Dalfampridine effects on cognition, fatigue, and dexterity. Brain Behav. 2017;7:e00559.
  • Satchidanand N, Drake A, Smerbeck A, et al. Dalfampridine benefits ambulation but not cognition in multiple sclerosis. Mult Scler J. 2018;135245851881579. DOI:10.1177/1352458518815795.
  • Dunn J, Blight A. Dalfampridine: a brief review of its mechanism of action and efficacy as a treatment to improve walking in patients with multiple sclerosis. Curr Med Res Opin. 2011. DOI:10.1185/03007995.2011.583229
  • Gromisch ES, Fiszdon JM, Kurtz MM. The effects of cognitive-focused interventions on cognition and psychological well-being in persons with multiple sclerosis: a meta-analysis. Neuropsychol Rehabil. 2018. DOI:10.1080/09602011.2018.1491408
  • Mitolo M, Venneri A, Wilkinson ID, et al. Cognitive rehabilitation in multiple sclerosis: a systematic review. J Neurol Sci. 2015. DOI:10.1016/j.jns.2015.05.004
  • Leavitt VM, Wylie GR, Girgis PA, et al. Increased functional connectivity within memory networks following memory rehabilitation in multiple sclerosis. Brain Imaging Behav. 2014. DOI:10.1007/s11682-012-9183-2
  • Chiaravalloti ND, Wylie G, Leavitt V, et al. Increased cerebral activation after behavioral treatment for memory deficits in MS. J Neurol. 2012. DOI:10.1007/s00415-011-6353-x
  • Amato MP, Goretti B, Viterbo RG, et al. Computer-assisted rehabilitation of attention in patients with multiple sclerosis: results of a randomized, double-blind trial. Mult Scler. 2014. DOI:10.1177/1352458513501571.
  • Cerasa A, Gioia MC, Valentino P, et al. Computer-assisted cognitive rehabilitation of attention deficits for multiple sclerosis: a randomized trial with fMRI correlates. Neurorehabil Neural Repair. 2013. DOI:10.1177/1545968312465194.
  • Lincoln NB, Dent A, Harding J, et al. Evaluation of cognitive assessment and cognitive intervention for people with multiple sclerosis. J Neurol Neurosurg Psychiatry. 2002. DOI:10.1136/jnnp.72.1.93.
  • Mäntynen A, Rosti-Otajärvi E, Koivisto K, et al. Neuropsychological rehabilitation does not improve cognitive performance but reduces perceived cognitive deficits in patients with multiple sclerosis: a randomised, controlled, multi-centre trial. Mult Scler. 2014. DOI:10.1177/1352458513494487
  • Goretti B, Portaccio E, Zipoli V, et al. Coping strategies, cognitive impairment, psychological variables and their relationship with quality of life in multiple sclerosis. Neurol Sci. 2010. DOI:10.1007/s10072-010-0372-8
  • León Ruiz M, Sospedra M, Arce Arce S, et al. Current evidence on the potential therapeutic applications of transcranial magnetic stimulation in multiple sclerosis: a systematic review of the literature. Neurologia. 2018. DOI:10.1016/j.nrl.2018.03.023
  • Sandroff BM, Motl RW, Scudder MR, et al. Systematic, evidence-based review of exercise, physical activity, and physical fitness effects on cognition in persons with multiple sclerosis. Neuropsychol Rev. 2016. DOI:10.1007/s11065-016-9324-2
  • Langeskov-Christensen M, Eskildsen S, Stenager E, et al. Aerobic capacity is not associated with most cognitive domains in patients with multiple sclerosis—a cross-sectional investigation. J Clin Med. 2018;7:272.
  • Ozakbas S, Turkoglu R, Tamam Y, et al. Prevalence of and risk factors for cognitive impairment in patients with relapsing-remitting multiple sclerosis: multi-center, controlled trial. Mult Scler Relat Disord. 2018;22:70–76.
  • Amato MP, Goretti B, Ghezzi A, et al. Neuropsychological features in childhood and juvenile multiple sclerosis: five-year follow-up. Neurology. 2014. DOI:10.1212/WNL.0000000000000885. .
  • Amato MP, Goretti B, Ghezzi A, et al. Cognitive and psychosocial features of childhood and juvenile MS. Neurology. 2008. DOI:10.1212/01.wnl.0000312276.23177.fa.
  • Amato MP, Goretti B, Ghezzi A, et al. Cognitive and psychosocial features in childhood and juvenile MS: two-year follow-up. Neurology. 2010. DOI:10.1212/WNL.0b013e3181f4d821.
  • Hosseini B, Flora DB, Banwell BL, et al. Age of onset as a moderator of cognitive decline in pediatric-onset multiple sclerosis. J Int Neuropsychol Soc. 2014. DOI:10.1017/S1355617714000642
  • Ruano L, Branco M, Portaccio E, et al. Patients with paediatric-onset multiple sclerosis are at higher risk of cognitive impairment in adulthood: an Italian collaborative study. Mult Scler J. 2018. DOI:10.1177/1352458517717341.
  • Golden LC, Voskuhl R. The importance of studying sex differences in disease: the example of multiple sclerosis. J Neurosci Res. 2017. DOI:10.1002/jnr.23955
  • Beatty WW, Aupperle RL. Sex differences in cognitive impairment in multiple sclerosis. Clin Neuropsychol. 2002. Neuropsychology, Dev Cogn Sect D. DOI:10.1076/clin.16.4.472.13904
  • Benedict RHB, Zivadinov R. Risk factors for and management of cognitive dysfunction in multiple sclerosis. Nat Rev Neurol. 2011;7:332–342.
  • Rosti-Otajärvi E, Ruutiainen J, Huhtala H, et al. Cognitive performance profile in different phenotypes of {MS} with cognitive complaints. Mult Scler Relat Disord. 2014;3:463–472. .
  • Ruet A, Deloire M, Hamel D, et al. Cognitive impairment, health-related quality of life and vocational status at early stages of multiple sclerosis: a 7-year longitudinal study. J Neurol. 2013;260:776–784.
  • Eshaghi A, Prados F, Brownlee WJ, et al. Deep gray matter volume loss drives disability worsening in multiple sclerosis. Ann Neurol. 2018. DOI:10.1002/ana.25145.
  • Johnen A, Landmeyer NC, Bürkner P-C, et al. Distinct cognitive impairments in different disease courses of multiple sclerosis-A systematic review and meta-analysis. Neurosci Biobehav Rev. 2017;83:568–578.
  • Ruet A, Deloire M, Charré-Morin J, et al. Cognitive impairment differs between primary progressive and relapsing-remitting {MS}. Neurology. 2013;80:1501–1508.
  • Rocca MA, Riccitelli G, Rodegher M, et al. Functional MR imaging correlates of neuropsychological impairment in primary-progressive multiple sclerosis. Am J Neuroradiol. 2010. DOI:10.3174/ajnr.A2071.
  • Planche V, Gibelin M, Cregut D, et al. Cognitive impairment in a population-based study of patients with multiple sclerosis: differences between late relapsing-remitting, secondary progressive and primary progressive multiple sclerosis. Eur J Neurol. 2016;23:282–289.
  • Lynch SG, Parmenter BA, Denney DR. The association between cognitive impairment and physical disability in multiple sclerosis. Mult Scler. 2005. DOI:10.1191/1352458505ms1182oa
  • Hojjat SP, Cantrell CG, Carroll TJ, et al. Perfusion reduction in the absence of structural differences in cognitively impaired versus unimpaired RRMS patients. Mult Scler. 2016. DOI:10.1177/1352458516628656.
  • Cerasa A, Valentino P, Chiriaco C, et al. MR imaging and cognitive correlates of relapsing-remitting multiple sclerosis patients with cerebellar symptoms. J Neurol. 2013. DOI:10.1007/s00415-012-6805-y.
  • Weier K, Penner IK, Magon S, et al. Cerebellar abnormalities contribute to disability including cognitive impairment in multiple sclerosis. PLoS One. 2014. DOI:10.1371/journal.pone.0086916.
  • Weier K, Till C, Fonov V, et al. Contribution of the cerebellum to cognitive performance in children and adolescents with multiple sclerosis. Mult Scler. 2016. DOI:10.1177/1352458515595132.
  • Koziol LF, Budding D, Andreasen N, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014. DOI:10.1007/s12311-013-0511-x.
  • D’Ambrosio A, Pagani E, Riccitelli GC, et al. Cerebellar contribution to motor and cognitive performance in multiple sclerosis: an MRI sub-regional volumetric analysis. Mult Scler. 2017. DOI:10.1177/1352458516674567.
  • Moroso A, Ruet A, Lamargue-Hamel D, et al. Posterior lobules of the cerebellum and information processing speed at various stages of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2017. DOI:10.1136/jnnp-2016-313867.
  • Amato MP, Portaccio E, Goretti B, et al. Cognitive impairment in early stages of multiple sclerosis. Neurol Sci. 2010. DOI:10.1007/s10072-010-0376-4.
  • Marrie RA, Horwitz RI. Emerging effects of comorbidities on multiple sclerosis. Lancet Neurol. 2010. DOI:10.1016/S1474-4422(10)70135-6
  • Kivipelto M, Ngandu T, Laatikainen T, et al. Risk score for the prediction of dementia risk in 20 years among middle aged people: a longitudinal, population-based study. Lancet Neurol. 2006. DOI:10.1016/S1474-4422(06)70537-3
  • Hoang H, Laursen B, Stenager EN, et al. Psychiatric co-morbidity in multiple sclerosis: the risk of depression and anxiety before and after MS diagnosis. Mult Scler J. 2016. DOI:10.1177/1352458515588973
  • Kappus N, Weinstock-Guttman B, Hagemeier J, et al. Cardiovascular risk factors are associated with increased lesion burden and brain atrophy in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2016. DOI:10.1136/jnnp-2014-310051.
  • Geraldes R, Esiri MM, DeLuca GC, et al. Age-related small vessel disease: a potential contributor to neurodegeneration in multiple sclerosis. Brain Pathol. 2017. DOI:10.1111/bpa.12460
  • Patten SB, Marrie RA, Carta MG. Depression in multiple sclerosis. Int Rev Psychiatry. 2017. DOI:10.1080/09540261.2017.1322555
  • Feinstein A, Magalhaes S, Richard JF, et al. The link between multiple sclerosis and depression. Nat Rev Neurol. 2014. DOI:10.1038/nrneurol.2014.139
  • Rossi S, Studer V, Motta C, et al. Neuroinflammation drives anxiety and depression in relapsing-remitting multiple sclerosis. Neurology. 2017. DOI:10.1212/WNL.0000000000004411.
  • Bsteh G, Ehling R, Lutterotti A, et al. Long term clinical prognostic factors in relapsing-remitting multiple sclerosis: insights from a 10-Year observational study. PLoS One. 2016. DOI:10.1371/journal.pone.0158978.
  • Patel VP, Walker LAS, Feinstein A. Revisiting cognitive reserve and cognition in multiple sclerosis: a closer look at depression. Mult Scler. 2018. DOI:10.1177/1352458517692887
  • Lester K, Stepleman L, Hughes M. The association of illness severity, self-reported cognitive impairment, and perceived illness management with depression and anxiety in a multiple sclerosis clinic population. J Behav Med. 2007. DOI:10.1007/s10865-007-9095-6
  • Carone DA, Benedict RH, Munschauer FEM III, et al. Interpreting patient/informant discrepancies of reported cognitive symptoms in MS. J Int Neuropsychol Soc. 2005;11:574–583.
  • Korostil M, Feinstein A. Anxiety disorders and their clinical correlates in multiple sclerosis patients. Mult Scler. 2007. DOI:10.1177/1352458506071161
  • Marrie RA, Walld R, Bolton JM, et al. Increased incidence of psychiatric disorders in immune-mediated inflammatory disease. J Psychosom Res. 2017. DOI:10.1016/j.jpsychores.2017.07.015.
  • Goretti B, Viterbo RG, Portaccio E, et al. Anxiety state affects information processing speed in patients with multiple sclerosis. Neurol Sci. 2014;35. DOI:10.1007/s10072-013-1544-0.
  • Mills RJ, Young CA. A medical definition of fatigue in multiple sclerosis. Qjm. 2008. DOI:10.1093/qjmed/hcm122
  • Chaudhuri A, Behan PO. Fatigue in neurological disorders. Lancet. 2004. DOI:10.1016/S0140-6736(04)15794-2
  • Feinstein A. Is there a cognitive signature for multiple sclerosis-related fatigue? Mult Scler. 2015. DOI:10.1177/1352458514563099
  • Krupp L. Fatigue is intrinsic to multiple sclerosis (MS) and is the most commonly reported symptom of the disease. Mult Scler. 2006;12:367–368.
  • Cook DB, O’Connor PJ, Lange G, et al. Functional neuroimaging correlates of mental fatigue induced by cognition among chronic fatigue syndrome patients and controls. Neuroimage. 2007. DOI:10.1016/j.neuroimage.2007.02.033
  • Bol Y, Duits AA, Hupperts RMM, et al. The impact of fatigue on cognitive functioning in patients with multiple sclerosis. Clin Rehabil. 2010. DOI:10.1177/0269215510367540
  • Hanken K, Eling P, Hildebrandt H. Is there a cognitive signature for MS-related fatigue? Mult Scler. 2015. DOI:10.1177/1352458514549567
  • Benedict RHB, Priore RL, Miller C, et al. Personality disorder in multiple sclerosis correlates with cognitive impairment. J Neuropsychiatry Clin Neurosci. 2001. DOI:10.1176/jnp.13.1.70
  • Roy S, Drake AS, Eizaguirre MB, et al. Trait neuroticism, extraversion, and conscientiousness in multiple sclerosis: link to cognitive impairment? Mult Scler. 2018. DOI:10.1177/1352458517695467.
  • Leavitt VM, Buyukturkoglu K, Inglese M, et al. Protective personality traits: high openness and low neuroticism linked to better memory in multiple sclerosis. Mult Scler J. 2017. DOI:10.1177/1352458516685417
  • Denollet J. DS14: standard assessment of negative affectivity, social inhibition, and type D personality. Psychosom Med. 2005. DOI:10.1097/01.psy.0000149256.81953.49
  • Strober LB. Personality in multiple sclerosis (MS): impact on health, psychological well-being, coping, and overall quality of life. Psychol Heal Med. 2017. DOI:10.1080/13548506.2016.1164321
  • Foley PL, Vesterinen HM, Laird BJ, et al. Prevalence and natural history of pain in adults with multiple sclerosis: systematic review and meta-analysis. Pain. 2013. DOI:10.1016/j.pain.2012.12.002.
  • Benson C, Kerr BJ. Pain and cognition in multiple sclerosis. Curr Top Behav Neurosci. 2014;201–215. DOI:10.1007/7854_2014_309
  • Landrø NI, Fors EA, Våpenstad LL, et al. The extent of neurocognitive dysfunction in a multidisciplinary pain centre population. Is there a relation between reported and tested neuropsychological functioning? Pain. 2013. DOI:10.1016/j.pain.2013.01.013
  • Berryman C, Stanton TR, Jane Bowering K, et al. Evidence for working memory deficits in chronic pain: a systematic review and meta-analysis. Pain. 2013. DOI:10.1016/j.pain.2013.03.002
  • Oosterman JM, Derksen LC, Van Wijck AJM, et al. Executive and attentional functions in chronic pain: does performance decrease with increasing task load? Pain Res Manag. 2012. DOI:10.1155/2012/962786
  • Sagar KA, Gruber SA. Marijuana matters: reviewing the impact of marijuana on cognition, brain structure and function, & exploring policy implications and barriers to research. Int Rev Psychiatry. 2018. DOI:10.1080/09540261.2018.1460334
  • Hart RP, Martelli MF, Zasler ND. Chronic pain and neuropsychological functioning. Neuropsychol Rev. 2000. DOI:10.1023/A:1009020914358
  • Moriarty O, McGuire BE, Finn DP. The effect of pain on cognitive function: a review of clinical and preclinical research. Prog Neurobiol. 2011. DOI:10.1016/j.pneurobio.2011.01.002
  • Moriarty O, Finn DP. Cognition and pain. Curr Opin Support Palliat Care. 2014. DOI:10.1097/SPC.0000000000000054
  • Shahrbanian S, Duquette P, Kuspinar A, et al. Contribution of symptom clusters to multiple sclerosis consequences. Qual Life Res. 2015. DOI:10.1007/s11136-014-0804-7
  • Motl RW, Suh Y, Weikert M. Symptom cluster and quality of life in multiple sclerosis. J Pain Symptom Manage. 2010. DOI:10.1016/j.jpainsymman.2009.11.312
  • Vňuková M, Ptáček R, Raboch J, et al. Decreased central nervous system grey matter volume (GMV) in smokers affects cognitive abilities: a systematic review. Med Sci Monit. 2017. DOI:10.12659/MSM.901870
  • Amato MP, Derfuss T, Hemmer B, et al. Environmental modifiable risk factors for multiple sclerosis: report from the 2016 ECTRIMS focused workshop. Mult Scler J. 2018. DOI:10.1177/1352458516686847.
  • Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol. 2016. DOI:10.1038/nrneurol.2016.187
  • Wignall ND, de Wit H. Effects of nicotine on attention and inhibitory control in healthy nonsmokers. Exp Clin Psychopharmacol. 2011. DOI:10.1037/a0023292
  • Ozcan ME, Asil T, Ince B, et al. Association between smoking and cognitive impairment in multiple sclerosis. Neuropsychiatr Dis Treat. 2014;10:1715.
  • Zivadinov R, Weinstock-Guttman B, Hashmi K, et al. Smoking is associated with increased lesion volumes and brain atrophy in multiple sclerosis. Neurology. 2009. DOI:10.1212/WNL.0b013e3181b2a706.
  • Fernández O. Advances in the management of multiple sclerosis spasticity: recent clinical trials. Eur Neurol. 2014. DOI:10.1159/000367616
  • Honarmand K, Tierney MC, O’Connor P, et al. Effects of cannabis on cognitive function in patients with multiple sclerosis. Neurology. 2011. DOI:10.1212/WNL.0b013e318212ab0c
  • Patel VP, Feinstein A. Cannabis and cognitive functioning in multiple sclerosis: the role of gender. Mult Scler J – Exp Transl Clin. 2017. DOI:10.1177/2055217317713027
  • Pavisian B, MacIntosh BJ, Szilagyi G, et al. Effects of cannabis on cognition in patients with MS: a psychometric and MRI study. Neurology. 2014. DOI:10.1212/WNL.0000000000000446
  • Rehm J, Shield KD. Global alcohol-attributable deaths from cancer, liver cirrhosis, and injury in 2010. Alcohol Res. 2013;35: 174–83.
  • Topiwala A, Ebmeier KP. Effects of drinking on late-life brain and cognition. Evid Based Ment Heal. 2018;21:12–15.
  • Bombardier CH, Blake KD, Ehde DM, et al. Alcohol and drug abuse among persons with multiple sclerosis. Mult Scler. 2004. DOI:10.1191/1352458504ms989oa
  • Ahuja S, Chen RK, Kam K, et al. Role of normal sleep and sleep apnea in human memory processing. Nat Sci Sleep Dove Press. 2018;10:255–269.
  • Maingret N, Girardeau G, Todorova R, et al. Hippocampo-cortical coupling mediates memory consolidation during sleep. Nat Neurosci. 2016. DOI:10.1038/nn.4304
  • Fulda S, Schulz H. Cognitive dysfunction in sleep disorders. Sleep Med Rev. 2001. DOI:10.1053/smrv.2001.0157
  • Sater R, Gudesblatt M, Kresa-Reahl K, et al. The relationship between objective parameters of sleep and measures of fatigue, depression, and cognition in multiple sclerosis. Mult Scler J – Exp Transl Clin. 2015. DOI:10.1177/2055217315577828
  • Hughes AJ, Parmenter BA, Haselkorn JK, et al. Sleep and its associations with perceived and objective cognitive impairment in individuals with multiple sclerosis. J Sleep Res. 2017;26:428–435.
  • Patel VP, Walker LAS, Feinstein A. Processing speed and distractibility in multiple sclerosis: the role of sleep. Mult Scler Relat Disord. 2017. DOI:10.1016/j.msard.2016.11.012
  • Matveeva O, Bogie JFJ, Hendriks JJA, et al. Western lifestyle and immunopathology of multiple sclerosis. Ann N Y Acad Sci. 2018. DOI:10.1111/nyas.13583
  • Haase S, Haghikia A, Gold R, et al. Dietary fatty acids and susceptibility to multiple sclerosis. Mult Scler. 2018. DOI:10.1177/1352458517737372
  • Haghikia A, Jörg S, Duscha A, et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity. 2015. DOI:10.1016/j.immuni.2015.09.007.
  • Jörg S, Grohme DA, Erzler M, et al. Environmental factors in autoimmune diseases and their role in multiple sclerosis. Cell Mol Life Sci. 2016. DOI:10.1007/s00018-016-2311-1.
  • Cortese M, Yuan C, Chitnis T, et al. No association between dietary sodium intake and the risk of multiple sclerosis. Neurology. 2017. DOI:10.1212/WNL.0000000000004417
  • McLellan TM, Caldwell JA, Lieberman HR. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci Biobehav Rev. 2016. DOI:10.1016/j.neubiorev.2016.09.001
  • Maljaiei MB, Shaygannejad V, Moosavian SP, et al. Relationship between caffeine intake, EDSS and fatigue scale in patients with multiple sclerosis. J Neurol Neurorehabilitation Res. 2017;2: 67.
  • Fredholm BB. Adenosine, adenosine receptors and the actions of caffeine. Toxicol Pharmacol. 1995. DOI:10.1111/j.1600-0773.1995.tb00111.x
  • Ascherio A, Munger KL, Simon KC. Vitamin D and multiple sclerosis. Lancet Neurol. 2010;9:599–612.
  • Sumowski JF. Cognitive reserve as a useful concept for early intervention research in multiple sclerosis. Front Neurol. 2015. DOI:10.3389/fneur.2015.00176.
  • Stern Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012. DOI:10.1016/S1474-4422(12)70191-6
  • Tucker AM, Stern Y. Cognitive Reserve in Aging. Curr Alzheimer Res. 2011. DOI:10.2174/156720511795745320
  • Sharp ES, Gatz M. Relationship between education and dementia: an updated systematic review. Alzheimer Dis Assoc Disord. 2011. DOI:10.1097/WAD.0b013e318211c83c
  • Goldbourt U, Schnaider-Beeri M, Davidson M. Socioeconomic status in relationship to death of vascular disease and late-life dementia. J Neurol Sci. 2007. DOI:10.1016/j.jns.2007.01.021
  • Sattler C, Toro P, Schönknecht P, et al. Cognitive activity, education and socioeconomic status as preventive factors for mild cognitive impairment and Alzheimer’s disease. Psychiatry Res. 2012. DOI:10.1016/j.psychres.2011.11.012
  • Wechsler D Manual for the Wechsler adult intelligence scale - revised. Thesis_references-Converted #317, Psychological Corporation. 1981.
  • Santangelo G, Bisecco A, Trojano L, et al. Cognitive performance in multiple sclerosis: the contribution of intellectual enrichment and brain MRI measures. J Neurol. 2018. DOI:10.1007/s00415-018-8905-9.
  • Nunnari D, De Cola MC, Costa A, et al. Exploring cognitive reserve in multiple sclerosis: new findings from a cross-sectional study. J Clin Exp Neuropsychol. 2016. DOI:10.1080/13803395.2016.1200538
  • Amato MP, Razzolini L, Goretti B, et al. Cognitive reserve and cortical atrophy in multiple sclerosis: a longitudinal study. Neurology. 2013;80:1728–1733. .
  • Sumowski JF, Rocca MA, Leavitt VM, et al. Brain reserve and cognitive reserve protect against cognitive decline over 4.5 years in MS. Neurology. 2014. DOI:10.1212/WNL.0000000000000433.
  • Biedermann SV, Fuss J, Steinle J, et al. The hippocampus and exercise: histological correlates of MR-detected volume changes. Brain Struct Funct. 2016. DOI:10.1007/s00429-014-0976-5.
  • Ten Brinke LF, Bolandzadeh N, Nagamatsu LS, et al. Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: a 6-month randomised controlled trial. Br J Sports Med. 2015. DOI:10.1136/bjsports-2013-093184.
  • Kjølhede T, Siemonsen S, Wenzel D, et al. Can resistance training impact MRI outcomes in relapsing-remitting multiple sclerosis? Mult Scler J. 2018. DOI:10.1177/1352458517722645.
  • Portaccio E, Goretti B, Zipoli V, et al. APOE-ε4 is not associated with cognitive impairment in relapsing - remitting multiple sclerosis. Mult Scler. 2009. DOI:10.1177/1352458509348512.
  • Van Der Walt A, Stankovich J, Bahlo M, et al. Apolipoprotein genotype does not influence MS severity, cognition, or brain atrophy. Neurology. 2009. DOI:10.1212/WNL.0b013e3181b9c85e.
  • Koutsis G, Panas M, Giogkaraki E, et al. APOE ε4 is associated with impaired verbal learning in patients with MS. Neurology. 2007. DOI:10.1212/01.wnl.0000254468.51973.44.
  • Shi J, Tu JL, Gale SD, et al. APOE ε4 is associated with exacerbation of cognitive decline in patients with multiple sclerosis. Cogn Behav Neurol. 2011. DOI:10.1097/WNN.0b013e31823380b5.
  • Schrewe L, Lill CM, Liu T, et al. Investigation of sex-specific effects of apolipoprotein E on severity of EAE and MS. J Neuroinflammation. 2015. DOI:10.1186/s12974-015-0429-y.
  • Kantarci OH, Hebrink DD, Achenbach SJ, et al. Association of APOE polymorphisms with disease severity in MS is limited to women. Neurology. 2004. DOI:10.1212/01.WNL.0000113721.83287.83.
  • De Stefano N, Bartolozzi ML, Nacmias B, et al. Influence of apolipoprotein E ε4 genotype on brain tissue integrity in relapsing-remitting multiple sclerosis. Arch Neurol. 2004. DOI:10.1001/archneur.61.4.536.
  • Yang HS, Yu L, White CC, et al. Evaluation of TDP-43 proteinopathy and hippocampal sclerosis in relation to APOE ε4 haplotype status: a community-based cohort study. Lancet Neurol. 2018. DOI:10.1016/S1474-4422(18)30251-5.
  • Jensen CJ, Stankovich J, Van der Walt A, et al. Multiple sclerosis susceptibility-associated SNPs do not influence disease severity measures in a cohort of Australian MS patients. PLoS One. 2010. DOI:10.1371/journal.pone.0010003.
  • Cerasa A, Tongiorgi E, Fera F, et al. The effects of BDNF Val66Met polymorphism on brain function in controls and patients with multiple sclerosis: an imaging genetic study. Behav Brain Res. 2010. DOI:10.1016/j.bbr.2009.10.022.
  • Sumowski JF, Rocca MA, Leavitt VM, et al. Brain reserve and cognitive reserve in multiple sclerosis: what you’ve got and how you use it. Neurology. 2013. DOI:10.1212/WNL.0b013e318296e98b.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.