275
Views
11
CrossRef citations to date
0
Altmetric
Review

Non-conventional compounds with potential therapeutic effects against Alzheimer’s disease

, , , , , , , , ORCID Icon & ORCID Icon show all
Pages 375-395 | Received 20 Oct 2018, Accepted 15 Apr 2019, Published online: 29 Apr 2019

References

  • Appleby BS, Nacopoulos D, Milano N, et al. A review: treatment of Alzheimer’s disease discovered in repurposed agents. Dement Geriatr Cogn Disord. 2013;35:1–22.
  • Corbett A, Pickett J, Burns A, et al. Drug repositioning for Alzheimer’s disease. Nat Rev Drug Discov. 2012;11:833–846.
  • Aisen PS, Cummings J, Schneider LS. Symptomatic and nonamyloid/tau based pharmacologic treatment for Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2:a006395.
  • Bachurin SO, Bovina EV, Ustyugov AA. Drugs in clinical trials for Alzheimer’s disease: the major trends. Med Res Rev. 2017;37:1186–1225.
  • Broadstock M, Ballard C, Corbett A. Latest treatment options for Alzheimer’s disease, Parkinson’s disease dementia and dementia with lewy bodies. Expert Opin Pharmacother. 2014;15:1797–1810.
  • Araki W. Potential repurposing of oncology drugs for the treatment of Alzheimer’s disease. BMC Med England. 2013;11:82.
  • Hayes CD, Dey D, Palavicini JP, et al. Striking reduction of amyloid plaque burden in an Alzheimer’s mouse model after chronic administration of carmustine. BMC Med. 2013;11:81.
  • Choi Y, Jeong HJ, Liu QF, et al. Clozapine improves memory impairment and reduces abeta level in the Tg-APPswe/PS1dE9 mouse model of Alzheimer’s disease. Mol Neurobiol. 2017;54:450–460.
  • Kukharsky MS, Ovchinnikov RK, Bachurin SO. [Molecular aspects of the pathogenesis and current approaches to pharmacological correction of Alzheimer’s disease]. Zhurnal Nevrol i psikhiatrii Im SS Korsakova. 2015;115:103–114.
  • Nussbaum JM, Seward ME, Bloom GS. Alzheimer disease: a tale of two prions. Prion. 2013;7:14–19.
  • Carreiras MC, Mendes E, Perry MJ, et al. The multifactorial nature of Alzheimer’s disease for developing potential therapeutics. Curr Top Med Chem. 2013;13:1745–1770.
  • De-Paula VJ, Radanovic M, Diniz BS, et al. Alzheimer’s disease. Subcell Biochem. 2012;65:329–352.
  • Ittner LM, Ke YD, Delerue F, et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell. 2010;142:387–397.
  • Ballard C, Corbett A, Sharp S. Aligning the evidence with practice: NICE guidelines for drug treatment of Alzheimer’s disease. Expert Rev Neurother Internet. 2011;11:327–329.
  • Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405.
  • Zhang B, Gaiteri C, Bodea L-G, et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell. 2013;153:707–720.
  • Shi X-W, Liu L, Gao J-M, et al. Cyathane diterpenes from Chinese mushroom sarcodon scabrosus and their neurite outgrowth-promoting activity. Eur J Med Chem. 2011;46:3112–3117.
  • Zhang -C-C, Cao C-Y, Kubo M, et al. Chemical constituents from hericium erinaceus promote neuronal survival and potentiate neurite outgrowth via the TrkA/Erk1/2 pathway. Int J Mol Sci. 2017;18:1659.
  • Cao C-Y, Zhang -C-C, Shi X-W, et al. Sarcodonin G derivatives exhibit distinctive effects on neurite outgrowth by modulating NGF signaling in PC12 cells. ACS Chem Neurosci. 2018;9:1607–1615.
  • Tang D, Liu -L-L, He Q-R, et al. Ansamycins with antiproliferative and antineuroinflammatory activity from moss-soil-derived Streptomyces cacaoi subsp. asoensis H2S5. J Nat Prod. 2018;81:1984–1991.
  • Kou R-W, Du S-T, Li Y-X, et al. Cyathane diterpenoids and drimane sesquiterpenoids with neurotrophic activity from cultures of the fungus cyathus africanus. J Antibiot. 2019;72:15–21.
  • Bai R, Zhang -C-C, Yin X, et al. Striatoids A-F, Cyathane diterpenoids with neurotrophic activity from cultures of the fungus cyathus striatus. J Nat Prod. 2015;78:783–788.
  • Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov. 2011;10:698–712.
  • Corbett A, Ballard C. Is a potential Alzheimer’s therapy already in use for other conditions? Can medications for hypertension, diabetes and acne help with the symptoms? Expert Opin Investig Drugs Internet. 2013;22:941–943.
  • Lourenco MV, Frozza RL, de Freitas GB, et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat Med Available from. 2019;25:165–175.
  • Kumar K, Kumar A, Keegan RM, et al. Recent advances in the neurobiology and neuropharmacology of Alzheimer’s disease. Biomed Pharmacother. 2018;98:297–307.
  • Jones EL, Hanney M, Francis PT, et al. Amyloid beta concentrations in older people with down syndrome and dementia. Neurosci Lett. 2009;451:162–164.
  • Saez-Orellana F, Godoy PA, Bastidas CY, et al. ATP leakage induces P2XR activation and contributes to acute synaptic excitotoxicity induced by soluble oligomers of beta-amyloid peptide in hippocampal neurons. Neuropharmacology. 2016;100:116–123.
  • Godyn J, Jonczyk J, Panek D, et al. Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol Rep. 2016;68:127–138.
  • Serrano-Pozo A, Frosch MP, Masliah E, et al. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011;1:a006189.
  • Golde TE. The pathogenesis of Alzheimer’s disease and the role of Abeta42. CNS Spectr. 2007;12:4–6.
  • Bateman RJ, Xiong C, Benzinger TLS, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med Internet. 2012;367:795–804.
  • Schenk D, Basi GS, Pangalos MN. Treatment strategies targeting amyloid beta-protein. Cold Spring Harb Perspect Med. 2012;2:a006387.
  • Xiao Y, Ma B, McElheny D, et al. Abeta(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat Struct Mol Biol. 2015;22:499–505.
  • Almond MH, Edwards MR, Barclay WS, et al. Obesity and susceptibility to severe outcomes following respiratory viral infection. Thorax. 2013;68:684–686.
  • Chidiac C. Pneumococcal infections and adult with risk factors. Med Mal Infect. 2012;42:517–524.
  • Bastard J-P, Maachi M, Lagathu C, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006;17:4–12.
  • Whitmer RA, Gustafson DR, Barrett-Connor E, et al. Central obesity and increased risk of dementia more than three decades later. Neurology. 2008;71:1057–1064.
  • Brown BM, Peiffer JJ, Martins RN. Multiple effects of physical activity on molecular and cognitive signs of brain aging: can exercise slow neurodegeneration and delay Alzheimer’s disease?. Mol Psychiatry. 2013;18:864–874.
  • Tajiri N, Kellogg SL, Shimizu T, et al. Traumatic brain injury precipitates cognitive impairment and extracellular abeta aggregation in Alzheimer’s disease transgenic mice. PLoS One. 2013;8:e78851.
  • Ramlackhansingh AF, Brooks DJ, Greenwood RJ, et al. Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol. 2011;70:374–383.
  • Sastre M, Dewachter I, Landreth GE, et al. Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immuno stimulated processing of amyloid precursor protein through regulation of beta-secretase. J Neurosci. 2003;23:9796–9804.
  • Shi H, Belbin O, Medway C, et al. Genetic variants influencing human aging from late-onset Alzheimer’s disease (LOAD) genome-wide association studies (GWAS). Neurobiol Aging Internet. 2012;33:1849.e5–1849.18. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120742/
  • Czirr E, Wyss-Coray T. The immunology of neurodegeneration. J Clin Invest. 2012;122:1156–1163.
  • Hu WT, Holtzman DM, Fagan AM, et al. Plasma multianalyte profiling in mild cognitive impairment and Alzheimer disease. Neurology Internet. 2012;79:897–905. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425844/
  • Ray S, Britschgi M, Herbert C, et al. Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med Internet. 2007;13:1359.
  • Britschgi M, Rufibach K, Huang SLB, et al. Modeling of pathological traits in Alzheimer’s disease based on systemic extracellular signaling proteome. Mol Cell Proteomics. 2011;10:M111.008862.
  • Johnstone D, Milward EA, Berretta R, et al. Multivariate protein signatures of pre-clinical Alzheimer’s disease in the Alzheimer’s disease neuroimaging initiative (ADNI) plasma proteome dataset. PLoS One. 2012;7:e34341.
  • Hardy J. The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J Neurochem. 2009;110:1129–1134.
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–356.
  • Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256:184–185.
  • Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984;120:885–890.
  • Thinakaran G, Koo EH. Amyloid precursor protein trafficking, processing, and function. J Biol Chem. 2008;283:29615–29619.
  • LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci. 2007;8:499–509.
  • Lesne S, Koh MT, Kotilinek L, et al. A specific amyloid-beta protein assembly in the brain impairs memory. Nature. 2006;440:352–357.
  • Cheng IH, Scearce-Levie K, Legleiter J, et al. Accelerating amyloid-beta fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J Biol Chem. 2007;282:23818–23828.
  • Cleary JP, Walsh DM, Hofmeister JJ, et al. Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nat Neurosci Internet. 2004;8(79). DOI:10.1038/nn1372
  • Head E, Pop V, Vasilevko V, et al. A two-year study with fibrillar β-Amyloid (Aβ) immunization in aged canines: effects on cognitive function and brain Aβ. J Neurosci Internet. 2008;28:3555LP–3566. Available from: http://www.jneurosci.org/content/28/14/3555.abstract
  • Yan P, Bero AW, Cirrito JR, et al. Characterizing the appearance and growth of amyloid plaques in APP/PS1 mice. J Neurosci. 2009;29:10706–10714.
  • Willem M, Garratt AN, Novak B, et al. Control of peripheral nerve myelination by the beta-secretase BACE1. Science. 2006;314:664–666.
  • Yan R, Vassar R. Targeting the beta secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol. 2014;13:319–329.
  • Kuhn P-H, Koroniak K, Hogl S, et al. Secretome protein enrichment identifies physiological BACE1 protease substrates in neurons. Embo J Internet. 2012;31:3157–3168. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3400020/
  • Vassar R. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimers Res Ther Internet. 2014;6:89. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304279/
  • Jonsson T, Atwal JK, Steinberg S, et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature Internet. 2012;488:96.
  • Holtzman DM, Morris JC, Goate AM. Alzheimer’s disease: the challenge of the second century. Sci Transl Med. 2011;3:77sr1.
  • Nisbet RM, Polanco J-C, Ittner LM, et al. Tau aggregation and its interplay with amyloid-beta. Acta Neuropathol. 2015;129:207–220.
  • Tomita T. Secretase inhibitors and modulators for Alzheimer’s disease treatment. Expert Rev Neurother. 2009;9:661–679.
  • Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci. 1991;12:383–388.
  • Selkoe DJ. Resolving controversies on the path to Alzheimer’s therapeutics. Nat Med. 2011;17:1060–1065.
  • Khan A, Corbett A, Ballard C. Emerging treatments for Alzheimer’s disease for non-amyloid and non-tau targets. Expert Rev Neurother. 2017;17:683–695.
  • Cole SL, Vassar R. The role of amyloid precursor protein processing by BACE1, the β-Secretase, in Alzheimer disease pathophysiology. J Biol Chem Internet. 2008;283:29621–29625. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662048/
  • Chauhan V, Chauhan A. Oxidative stress in Alzheimer’s disease. Pathophysiol Off J Int Soc Pathophysiol. 2006;13:195–208.
  • Huang W-J, Zhang X, Chen -W-W. Role of oxidative stress in Alzheimer’s disease. Biomed Reports. 2016;4:519–522.
  • Kumar S, Chowdhury S, Kumar S. In silico repurposing of antipsychotic drugs for Alzheimer’s disease. BMC Neurosci. 2017;18:76.
  • Son S-Y, Ma J, Kondou Y, et al. Structure of human monoamine oxidase A at 2.2-A resolution: the control of opening the entry for substrates/inhibitors. Proc Natl Acad Sci U S A. 2008;105:5739–5744.
  • Binda C, Wang J, Pisani L, et al. Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: safinamide and coumarin analogs. J Med Chem. 2007;50:5848–5852.
  • Veitinger M, Varga B, Guterres SB, et al. Platelets, a reliable source for peripheral Alzheimer’s disease biomarkers?. Acta Neuropathol Commun. 2014;2:65.
  • Finberg JPM, Rabey JM. Inhibitors of MAO-A and MAO-B in psychiatry and neurology. Front Pharmacol. 2016;7:340.
  • Danysz W, Parsons CG. Alzheimer’s disease, beta-amyloid, glutamate, NMDA receptors and memantine–searching for the connections. Br J Pharmacol. 2012;167:324–352.
  • Butterfield DA, Pocernich CB. The glutamatergic system and Alzheimer’s disease: therapeutic implications. CNS Drugs. 2003;17:641–652.
  • Mitra A. Therapeutic interventions in Alzheimer disease.Kishore U, editor. Rijeka: InTech; 2013. Ch. 12.: DOI:10.5772/54915
  • Parsons CG, Danysz W, Dekundy A, et al. Memantine and cholinesterase inhibitors: complementary mechanisms in the treatment of Alzheimer’s disease. Neurotox Res. 2013;24:358–369.
  • Garcia ML, Cleveland DW. Going new places using an old MAP: tau, microtubules and human neurodegenerative disease. Curr Opin Cell Biol. 2001;13:41–48.
  • Wischik CM, Harrington CR, Storey JMD. Tau-aggregation inhibitor therapy for Alzheimer’s disease. Biochem Pharmacol. 2014;88:529–539.
  • Lee VM-Y, Trojanowski JQ. The disordered neuronal cytoskeleton in Alzheimer’s disease. Curr Opin Neurobiol Internet. 1992;2:653–656. Available from: http://www.sciencedirect.com/science/article/pii/095943889290034I
  • Clark CM, Xie S, Chittams J, et al. Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses?. Arch Neurol. 2003;60:1696–1702.
  • Arriagada PV, Growdon JH, Hedley-Whyte ET, et al. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology. 1992;42:631–639.
  • Steinhilb ML, Dias-Santagata D, Fulga TA, et al. Tau phosphorylation sites work in concert to promote neurotoxicity in vivo. Mol Biol Cell. 2007;18:5060–5068.
  • Schneider A, Mandelkow E. Tau-based treatment strategies in neurodegenerative diseases. Neurotherapeutics Internet. 2008;5:443–457. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084246/
  • Illenberger S, Zheng-Fischhofer Q, Preuss U, et al. The endogenous and cell cycle-dependent phosphorylation of tau protein in living cells: implications for Alzheimer’s disease. Mol Biol Cell. 1998;9:1495–1512.
  • Gong C-X, Liu F, Grundke-Iqbal I, et al. Post-translational modifications of tau protein in Alzheimer’s disease. J Neural Transm. 2005;112:813–838.
  • Grill JD, Cummings JL. Current therapeutic targets for the treatment of Alzheimer’s disease. Expert Rev Neurother. 2010;10:711–728.
  • Iqbal K, Liu F, Gong C-X. Tau and neurodegenerative disease: the story so far. Nat Rev Neurol. 2016;12:15–27.
  • Wu X-L, Pina-Crespo J, Zhang Y-W, et al. Tau-mediated neurodegeneration and potential implications in diagnosis and treatment of Alzheimer’s disease. Chin Med J (Engl). 2017;130:2978–2990.
  • Congdon EE, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol. 2018;14:399–415.
  • Ando K, Kabova A, Stygelbout V, et al. Vaccination with Sarkosyl insoluble PHF-tau decrease neurofibrillary tangles formation in aged tau transgenic mouse model: a pilot study. J Alzheimers Dis. 2014;40(Suppl 1):S135–45.
  • Bi M, Ittner A, Ke YD, et al. Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice. PLoS One. 2011;6:e26860.
  • Theunis C, Crespo-Biel N, Gafner V, et al. Efficacy and safety of a liposome-based vaccine against protein Tau, assessed in tau.P301L mice that model tauopathy. PLoS One. 2013;8:e72301.
  • Rajamohamedsait H, Rasool S, Rajamohamedsait W, et al. Prophylactic active tau immunization leads to sustained reduction in both tau and amyloid-beta pathologies in 3xTg mice. Sci Rep. 2017;7:17034.
  • Pedersen JT, Sigurdsson EM. Tau immunotherapy for Alzheimer’s disease. Trends Mol Med. 2015;21:394–402.
  • Coman H, Nemeş B. New therapeutic targets in Alzheimer’s disease. Int J Gerontol Internet. 2017;11:2–6. Available from: http://www.sciencedirect.com/science/article/pii/S1873959817300224
  • Makrides V, Shen TE, Bhatia R, et al. Microtubule-dependent oligomerization of tau. Implications for physiological tau function and tauopathies. J Biol Chem. 2003;278:33298–33304.
  • Crowe A, Huang W, Ballatore C, et al. Identification of aminothienopyridazine inhibitors of tau assembly by quantitative high-throughput screening. Biochemistry. 2009;48:7732–7745.
  • Wischik C, Staff R. Challenges in the conduct of disease-modifying trials in AD: practical experience from a phase 2 trial of Tau-aggregation inhibitor therapy. J Nutr Heal & Aging. 2009;13:367–369.
  • Wischik CM, Edwards PC, Lai RY, et al. Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc Natl Acad Sci U S A. 1996;93:11213–11218.
  • Necula M, Breydo L, Milton S, et al. Methylene blue inhibits amyloid abeta oligomerization by promoting fibrillization. Biochemistry. 2007;46:8850–8860.
  • Contestabile A. The history of the cholinergic hypothesis. Behav Brain Res. 2011;221:334–340.
  • Davies P, Maloney AJ. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet England. 1976;308(8000):1403.
  • Bowen DM, Smith CB, White P, et al. Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain. 1976;99:459–496.
  • Kar S, Issa AM, Seto D, et al. Amyloid beta-peptide inhibits high-affinity choline uptake and acetylcholine release in rat hippocampal slices. J Neurochem. 1998;70:2179–2187.
  • Auld DS, Kar S, Quirion R. Beta-amyloid peptides as direct cholinergic neuromodulators: a missing link? Trends Neurosci. 1998;21:43–49.
  • Nordberg A, Alafuzoff I, Winblad B. Nicotinic and muscarinic subtypes in the human brain: changes with aging and dementia. J Neurosci Res. 1992;31:103–111.
  • Barage SH, Sonawane KD. Amyloid cascade hypothesis: pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides. 2015;52:1–18.
  • Franklin MC, Rudolph MJ, Ginter C, et al. Structures of paraoxon-inhibited human acetylcholinesterase reveal perturbations of the acyl loop and the dimer interface. Proteins. 2016;84:1246–1256.
  • Lleo A, Greenberg SM, Growdon JH. Current pharmacotherapy for Alzheimer’s disease. Annu Rev Med. 2006;57:513–533.
  • Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol. 2011;7:137–152.
  • Hebert LE, Scherr PA, Bienias JL, et al. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol. 2003;60:1119–1122.
  • Doody RS, Stevens JC, Beck C, et al. Practice parameter: management of dementia (an evidence-based review). Report of the quality standards subcommittee of the american academy of neurology. Neurology. 2001;56:1154–1166.
  • Giacobini E. Cholinesterases: new roles in brain function and in Alzheimer’s disease. Neurochem Res. 2003;28:515–522.
  • Giacobini E. Long-term stabilizing effect of cholinesterase inhibitors in the therapy of Alzheimer’ disease. J Neural Transm Suppl. 2002;62:181–187.
  • Rogers SL, Farlow MR, Doody RS, et al. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Donepezil Study Group Neurology. 1998;50:136–145.
  • Corey-Bloom J, Anand R, Veach J. A randomized trial evaluating the efficacy and safety of ENA 713 (rivastigmine tartrate), a new acetylcholinesterase inhibitor, in patients with mild to moderately severe Alzheimer’s disease. Int J Geriatr Psychopharmacol. 1998;1:55–65.
  • Tariot PN, Solomon PR, Morris JC, et al. A 5-month, randomized, placebo-controlled trial of galantamine in AD. The galantamine USA-10 study group. Neurology. 2000;54:2269–2276.
  • Cummings JL. Cholinesterase inhibitors: a new class of psychotropic compounds. Am J Psychiatry. 2000;157:4–15.
  • Ryan J, Scali J, Carriere I, et al. Hormonal treatment, mild cognitive impairment and Alzheimer’s disease. Int Psychogeriatr Internet. 2008;20:47–56. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662345/
  • Gauthier S, Juby A, Dalziel W, et al. Effects of rivastigmine on common symptomatology of Alzheimer’s disease (EXPLORE). Curr Med Res Opin. 2010;26:1149–1160.
  • Lockhart IA, Mitchell SA, Kelly S. Safety and tolerability of donepezil, rivastigmine and galantamine for patients with Alzheimer’s disease: systematic review of the “real-world” evidence. Dement Geriatr Cogn Disord. 2009;28:389–403.
  • Giacobini E. Cholinesterase inhibitors stabilize Alzheimer’s disease. Ann N Y Acad Sci. 2000;920:321–327.
  • Crismon ML. Tacrine: first drug approved for Alzheimer’s disease. Ann Pharmacother. 1994;28:744–751.
  • Mehta M, Adem A, Sabbagh M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Int J Alzheimer’s Dis. 2012;2012:728983.
  • Cacabelos R. Donepezil in Alzheimer’s disease: from conventional trials to pharmacogenetics. Neuropsychiatr Dis Treat. 2007;3:303.
  • Birks JS, Harvey RJ. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev. 2018;6:CD001190.
  • Lopez-Arrieta JM, Schneider L. Metrifonate for Alzheimer’s disease. Cochrane Database Syst Rev. 2006;2:CD003155.
  • Greig NH, Utsuki T, Ingram DK, et al. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proc Natl Acad Sci U S A. 2005;102:17213–17218.
  • Leon R, Garcia AG, Marco-Contelles J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med Res Rev. 2013;33:139–189.
  • Geula C, Darvesh S. Butyrylcholinesterase, cholinergic neurotransmission and the pathology of Alzheimer’s disease. Drugs Today (Barc). 2004;40:711–721.
  • Wischik CM, Bentham P, Wischik DJ, et al. O3-04-07: tau aggregation inhibitor (TAI) therapy with rember™ arrests disease progression in mild and moderate Alzheimer’s disease over 50 weeks. Alzheimer’s Dement J Alzheimer’s Assoc Internet. 2018;4:T167.
  • Gura T. Hope in Alzheimer’s fight emerges from unexpected places. Nat Med U S. 2008;14:894.
  • Oz M, Lorke DE, Petroianu GA. Methylene blue and Alzheimer’s disease. Biochem Pharmacol. 2009;78:927–932.
  • Wagner SJ, Skripchenko A, Robinette D, et al. Factors affecting virus photoinactivation by a series of phenothiazine dyes. Photochem Photobiol. 1998;67:343–349.
  • Ramsay RR, Dunford C, Gillman PK. Methylene blue and serotonin toxicity: inhibition of monoamine oxidase A (MAO A) confirms a theoretical prediction. BrJ Pharmacol Internet. 2007;152:946–951. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2078225/
  • Clifton J 2nd, Leikin JB. Methylene blue. Am J Ther. 2003;10:289–291.
  • Oz M, Isaev D, Lorke DE, et al. Methylene blue inhibits function of the 5-HT transporter. Br J Pharmacol. 2012;166:168–176.
  • de-Oliveira RW, Guimarães FS. Anxiolytic effect of methylene blue microinjected into the dorsal periaqueductal gray matter. Brazilian J Med Biol Res Scielo. 1999;32:1529–1532.
  • Rengelshausen J, Burhenne J, Frohlich M, et al. Pharmacokinetic interaction of chloroquine and methylene blue combination against malaria. Eur J Clin Pharmacol. 2004;60:709–715.
  • Peter C, Hongwan D, Kupfer A, et al. Pharmacokinetics and organ distribution of intravenous and oral methylene blue. Eur J Clin Pharmacol. 2000;56:247–250.
  • Lindahl PE, Öberg KE. The effect of rotenone on respiration and its point of attack. Exp Cell Res Internet. 1961;23:228–237. Available from: http://www.sciencedirect.com/science/article/pii/0014482761900337
  • Martinez JL, Jensen RA, Vasquez BJ, et al. Methylene blue alters retention of inhibitory avoidance responses. Physiol Psychol Internet. 1978;6:387–390.
  • Callaway NL, Riha PD, Bruchey AK, et al. Methylene blue improves brain oxidative metabolism and memory retention in rats. Pharmacol Biochem Behav. 2004;77:175–181.
  • Hauptmann S, Scherping I, Drose S, et al. Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging. 2009;30:1574–1586.
  • Medina DX, Caccamo A, Oddo S. Methylene blue reduces abeta levels and rescues early cognitive deficit by increasing proteasome activity. Brain Pathol. 2011;21:140–149.
  • Mayer B, Brunner F, Schmidt K. Novel actions of methylene blue. Eur Heart J. 1993;14(Suppl I):22–26.
  • Atamna H, Nguyen A, Schultz C, et al. Methylene blue delays cellular senescence and enhances key mitochondrial biochemical pathways. FASEB J Off Publ Fed Am Soc Exp Biol. 2008;22:703–712.
  • Oz M, Lorke DE, Hasan M, et al. Cellular and molecular actions of methylene blue in the nervous system. Med Res Rev. 2011;31:93–117.
  • Schirmer RH, Adler H, Pickhardt M, et al. Lest we forget you – methylene blue …. Neurobiol Aging Internet. 2011;32:2325.e7–2325.e16. Available from: http://www.sciencedirect.com/science/article/pii/S0197458010005294
  • Kristiansen JE. Dyes, antipsychotic drugs, and antimicrobial activity. Fragments of a development, with special reference to the influence of Paul Ehrlich. Dan Med Bull. 1989;36:178–185.
  • Riha PD, Bruchey AK, Echevarria DJ, et al. Memory facilitation by methylene blue: dose-dependent effect on behavior and brain oxygen consumption. Eur J Pharmacol. 2005;511:151–158.
  • van der Ven AT, Pape JC, Hermann D, et al. Methylene blue (tetramethylthionine chloride) influences the mobility of adult neural stem cells: a potentially novel therapeutic mechanism of a therapeutic approach in the treatment of Alzheimer’s disease. J Alzheimers Dis. 2017;57:531–540.
  • Gonzalez-Lima F, Bruchey AK. Extinction memory improvement by the metabolic enhancer methylene blue. Learn Mem. 2004;11:633–640.
  • Kupfer A, Aeschlimann C, Cerny T. Methylene blue and the neurotoxic mechanisms of ifosfamide encephalopathy. Eur J Clin Pharmacol. 1996;50:249–252.
  • Kelner MJ, Bagnell R, Hale B, et al. Potential of methylene blue to block oxygen radical generation in reperfusion injury. Basic Life Sci. 1988;49:895–898.
  • Salaris SC, Babbs CF, Voorhees WD 3rd. Methylene blue as an inhibitor of superoxide generation by xanthine oxidase. A potential new drug for the attenuation of ischemia/reperfusion injury. Biochem Pharmacol. 1991;42:499–506.
  • Muller T. Methylene blue supravital staining: an evaluation of its applicability to the mammalian brain and pineal gland. Histol Histopathol. 1998;13:1019–1026.
  • DiSanto AR, Wagner JG. Pharmacokinetics of highly ionized drugs. II. Methylene blue – absorption, metabolism, and excretion in man and dog after oral administration. J Pharm Sci. 1972;61:1086–1090.
  • Lorke DE, Kalasz H, Petroianu GA, et al. Entry of oximes into the brain: a review. Curr Med Chem. 2008;15:743–753.
  • Herman MI, Chyka PA, Butler AY, et al. Methylene blue by intraosseous infusion for methemoglobinemia. Ann Emerg Med. 1999;33:111–113.
  • Buchholz K, Schirmer RH, Eubel JK, et al. Interactions of methylene blue with human disulfide reductases and their orthologues from plasmodium falciparum. Antimicrob Agents Chemother. 2008;52:183–191.
  • Bongard RD, Krenz GS, Linehan JH, et al. Reduction and accumulation of methylene blue by the lung. J Appl Physiol. 1994;77:1480–1491.
  • Harris JE, Peters A. Experiments on vital staining with methylene blue. Q J Microsc Sci Internet. 1953;3(26):113–124. Available from: http://jcs.biologists.org/content/s3-94/26/113.abstract
  • Taniguchi S, Suzuki N, Masuda M, et al. Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J Biol Chem. 2005;280:7614–7623.
  • Necula M, Kayed R, Milton S, et al. Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct. J Biol Chem. 2007;282:10311–10324.
  • Dolphin GT, Chierici S, Ouberai M, et al. A multimeric quinacrine conjugate as a potential inhibitor of Alzheimer’s beta-amyloid fibril formation. Chembiochem. 2008;9:952–963.
  • Fischer R, Zeman W. Neuronal dye-sorption as a histochemical indicator of nervous activity. Nature Internet]. 1959;183:1337.
  • Holzgrabe U, Kapkova P, Alptuzun V, et al. Targeting acetylcholinesterase to treat neurodegeneration. Expert Opin Ther Targets. 2007;11:161–179.
  • Nordberg A. Mechanisms behind the neuroprotective actions of cholinesterase inhibitors in Alzheimer disease. Alzheimer Dis Assoc Disord. 2006;20:S12–8.
  • Pfaffendorf M, Bruning TA, Batnik HD, et al. The interaction between methylene blue and the cholinergic system. Br J Pharmacol. 1997;122:95–98.
  • Kucukkilinc T, Ozer I. Multi-site inhibition of human plasma cholinesterase by cationic phenoxazine and phenothiazine dyes. Arch Biochem Biophys. 2007;461:294–298.
  • Yucel YY, Tacal O, Ozer I. Comparative effects of cationic triarylmethane, phenoxazine and phenothiazine dyes on horse serum butyrylcholinesterase. Arch Biochem Biophys. 2008;478:201–205.
  • Inestrosa NC, Dinamarca MC, Alvarez A. Amyloid-cholinesterase interactions. Implications for Alzheimer’s disease. FEBS J. 2008;275:625–632.
  • Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomed Pap. 2011;155:219–223.
  • Fujii T, Mori Y, Tominaga T, et al. Maintenance of constant blood acetylcholine content before and after feeding in young chimpanzees. Neurosci Lett. 1997;227:21–24.
  • Joachim H, Cornelia K, DE G, et al. Excessive hippocampal acetylcholine levels in acetylcholinesterase‐deficient mice are moderated by butyrylcholinesterase activity. J Neurochem Internet. 2006;100:1421–1429.
  • Guevara-Salazar JA, Espinoza-Fonseca M, Beltrán HI, et al. The electronic influence on the active site-directed inhibition of acetylcholinesterase by N-aryl-substituted succinimides. J Mex Chem Soc. 2007;51:222–227.
  • Jońca J, Żuk M, Wasąg B, et al. New insights into butyrylcholinesterase activity assay: serum dilution factor as a crucial parameter. PLoS One. 2015;10:e0139480.
  • Lockridge O, Norgren RB Jr, Johnson RC, et al. Naturally occurring genetic variants of human acetylcholinesterase and butyrylcholinesterase and their potential impact on the risk of toxicity from cholinesterase inhibitors. Chem Res Toxicol. 2016;29:1381–1392.
  • Masson P, Lockridge O. Butyrylcholinesterase for protection from organophosphorus poisons: catalytic complexities and hysteretic behavior. Arch Biochem Biophys. 2010;494:107–120.
  • Bono GF, Simão-Silva DP, Batistela MS, et al. Butyrylcholinesterase: K variant, plasma activity, molecular forms and rivastigmine treatment in Alzheimer’s disease in a Southern Brazilian population. Neurochem Int. 2015;81:57–62.
  • Brunton LL, Chabner BA, Knollmann BC. As Bases Farmacológicas da Terapêutica de Goodman & Gilman-12.ed. McGraw Hill Brasil. 2012; 2112 p.
  • Silman I, Sussman JL. Acetylcholinesterase: ‘classical’and ‘non-classical’ functions and pharmacology. Curr Opin Pharmacol. 2005;5:293–302.
  • Koelle GB. Pharmacology of organophosphates. J Appl Toxicol. 1994;14:105–109.
  • Cummings JL, Nadel A, Masterman D, et al. Efficacy of metrifonate in improving the psychiatric and behavioral disturbances of patients with Alzheimer’s disease. J Geriatr Psychiatry Neurol. 2001;14:101–108.
  • Blass JP, Cyrus PA, Bieber F, et al. Randomized, double-blind, placebo-controlled, multicenter study to evaluate the safety and tolerability of metrifonate in patients with probable Alzheimer disease. The metrifonate study group. Alzheimer Dis Assoc Disord. 2000;14:39–45.
  • Heinig R, Sachse R. The effect of food and time of administration on the pharmacokinetic and pharmacodynamic profile of metrifonate. Int J Clin Pharmacol Ther. 1999;37:456–464.
  • Pohanka M, Novotny L, Pikula J. Metrifonate alters antioxidant levels and caspase activity in cerebral cortex of wistar rats. Toxicol Mech Methods. 2011;21:585–590.
  • Kronforst-Collins MA, Moriearty PL, Ralph M, et al. Metrifonate treatment enhances acquisition of eyeblink conditioning in aging rabbits. Pharmacol Biochem Behav. 1997;56:103–110.
  • Kronforst-Collins MA, Moriearty PL, Schmidt B, et al. Metrifonate improves associative learning and retention in aging rabbits. Behav Neurosci. 1997;111:1031–1040.
  • Abdi A, Sadraie H, Dargahi L, et al. Apoptosis inhibition can be threatening in a beta-induced neuroinflammation, through promoting cell proliferation. Neurochem Res. 2011;36:39–48.
  • Mori F, Lai CC, Fusi F, et al. Cholinesterase inhibitors increase secretion of APPs in rat brain cortex. Neuroreport. 1995;6:633–636.
  • Lamb HM, Faulds D. Metrifonate. Drugs Aging Internet. 1997;11:490–496. .
  • Ansari N, Khodagholi F. Natural products as promising drug candidates for the treatment of Alzheimer’s disease: molecular mechanism aspect. Curr Neuropharmacol. 2013;11:414–429.
  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012;75:311–335.
  • Asadi S, Ahmadiani A, Esmaeili MA, et al. In vitro antioxidant activities and an investigation of neuroprotection by six Salvia species from Iran: a comparative study. Food Chem Toxicol. 2010;48:1341–1349.
  • Kuruuzum-Uz A, Suleyman H, Cadirci E, et al. Investigation on anti-inflammatory and antiulcer activities of anchusa azurea extracts and their major constituent rosmarinic acid. Z Naturforsch C. 2012;67:360–366.
  • Jimenez-Aliaga K, Bermejo-Bescos P, Benedi J, et al. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci. 2011;89:939–945.
  • Ansari MA, Abdul HM, Joshi G, et al. Protective effect of quercetin in primary neurons against Abeta(1–42): relevance to Alzheimer’s disease. J Nutr Biochem. 2009;20:269–275.
  • Li F, Gong Q, Dong H, et al. Resveratrol, a neuroprotective supplement for Alzheimer’s disease. Curr Pharm Des. 2012;18:27–33.
  • Ge J-F, Qiao J-P, Qi -C-C, et al. The binding of resveratrol to monomer and fibril amyloid beta. Neurochem Int. 2012;61:1192–1201.
  • Luo L, Huang Y. [Effect of resveratrol on the cognitive ability of Alzheimeros mice]. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2006;31:566–569.
  • Zhou F, Chen S, Xiong J, et al. Luteolin reduces zinc-induced tau phosphorylation at Ser262/356 in an ROS-dependent manner in SH-SY5Y cells. Biol Trace Elem Res. 2012;149:273–279.
  • Liu R, Meng F, Zhang L, et al. Luteolin isolated from the medicinal plant Elsholtzia rugulosa (Labiatae) prevents copper-mediated toxicity in beta-amyloid precursor protein Swedish mutation overexpressing SH-SY5Y cells. Molecules. 2011;16:2084–2096.
  • Vuddanda PR, Chakraborty S, Singh S. Berberine: a potential phytochemical with multispectrum therapeutic activities. Expert Opin Investig Drugs. 2010;19:1297–1307.
  • Wu T-Y, Chen C-P, Jinn T-R. Traditional Chinese medicines and Alzheimer’s disease. Taiwan J Obstet Gynecol Internet. 2011;50:131–135. Available from: http://www.sciencedirect.com/science/article/pii/S102845591100101X
  • Pohl F, Kong Thoo Lin P. The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: in vitro, in vivo and clinical trials. Molecules. 2018;23(12):23.
  • Shen Y-M, Chen D-Z. An explorer of chemical biology of plant natural products in Southwest China, Xiaojiang Hao. Nat Products Bioprospect. 2018;8:217–226.
  • Ivanova L, Karelson M, Dobchev DA. Identification of natural compounds against neurodegenerative diseases using in silico techniques. Molecules. 2018;23:1847.
  • Tzvetkov NT, Atanasov AG. Natural product-based multitargeted ligands for Alzheimer’s disease treatment?. Future Med Chem. 2018;10:1745–1748.
  • Shal B, Ding W, Ali H, et al. Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease. Front Pharmacol. 2018;9:548.
  • Yi L, Liu W, Wang Z, et al. Characterizing Alzheimer’s disease through metabolomics and investigating anti-Alzheimer’s disease effects of natural products. Ann N Y Acad Sci. 2017;1398:130–141.
  • Gitler AD, Dhillon P, Shorter J. Neurodegenerative disease: models, mechanisms, and a new hope. Dis Model & Mech. 2017;10(499):LP–502.
  • Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015;14:111–129.
  • Wang S, Wang D, Liu Z. Synergistic, additive and antagonistic effects of potentilla fruticosa combined with EGb761 on antioxidant capacities and the possible mechanism. Ind Crops Prod. 2015;67:227–238.
  • Skroza D, Generalić Mekinić I, Svilović S, et al. Investigation of the potential synergistic effect of resveratrol with other phenolic compounds: a case of binary phenolic mixtures. J Food Compos Anal. 2015;38:13–18.
  • Sabogal-Guaqueta AM, Munoz-Manco JI, Ramirez-Pineda JR, et al. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology. 2015;93:134–145.
  • Ma T, Tan M-S, Yu J-T, et al. Resveratrol as a therapeutic agent for Alzheimer’s disease. Biomed Res Int [Internet]. 2014/11/26. 2014;2014:350516. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25525597
  • Ahmed T, Javed S, Javed S, et al. Resveratrol and Alzheimer’s disease: mechanistic insights. Mol Neurobiol. 2017;54:2622–2635.
  • Kou X, Chen N. Resveratrol as a natural autophagy regulator for prevention and treatment of Alzheimer’s disease. Nutrients Internet. 2017;9:927. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28837083
  • Ji H-F, Shen L. Berberine: a potential multipotent natural product to combat Alzheimer’s disease. Molecules. 2011;16:6732–6740.
  • Cai Z, Wang C, Yang W. Role of berberine in Alzheimer’s disease. Neuropsychiatr Dis Treat Internet. 2016;12:2509–2520. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27757035
  • Potschka H. Targeting the brain–surmounting or bypassing the blood-brain barrier. Handb Exp Pharmacol. 2010;197:411–431.
  • Silva GA. Nanotechnology applications and approaches for neuroregeneration and drug delivery to the central nervous system. Ann N Y Acad Sci. 2010;1199:221–230.
  • Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev. 2001;47:65–81.
  • Brambilla D, Le Droumaguet B, Nicolas J, et al. Nanotechnologies for Alzheimer’s disease: diagnosis, therapy, and safety issues. Nanomedicine. 2011;7:521–540.
  • Kostarelos K, Miller AD. Synthetic, self-assembly ABCD nanoparticles; a structural paradigm for viable synthetic non-viral vectors. Chem Soc Rev Internet. 2005;34:970–994.
  • Borm PJA, Muller-Schulte D. Nanoparticles in drug delivery and environmental exposure: same size, same risks? Nanomedicine (Lond). 2006;1:235–249.
  • Xu ZP, Zeng QH, Lu GQ, et al. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci Internet. 2006;61:1027–1040. Available from: http://www.sciencedirect.com/science/article/pii/S0009250905005609
  • Foged C, Nielsen HM. Cell-penetrating peptides for drug delivery across membrane barriers. Expert Opin Drug Deliv. 2008;5:105–117.
  • Leary SP, Liu CY, Apuzzo MLJ. Toward the emergence of nanoneurosurgery: part III – nanomedicine: targeted nanotherapy, nanosurgery, and progress toward the realization of nanoneurosurgery. Neurosurgery. 2006;58:1009–1026.
  • Modi G, Pillay V, Choonara YE. Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann N Y Acad Sci. 2010;1184:154–172.
  • Jain KK. Role of nanotechnology in developing new therapies for diseases of the nervous system. Nanomedicine (Lond) England. 2006;1:9–12.
  • Silva GA. Neuroscience nanotechnology: progress, opportunities and challenges. Nat Rev Neurosci. 2006;7:65–74.
  • Nazem A, Mansoori GA. Nanotechnology solutions for Alzheimer’s disease: advances in research tools, diagnostic methods and therapeutic agents. J Alzheimers Dis. 2008;13:199–223.
  • Mortimer JA, Borenstein AR, Gosche KM, et al. Very early detection of alzheimer neuropathology and the role of brain reserve in modifying its clinical expression. J Geriatr Psychiatry Neurol Internet. 2005;18:218–223. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1405917/
  • Nestor PJ, Scheltens P, Hodges JR. Advances in the early detection of Alzheimer’s disease. Nat Med. 2004;10(Suppl):S34–41.
  • Teunissen CE, de Vente J, Steinbusch HWM, et al. Biochemical markers related to Alzheimer’s dementia in serum and cerebrospinal fluid. Neurobiol Aging. 2002;23:485–508.
  • Nazem A, Mansoori GA. Nanotechnology for Alzheimer’s disease detection and treatment. Insciences. 2011;1:169–193.
  • Ikeda K, Okada T, Sawada S-I, et al. Inhibition of the formation of amyloid beta-protein fibrils using biocompatible nanogels as artificial chaperones. FEBS Lett. 2006;580:6587–6595.
  • Boridy S, Takahashi H, Akiyoshi K, et al. The binding of pullulan modified cholesteryl nanogels to Abeta oligomers and their suppression of cytotoxicity. Biomaterials Internet. 2009;30:5583–5591. Available from: http://europepmc.org/abstract/MED/19577802
  • Dugan LL, Lovett EG, Quick KL, et al. Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat Disord. 2001;7:243–246.
  • Jain KK. The role of nanobiotechnology in drug discovery. Drug Discov Today. 2005;10:1435–1442.
  • Podolski IY, Podlubnaya ZA, Kosenko EA, et al. Effects of hydrated forms of C60 fullerene on amyloid 1-peptide fibrillization in vitro and performance of the cognitive task. J Nanosci Nanotechnol. 2007;7:1479–1485.
  • Dugan LL, Gabrielsen JK, Yu SP, et al. Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol Dis. 1996;3:129–135.
  • Nikakhtar A, Nasehzadeh A, Mansoori GA. Formation and stability conditions of DNA-dendrimer nano-clusters. J Comput Theor Nanosci. 2007;4:521–528.
  • Klajnert B, Cortijo-Arellano M, Cladera J, et al. Influence of dendrimer’s structure on its activity against amyloid fibril formation. Biochem Biophys Res Commun. 2006;345:21–28.
  • Kogan MJ, Bastus NG, Amigo R, et al. Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Lett. 2006;6:110–115.
  • Rawat M, Singh D, Saraf PS. Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull. 2006;29:1790–1798.
  • Wang J, Valmikinathan CM, Yu X. Nanostructures for bypassing blood brain barrier [Internet]. Curr Bioact Compd. 2009;5(3):195–205. Available from: http://www.eurekaselect.com/node/69894/article
  • Blasi P, Giovagnoli S, Schoubben A, et al. Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev. 2007;59:454–477.
  • Bush AI. Drug development based on the metals hypothesis of Alzheimer’s disease. J Alzheimers Dis. 2008;15:223–240.
  • Curtain CC, Ali F, Volitakis I, et al. Alzheimer’s disease amyloid-beta binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J Biol Chem. 2001;276:20466–20473.
  • Goncalves AS, Costa FTC, Caetano MS, et al. Reactivation steps by 2-PAM of tabun-inhibited human acetylcholinesterase: reducing the computational cost in hybrid QM/MM methods. J Biom Struct& Dyn. 2014;32:301–307.
  • Ramalho TC, de Castro AA, Tavares TS, et al. Insights into the pharmaceuticals and mechanisms of neurological orphan diseases: current status and future expectations. Prog Neurobiol. 2018;169:135–157.
  • De O Freitas LB, Borgati TF, De Freitas RP, et al. Synthesis and antiproliferative activity of 8-hydroxyquinoline derivatives containing a 1,2,3-triazole moiety. Eur J Med Chem. 2014;84:595–604.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.