128
Views
5
CrossRef citations to date
0
Altmetric
Review

Hereditary spastic paraplegias: time for an objective case definition and a new nosology for neurogenetic disorders to facilitate biomarker/therapeutic studies

, , &
Pages 409-415 | Received 04 Feb 2019, Accepted 15 Apr 2019, Published online: 30 Apr 2019

References

  • Harding AE. Classification of the hereditary ataxias and paraplegias. Lancet. 1983;1(8334):1151–1155.
  • Vanderver A, Tonduti D, Schiffmann R, et al. Leukodystrophy overview. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 2014 Feb 6. p. 1993–2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK184570/
  • Bird TD. Hereditary Ataxia overview. In: Adam MP, Ardinger HH, Pagon RA, et al. editors. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 1998 Oct 28. p. 1993–2018. [Updated 2018 Sep 27]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1138/
  • Fink JK, Heiman-Patterson T, Bird T, et al. Hereditary spastic paraplegia: advances in genetic research. hereditary spastic paraplegia working group. Neurology. 1996;46(6):1507–1514.
  • Fink JK, Hedera P. Hereditary spastic paraplegia: genetic heterogeneity and genotype-phenotype correlation. Semin Neurol. 1999;19(3):301–309.
  • Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291:1304–1351.
  • Stein LD. Human genome: end of the beginning. Nature. 2004;431(7011):915–916.
  • Fink JK. Advances in the hereditary spastic paraplegias. Exp Neurol. 2003;184(Suppl 1):S106–10.
  • Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:387–402.
  • Metzker ML. Sequencing technologies – the next generation. Nat Rev Genet. 2010;11(1):31–46.
  • Tesson C, Koht J, Stevanin G. Delving into the complexity of hereditary spastic paraplegias: how unexpected phenotypes and inheritance modes are revolutionizing their nosology. Hum Genet. 2015;134:511-538.
  • Synofzik M, Gonzalez MA, Lourenco CM, et al. PNPLA6 mutations cause boucher-neuhäuser and gordon holmes syndromes as part of a broad neurodegenerative spectrum. Brain. 2014;137(1):69–77.
  • Stevanin G, Santorelli FM, Azzedine H, et al. Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nat Genet. 2007;39(3):366–372.
  • Montecchiani C, Pedace L, Lo Giudice T, et al. ALS5/SPG11/KIAA1840 mutations cause autosomal recessive axonal charcot-marie-tooth disease. Brain. 2016;139(Pt 1):73–85.
  • Orlacchio A, Babalini C, Borreca A, et al. SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis. Brain. 2010;133(Pt 2):591–598.
  • Tunca C, Akçimen F, Coşkun C, et al. ERLIN1 mutations cause teenage-onset slowly progressive ALS in a large Turkish pedigree. Eur J Hum Genet. 2018;26(5):745–748.
  • Novarino G, Fenstermaker AG, Zaki MS, et al. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science. 2014;343(6170):506–511.
  • Rydning SL, Dudesek A, Rimmele F, et al. A novel heterozygous variant in ERLIN2 causes autosomal dominant pure hereditary spastic paraplegia. Eur J Neurol. 2018;25(7):943–e71.
  • Al-Saif A, Bohlega S, Al-Mohanna F. Loss of ERLIN2 function leads to juvenile primary lateral sclerosis. Ann Neurol. 2012;72(4):510–516.
  • Eymard-Pierre E, Lesca G, Dollet S, et al. Infantile-onset ascending hereditary spastic paralysis is associated with mutations in the alsin gene. Am J Hum Genet. 2002;71(3):518–527.
  • Hansen JJ, Dürr A, Cournu-Rebeix I, et al. Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet. 2002;70(5):1328–1332.
  • Magen D, Georgopoulos C, Bross P, et al. Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am J Hum Genet. 2008;83(1):30–42.
  • Edvardson S, Hama H, Shaag A, et al. Mutations in the fatty acid 2-hydroxylase gene are associated with leukodystrophy with spastic paraparesis and dystonia. Am J Hum Genet. 2008;83(5):643–648.
  • Dick KJ, Eckhardt M, Paisán-Ruiz C, et al. Mutation of FA2H underlies a complicated form of hereditary spastic paraplegia (SPG35). Hum Mutat. 2010;31(4):E1251–60.
  • Kruer MC, Paisán-Ruiz C, Boddaert N, et al. Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Ann Neurol. 2010;68(5):611–618.
  • Klebe S, Depienne C, Gerber S, et al. Spastic paraplegia gene 7 in patients with spasticity and/or optic neuropathy. Brain. 2012;135:2980–2993.
  • Verny C, Guegen N, Desquiret V, et al. Hereditary spastic paraplegia-like disorder due to a mitochondrial ATP6 gene point mutation. Mitochondrion. 2011;11(1):70–75.
  • Rahman S, Blok RB, Dahl HH, et al. Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol. 1996;39(3):343–351.
  • Lamminen T, Majander A, Juvonen V, et al. A mitochondrial mutation at nt 9101 in the ATP synthase 6 gene associated with deficient oxidative phosphorylation in a family with Leber hereditary optic neuroretinopathy. Am J Hum Genet. 1995;56(5):1238–1240.
  • Holt IJ, Harding AE, Petty RK, et al. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am J Hum Genet. 1990;46(3):428–433.
  • Tiranti V, Corona P, Greco M, et al. A novel frameshift mutation of the mtDNA COIII gene leads to impaired assembly of cytochrome c oxidase in a patient affected by Leigh-like syndrome. Hum Mol Genet. 2000;9(18):2733–2742.
  • Silver JR. Familial spastic paraplegia with amyotrophy of the hands. J Neurol Neurosurg Psychiatry. 1966;29(2):135–144.
  • Patel H, Hart PE, Warner TT, et al. The silver syndrome variant of hereditary spastic paraplegia maps to chromosome 11q12-q14, with evidence for genetic heterogeneity within this subtype. Am J Hum Genet. 2001;69(1):209–215.
  • Windpassinger C, Wagner K, Petek E, et al. Refinement of the silver syndrome locus on chromosome 11q12-q14 in four families and exclusion of eight candidate genes. Hum Genet. 2003;114(1):99–109.
  • Windpassinger C, Auer-Grumbach M, Irobi J, et al. Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and silver syndrome. Nat Genet. 2004;36(3):271–276.
  • Auer-Grumbach M, Schlotter-Weigel B, Lochmüller H, et al. Phenotypes of the N88S berardinelli-seip congenital lipodystrophy 2 mutation. Ann Neurol. 2005;57(3):415–424.
  • Van de Warrenburg BPC, Scheffer H, van Eijk JJJ, et al. BSCL2 mutations in two Dutch families with overlapping silver syndrome-distal hereditary motor neuropathy. Neuromuscul Disord. 2006;16(2):122–125.
  • Guillén-Navarro E, Sánchez-Iglesias S, Domingo-Jiménez R, et al. A new seipin-associated neurodegenerative syndrome. J Med Genet. 2013;50(6):401–409.
  • Coutelier M, Goizet C, Durr A, et al. Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia. Brain. 2015;138(Pt8):2191–2205.
  • Panza E, Escamilla-Honrubia JM, Marco-Marin C, et al. ALDH18A1 gene mutations cause dominant spastic paraplegia SPG9: loss of function effect and plausibility of a dominant negative mechanism. Brain. 2016;139(Pt1):e3.
  • Haraguchi Y, Aparicio JM, Takiguchi M, et al. Molecular basis of argininemia. Identification of two discrete frame-shift deletions in the liver-type arginase gene. J Clin Invest. 1990;86(1):347–350.
  • Grody WW, Klein D, Dodson AE, et al. Molecular genetic study of human arginase deficiency. Am J Hum Genet. 1992;50(6):1281–1290.
  • Martin E, Schüle R, Smets K, et al. Loss of function of glucocerebrosidase GBA2 is responsible for motor neuron defects in hereditary spastic paraplegia. Am J Hum Genet. 2013;92(2):238–244.
  • Seri M, Cusano R, Forabosco P, et al. Genetic mapping to 10q23.3-q24.2, in a large Italian pedigree, of a new syndrome showing bilateral cataracts, gastroesophageal reflux, and spastic paraparesis with amyotrophy. Am J Hum Genet. 1999;64(2):586–593.
  • Koh K, Ishiura H, Beppu M, et al. Novel mutations in the ALDH18A1 gene in complicated hereditary spastic paraplegia with cerebellar ataxia and cognitive impairment. J Hum Genet. 2018;63(9):1009.
  • Casari G, De Fusco M, Ciarmatori S, et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell. 1998;93(6):973–983.
  • Caballero Oteyza A1, Battaloğlu E1, Ocek L, et al. Motor protein mutations cause a new form of hereditary spastic paraplegia. Neurology. 2014;82:2007–2016.
  • Esteves T, Durr A, Mundwiller E, et al. Loss of association of REEP2 with membranes leads to hereditary spastic paraplegia. Am J Hum Genet. 2014;94(2):268–277.
  • Hammer MB, Eleuch-Fayache G, Schottlaender LV, et al. Mutations in GBA2 cause autosomal-recessive cerebellar ataxia with spasticity. Am J Hum Genet. 2013;92(2):245–251.
  • Vallat J-M, Goizet C, Magy L, et al. Too many numbers and complexity: time to update the classifications of neurogenetic disorders? J Med Genet. 2016;53(10):647–650.
  • Boutry M, Morais S, Stevanin G. Update on the genetics of spastic paraplegias. Curr Neurol Neurosci Rep. 2019;19:18.
  • Denton K, Mou Y, Xu -C-C, et al. Impaired mitochondrial dynamics underlie axonal defects in hereditary spastic paraplegias. Hum Mol Genet. 2018;27(14):2517–2530.
  • Zhu PP, Denton KR, Pierson TM, et al. Pharmacologic rescue of axon growth defects in a human iPSC model of hereditary spastic paraplegia SPG3A. Hum Mol Genet. 2014;23:5638–5648.
  • Trotta N, Orso G, Rossetto MG, et al. The hereditary spastic paraplegia gene, spastin, regulates microtubule stability to modulate synaptic structure and function. Curr Biol. 2004;14(13):1135–1147.
  • Orso G, Martinuzzi A, Rossetto MG, et al. Disease-related phenotypes in a Drosophila model of hereditary spastic paraplegia are ameliorated by treatment with vinblastine. J Clin Invest. 2005;115(11):3026–3034.
  • Havlicek S, Kohl Z, Mishra HK, et al. Gene dosage-dependent rescue of HSP neurite defects in SPG4 patients’ neurons. Hum Mol Genet. 2014;23(10):2527–2541.
  • Pirozzi M, Quattrini A, Andolfi G, et al. Intramuscular viral delivery of paraplegin rescues peripheral axonopathy in a model of hereditary spastic paraplegia. J Clin Invest. 2006;116(1):202–208.
  • Schuurs-Hoeijmakers JHM, Geraghty MT, Kamsteeg E-J, et al. Mutations in DDHD2, encoding an intracellular phospholipase A1, cause a recessive form of complex hereditary spastic paraplegia. Am J Hum Genet. 2012;91(6):1073–1081.
  • Schöls L, Rattay TW, Martus P, et al. Hereditary spastic paraplegia type 5: natural history, biomarkers and a randomized controlled trial. Brain. 2017;140(12):3112–3127.
  • Marelli C, Lamari F, Rainteau D, et al. Plasma oxysterols: biomarkers for diagnosis and treatment in spastic paraplegia type 5. Brain. 2018;141(1):72–84.
  • Boutry M, Branchu J, Lustrement C, et al. Inhibition of lysosome membrane recycling causes accumulation of gangliosides that contribute to neurodegeneration. Cell Rep. 2018;23:3813–3826.
  • Bellofatto M, De Michele G, Iovino A, et al. Management of hereditary spastic paraplegia: a systematic review of the literature. Front Neurol. 2019;22:10.
  • Garcia-Cazorla À, Mochel F, Lamari F, et al. The clinical spectrum of inherited diseases involved in the synthesis and remodeling of complex lipids. A tentative overview. J Inherit Metab Dis. 2015;38(1):19–40.
  • Vanderver A, Prust M, Tonduti D, et al. Case definition and classification of leukodystrophies and leukoencephalopathies. Mol Genet Metab. 2015;114(4):494–500.
  • Durand CM, Dhers L, Tesson C, et al. CYP2U1 activity is altered by missense mutations in hereditary spastic paraplegia 56. Hum Mut; 2018;39:140–151.
  • Martignoni M, Riano E, Rugarli EI. The role of ZFYVE27/protrudin in hereditary spastic paraplegia. Am J Hum Genet. 2008;83(1): 127–128. author reply 128–130.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.