259
Views
7
CrossRef citations to date
0
Altmetric
Review

Potential effects of nicotine on glioblastoma and chemoradiotherapy: a review

, &
Pages 545-555 | Received 12 Jan 2019, Accepted 08 May 2019, Published online: 17 May 2019

References

  • Stupp R, Taillibert S, Kanner A, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 2017;318:2306–2316.
  • Stupp R, Mason WP, van Den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–996.
  • Silvera SAN, Miller AB, Rohan TE. Cigarette smoking and risk of glioma: a prospective cohort study. Int J Cancer. 2006;118:1848–1851.
  • Efird JT, Friedman GD, Sidney S, et al. The risk for malignant primary adult-onset glioma in a large, multiethnic, managed-care cohort: cigarette smoking and other lifestyle behaviors. J Neurooncol. 2004;68:57–69.
  • Holick CN, Giovannucci EL, Rosner B, et al. Prospective study of cigarette smoking and adult glioma: dosage, duration, and latency. Neuro-Oncol. 2007;9:326–334.
  • Lachance DH, Yang P, Johnson DR, et al. Associations of high-grade glioma with glioma risk alleles and histories of allergy and smoking. Am J Epidemiol. 2011;174:574–581.
  • Vida S, Richardson L, Cardis E, et al. Brain tumours and cigarette smoking: analysis of the INTERPHONE Canada case-control study. Environ Health Glob Access Sci Source. 2014;13:55.
  • Li H-X, Peng -X-X, Zong Q, et al. Cigarette smoking and risk of adult glioma: a meta-analysis of 24 observational studies involving more than 2.3 million individuals. OncoTargets Ther. 2016;9:3511–3523.
  • Hochberg F, Toniolo P, Cole P, et al. Nonoccupational risk indicators of glioblastoma in adults. J Neurooncol. 1990;8:55–60.
  • Hou L, Jiang J, Liu B, et al. Smoking and adult glioma: a population-based case-control study in China. Neuro-Oncol. 2016;18:105–113.
  • Gritz ER, Dresler C, Sarna L. Smoking, the missing drug interaction in clinical trials: ignoring the obvious. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2005;14:2287–2293.
  • Gregorio DI, Hollenbeck M, Samociuk H. Who’s assessing tobacco use in cancer clinical trials? Nicotine Tob Res Off J Soc Res Nicotine Tob. 2009;11:1354–1358.
  • Cataldo JK, Dubey S, Prochaska JJ. Smoking cessation: an integral part of lung cancer treatment. Oncology. 2010;78:289–301.
  • Florou AN, Gkiozos ICH, Tsagouli SK, et al. Clinical significance of smoking cessation in subjects with cancer: a 30-year review. Respir Care. 2014;59:1924–1936.
  • Mishra A, Chaturvedi P, Datta S, et al. Harmful effects of nicotine. Indian J Med Paediatr Oncol Off J Indian Soc Med Paediatr Oncol. 2015;36:24–31.
  • Sanner T, Grimsrud TK. Nicotine: carcinogenicity and effects on response to cancer treatment–a review. Front Oncol. 2015;5:196.
  • Shenker RF, McTyre ER, Ruiz J, et al. The effects of smoking status and smoking history on patients with brain metastases from lung cancer. Cancer Med. 2017;6:944–952.
  • Burke L, Miller L-A, Saad A, et al. Smoking behaviors among cancer survivors: an observational clinical study. J Oncol Pract. 2009;5:6–9.
  • Tseng T-S, Lin H-Y, Moody-Thomas S, et al. Who tended to continue smoking after cancer diagnosis: the national health and nutrition examination survey 1999–2008. BMC Public Health. 2012;12:784.
  • Mutlu H, Akca Z, Erden A, et al. Lack of sunlight exposure influence on primary glioblastoma survival. Asian Pac J Cancer Prev APJCP. 2014;15:4165–4168.
  • Seliger C, Ricci C, Meier CR, et al. Diabetes, use of antidiabetic drugs, and the risk of glioma. Neuro-Oncol. 2016;18:340–349.
  • Lim G, Ho C, Roldan Urgoti G, et al. Risk of venous thromboembolism in glioblastoma patients. Cureus. 2018;10:e2678.
  • Berger MR, Zeller WJ. Interaction of nicotine with anticancer treatment. Klin Wochenschr. 1988;66(Suppl 11):127–133.
  • Petros WP, Younis IR, Ford JN, et al. Effects of tobacco smoking and nicotine on cancer treatment. Pharmacotherapy. 2012;32:920–931.
  • Dasgupta P, Rizwani W, Pillai S, et al. Nicotine induces cell proliferation, invasion and epithelial-mesenchymal transition in a variety of human cancer cell lines. Int J Cancer. 2009;124:36–45.
  • Dinicola S, Morini V, Coluccia P, et al. Nicotine increases survival in human colon cancer cells treated with chemotherapeutic drugs. Toxicol Vitro Int J Publ Assoc BIBRA. 2013;27:2256–2263.
  • Kyte SL, Gewirtz DA. The influence of nicotine on lung tumor growth, cancer chemotherapy, and chemotherapy-induced peripheral neuropathy. J Pharmacol Exp Ther. 2018;366:303–313.
  • Khalil AA, Jameson MJ, Broaddus WC, et al. Nicotine enhances proliferation, migration, and radioresistance of human malignant glioma cells through EGFR activation. Brain Tumor Pathol. 2013;30:73–83.
  • Scripture CD, Figg WD. Drug interactions in cancer therapy. Nat Rev Cancer. 2006;6:546–558.
  • Warren GW, Romano MA, Kudrimoti MR, et al. Nicotinic modulation of therapeutic response in vitro and in vivo. Int J Cancer. 2012;131:2519–2527.
  • Czyżykowski R, Połowinczak-Przybyłek J, Potemski P. Nicotine-induced resistance of non-small cell lung cancer to treatment–possible mechanisms. Postepy Hig Med Doswiadczalnej Online. 2016;70:186–193.
  • Anderson FA, Glioma Outcomes Project Advisory Board. The glioma outcomes project: a resource for measuring and improving glioma outcomes. Neurosurg Focus. 1998;4:e8.
  • Chang SM, Parney IF, Huang W, et al. Patterns of care for adults with newly diagnosed malignant glioma. JAMA. 2005;293:557–564.
  • Tang-Aroonsin S. Glioma of the central nervous system: factors affecting the outcome. J Med Assoc Thail Chotmaihet Thangphaet. 2001;84:417–421.
  • Paravati AJ, Heron DE, Landsittel D, et al. Radiotherapy and temozolomide for newly diagnosed glioblastoma and anaplastic astrocytoma: validation of radiation therapy oncology group-recursive partitioning analysis in the IMRT and temozolomide era. J Neurooncol. 2011;104:339–349.
  • Zhang J, Kamdar O, Le W, et al. Nicotine induces resistance to chemotherapy by modulating mitochondrial signaling in lung cancer. Am J Respir Cell Mol Biol. 2009;40:135–146.
  • Grando SA. Connections of nicotine to cancer. Nat Rev Cancer. 2014;14:419.
  • Yuge K, Kikuchi E, Hagiwara M, et al. Nicotine induces tumor growth and chemoresistance through activation of the PI3K/Akt/mTOR pathway in bladder cancer. Mol Cancer Ther. 2015;14:2112.
  • Chernyavsky AI, Shchepotin IB, Galitovkiy V, et al. Mechanisms of tumor-promoting activities of nicotine in lung cancer: synergistic effects of cell membrane and mitochondrial nicotinic acetylcholine receptors. BMC Cancer [Internet]. 2015 [cited 2019 Mar 21];15. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369089/
  • PubMed – NCBI [Internet]. Mechanisms for nicotine in the development and progression of gastrointestinal cancers. [cited 2019 Mar 21]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22701817
  • Warren GW, Rangnekar V, McGarry R, et al. Pathways of resistance: potential effects of nicotine on cancer and treatment response. Int J Radiat Oncol Biol Phys. 2008;72:S715.
  • Yamamura M, Amano Y, Sakagami H, et al. Calcium mobilization during nicotine-induced cell death in human glioma and glioblastoma cell lines. Anticancer Res. 1998;18:2499–2502.
  • Rodriguez-Gaztelumendi A, Alvehus M, Andersson T, et al. Comparison of the effects of nicotine upon the transcellular electrical resistance and sucrose permeability of human ECV304/rat C6 co-cultures and human CaCo₂ cells. Toxicol Lett. 2011;207:1–6.
  • Barik J, Wonnacott S. Molecular and cellular mechanisms of action of nicotine in the CNS. In: Henningfield JE, London ED, Pogun S, editors. Nicotine psychopharmacol [ Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. p. 173–207.
  • Pennell NA, Lynch TJ. Combined inhibition of the VEGFR and EGFR signaling pathways in the treatment of NSCLC. The Oncologist. 2009;14:399–411.
  • Nava-Salazar S, Gómez-Manzo S, Marcial-Quino J, et al. Effect of nicotine on CYP2B1 expression in a glioma animal model and analysis of CYP2B6 expression in pediatric gliomas. Int J Mol Sci 2018; 19:1790.
  • Singh S, Pillai S, Chellappan S. Nicotinic acetylcholine receptor signaling in tumor growth and metastasis. J Oncol. 2011;2011:456743.
  • Nakada M, Okada Y, Yamashita J. The role of matrix metalloproteinases in glioma invasion. Front Biosci J Virtual Libr. 2003;8:e261–269.
  • Dom AM, Buckley AW, Brown KC, et al. The α7-nicotinic acetylcholine receptor and MMP-2/-9 pathway mediate the proangiogenic effect of nicotine in human retinal endothelial cells. Invest Ophthalmol Vis Sci. 2011;52:4428–4438.
  • Xue Q, Cao L, Chen X-Y, et al. High expression of MMP9 in glioma affects cell proliferation and is associated with patient survival rates. Oncol Lett. 2017;13:1325–1330.
  • Yu W-F, Guan -Z-Z, Bogdanovic N, et al. High selective expression of alpha7 nicotinic receptors on astrocytes in the brains of patients with sporadic Alzheimer’s disease and patients carrying Swedish APP 670/671 mutation: a possible association with neuritic plaques. Exp Neurol. 2005;192:215–225.
  • Yang T, Xiao T, Sun Q, et al. The current agonists and positive allosteric modulators of α7 nAChR for CNS indications in clinical trials. Acta Pharm Sin B. 2017;7:611–622.
  • Toll L, Jimenez L, Waleh N, et al. {Beta}2-adrenergic receptor agonists inhibit the proliferation of 1321N1 astrocytoma cells. J Pharmacol Exp Ther. 2011;336:524–532.
  • He -J-J, Zhang W-H, Liu S-L, et al. Activation of β-adrenergic receptor promotes cellular proliferation in human glioblastoma. Oncol Lett. 2017;14:3846–3852.
  • Schaal C, Chellappan SP. Nicotine-mediated cell proliferation and tumor progression in smoking-related cancers. Mol Cancer Res MCR. 2014;12:14–23.
  • Wang W, Liu F, Wang C, et al. Glutathione S-transferase A1 mediates nicotine-induced lung cancer cell metastasis by promoting epithelial-mesenchymal transition. Exp Ther Med. 2017;14:1783–1788.
  • Zhang Y, Zeng A, Liu S, et al. Genome-wide identification of epithelial-mesenchymal transition-associated microRNAs reveals novel targets for glioblastoma therapy. Oncol Lett. 2018;15:7625–7630.
  • Hirata N, Sekino Y, Kanda Y. Nicotine increases cancer stem cell population in MCF-7 cells. Biochem Biophys Res Commun. 2010;403:138–143.
  • Schaal CM, Bora-Singhal N, Kumar DM, et al. Regulation of Sox2 and stemness by nicotine and electronic-cigarettes in non-small cell lung cancer. Mol Cancer. 2018;17:149.
  • Türker Şener L, Güven C, Şener A, et al. Nicotine reduces effectiveness of doxorubicin chemotherapy and promotes CD44+CD24- cancer stem cells in MCF-7 cell populations. Exp Ther Med. 2018;16:21–28.
  • Sakariassen PØ, Immervoll H, Chekenya M. Cancer stem cells as mediators of treatment resistance in brain tumors: status and controversies. Neoplasia N Y N. 2007;9:882–892.
  • Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–760.
  • Chen J, Li Y, Yu T-S, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488:522–526.
  • Lathia JD, Mack SC, Mulkearns-Hubert EE, et al. Cancer stem cells in glioblastoma. Genes Dev. 2015;29:1203–1217.
  • Kohutek ZA, diPierro CG, Redpath GT, et al. ADAM-10-mediated N-cadherin cleavage is protein Kinase C-α–dependent and promotes glioblastoma cell migration. J Neurosci Off J Soc Neurosci. 2009;29:4605–4615.
  • Phillips E, Lang V, Bohlen J, et al. Targeting atypical protein kinase C iota reduces viability in glioblastoma stem-like cells via a notch signaling mechanism. Int J Cancer. 2016;139:1776–1787.
  • Guha P, Bandyopadhyaya G, Polumuri SK, et al. Nicotine promotes apoptosis resistance of breast cancer cells and enrichment of side population cells with cancer stem cell-like properties via a signaling cascade involving galectin-3, α9 nicotinic acetylcholine receptor and STAT3. Breast Cancer Res Treat. 2014;145:5–22.
  • Stechishin OD, Luchman HA, Ruan Y, et al. On-target JAK2/STAT3 inhibition slows disease progression in orthotopic xenografts of human glioblastoma brain tumor stem cells. Neuro-Oncol. 2013;15:198–207.
  • Brahimi-Horn MC, Pouysségur J. HIF at a glance. J Cell Sci. 2009;122:1055–1057.
  • Lee J, Cooke JP. Nicotine and pathological angiogenesis. Life Sci. 2012;91:1058–1064.
  • Guo L, Li L, Wang W, et al. Mitochondrial reactive oxygen species mediates nicotine-induced hypoxia-inducible factor-1α expression in human non-small cell lung cancer cells. Biochim Biophys Acta. 2012;1822:852–861.
  • Monteiro AR, Hill R, Pilkington GJ, et al. The role of hypoxia in glioblastoma invasion. Cells. 2017; 6:45.
  • Minchenko OH, Tsymbal DO, Minchenko DO, et al. Hypoxic regulation of the expression of cell proliferation related genes in U87 glioma cells upon inhibition of IRE1 signaling enzyme. Ukr Biochem J. 2016;88:11–21.
  • Kaur B, Khwaja FW, Severson EA, et al. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-Oncol. 2005;7:134–153.
  • Gabriely G, Wheeler MA, Takenaka MC, et al. Role of AHR and HIF-1α in glioblastoma metabolism. Trends Endocrinol Metab TEM. 2017;28:428–436.
  • Ogu CC, Maxa JL. Drug interactions due to cytochrome P450. Proc Bayl Univ Med Cent. 2000;13:421–423.
  • Howard LA, Miksys S, Hoffmann E, et al. Brain CYP2E1 is induced by nicotine and ethanol in rat and is higher in smokers and alcoholics. Br J Pharmacol. 2003;138:1376–1386.
  • Pal D, Kwatra D, Minocha M, et al. Efflux transporters- and cytochrome P-450-mediated interactions between drugs of abuse and antiretrovirals. Life Sci. 2011;88:959–971.
  • Baker SD, Wirth M, Statkevich P, et al. Absorption, metabolism, and excretion of 14C-temozolomide following oral administration to patients with advanced cancer. Clin Cancer Res. 1999;5:309–317.
  • Jen JF, Cutler DL, Pai SM, et al. Population pharmacokinetics of temozolomide in cancer patients. Pharm Res. 2000;17:1284–1289.
  • Li H, Shi Q. Drugs and diseases interacting with cigarette smoking in US prescription drug labelling. Clin Pharmacokinet. 2015;54:493–501.
  • Drugs–DrugBank [Internet]. [cited 2018 Dec 11]. Available from: https://www.drugbank.ca/drugs
  • Carmustine [Internet]. [cited 2018 Dec 11]. Available from: https://livertox.nih.gov/Carmustine.htm
  • Breedveld P, Zelcer N, Pluim D, et al. Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: potential role for breast cancer resistance protein in clinical drug-drug interactions. Cancer Res. 2004;64:5804–5811.
  • Lee SY. Temozolomide resistance in glioblastoma multiforme. Genes Dis. 2016;3:198–210.
  • Haas B, Klinger V, Keksel C, et al. Inhibition of the PI3K but not the MEK/ERK pathway sensitizes human glioma cells to alkylating drugs. Cancer Cell Int. 2018;18:69.
  • Pearson JRD, Regad T. Targeting cellular pathways in glioblastoma multiforme. Signal Transduct Target Ther. 2017;2:17040.
  • Li Y, Papke RL, He YJ, et al. Characterization of the neuroprotective and toxic effects of alpha7 nicotinic receptor activation in PC12 cells. Brain Res. 1999;830:218–225.
  • Guan -Z-Z, Yu W-F, Nordberg A. Dual effects of nicotine on oxidative stress and neuroprotection in PC12 cells. Neurochem Int. 2003;43:243–249.
  • Chen C-S, Lee -S-S, Yu H-C, et al. Effects of nicotine on cell growth, migration, and production of inflammatory cytokines and reactive oxygen species by cementoblasts. J Dent Sci. 2015;10:154–160.
  • Salazar-Ramiro A, Ramírez-Ortega D, Pérez de la Cruz V, et al. Role of redox status in development of glioblastoma. Front Immunol. 2016;7:156.
  • Liou G-Y, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010;44:479–496.
  • Shi J, Sun B, Shi W, et al. Decreasing GSH and increasing ROS in chemosensitivity gliomas with IDH1 mutation. Tumor Biol. 2015;36:655–662.
  • Dong F, Eibach M, Bartsch JW, et al. The metalloprotease-disintegrin ADAM8 contributes to temozolomide chemoresistance and enhanced invasiveness of human glioblastoma cells. Neuro-Oncol. 2015;17:1474–1485.
  • Li Q, Chen B, Cai J, et al. Comparative analysis of matrix metalloproteinase family members reveals that MMP9 predicts survival and response to temozolomide in patients with primary glioblastoma. PLoS One. 2016;11:e0151815.
  • Suzuki Y, Fujioka K, Ikeda K, et al. Temozolomide does not influence the transcription or activity of matrix metalloproteinases 9 and 2 in glioma cell lines. J Clin Neurosci Off J Neurosurg Soc Australas. 2017;41:144–149.
  • Armand J-P, Ribrag V, Harrousseau J-L, et al. Reappraisal of the use of procarbazine in the treatment of lymphomas and brain tumors. Ther Clin Risk Manag. 2007;3:213–224.
  • Kambayashi S, Minami K, Ogawa Y, et al. Expression of O(6)-methylguanine-DNA methyltransferase causes lomustine resistance in canine lymphoma cells. Can J Vet Res Rev Can Rech Veterinaire. 2015;79:201–209.
  • Christmann M, Kaina B. (O6)-methylguanine-DNA methyltransferase (MGMT): impact on cancer risk in response to tobacco smoke. Mutat Res. 2012;736:64–74.
  • Nagane M, Asai A, Shibui S, et al. Expression pattern of chemoresistance-related genes in human malignant brain tumors: a working knowledge for proper selection of anticancer drugs. Jpn J Clin Oncol. 1999;29:527–534.
  • Borst P, Evers R, Kool M, et al. A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst. 2000;92:1295–1302.
  • Régina A, Demeule M, Laplante A, et al. Multidrug resistance in brain tumors: roles of the blood-brain barrier. Cancer Metastasis Rev. 2001;20:13–25.
  • Genovese I, Ilari A, Assaraf YG, et al. Not only P-glycoprotein: amplification of the ABCB1-containing chromosome region 7q21 confers multidrug resistance upon cancer cells by coordinated overexpression of an assortment of resistance-related proteins. Drug Resist Updat Rev Comment Antimicrob Anticancer Chemother. 2017;32:23–46.
  • Zeng H, Chen ZS, Belinsky MG, et al. Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: effect of polyglutamylation on MTX transport. Cancer Res. 2001;61:7225–7232.
  • Tsuruo T, Iida H, Tsukagoshi S, et al. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 1981;41:1967–1972.
  • Joy A, Panicker S, Shapiro JR. Altered nuclear localization of bax protein in BCNU-resistant glioma cells. J Neurooncol. 2000;49:117–129.
  • Del Bufalo D, Trisciuoglio D, Biroccio A, et al. Bcl-2 overexpression decreases BCNU sensitivity of a human glioblastoma line through enhancement of catalase activity. J Cell Biochem. 2001;83:473–483.
  • Nishioka T, Luo L-Y, Shen L, et al. Nicotine increases the resistance of lung cancer cells to cisplatin through enhancing Bcl-2 stability. Br J Cancer. 2014;110:1785–1792.
  • Bacolod MD, Johnson SP, Ali-Osman F, et al. Mechanisms of resistance to 1,3-bis(2-chloroethyl)-1-nitrosourea in human medulloblastoma and rhabdomyosarcoma. Mol Cancer Ther. 2002;1:727–736.
  • Ali-Osman F, Stein DE, Renwick A. Glutathione content and glutathione-S-transferase expression in 1,3-bis(2-chloroethyl)-1-nitrosourea-resistant human malignant astrocytoma cell lines. Cancer Res. 1990;50:6976–6980.
  • Chen HHW, Kuo MT. Role of glutathione in the regulation of Cisplatin resistance in cancer chemotherapy. Met Based Drugs. 2010;2010.
  • Moscow JA. Methotrexate transport and resistance. Leuk Lymphoma. 1998;30:215–224.
  • Jansen G, Pieters R. The role of impaired transport in (pre)clinical resistance to methotrexate: insights on new antifolates. Drug Resist Updat Rev Comment Antimicrob Anticancer Chemother. 1998;1:211–218.
  • Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: an overview. Cancers. 2014;6:1769–1792.
  • Banerjee D, Mayer-Kuckuk P, Capiaux G, et al. Novel aspects of resistance to drugs targeted to dihydrofolate reductase and thymidylate synthase. Biochim Biophys Acta. 2002;1587:164–173.
  • Sarkaria JN, Kitange GJ, James CD, et al. Mechanisms of chemoresistance in malignant glioma. Clin Cancer Res Off J Am Assoc Cancer Res. 2008;14:2900–2908.
  • Kool M, van der Linden M, de Haas M, et al. MRP3, an organic anion transporter able to transport anti-cancer drugs. Proc Natl Acad Sci U S A. 1999;96:6914–6919.
  • Donnenberg VS, Meyer EM, Donnenberg AD. Measurement of multiple drug resistance transporter activity in putative cancer stem/progenitor cells. Methods Mol Biol Clifton NJ. 2009;568:261–279.
  • Moitra K. Overcoming multidrug resistance in cancer stem cells. BioMed Res Int. 2015;2015:635745.
  • Manda VK, Mittapalli RK, Bohn KA, et al. Nicotine and cotinine increases the brain penetration of saquinavir in rat. J Neurochem. 2010;115:1495–1507.
  • Thottassery JV, Zambetti GP, Arimori K, et al. p53-dependent regulation of MDR1 gene expression causes selective resistance to chemotherapeutic agents. Proc Natl Acad Sci U S A. 1997;94:11037–11042.
  • Dasgupta P, Kinkade R, Joshi B, et al. Nicotine inhibits apoptosis induced by chemotherapeutic drugs by up-regulating XIAP and survivin. Proc Natl Acad Sci U S A. 2006;103:6332–6337.
  • Chen L, Wang H. Nicotine promotes human papillomavirus (HPV)-immortalized cervical epithelial cells (H8) proliferation by activating RPS27a-Mdm2-P53 pathway in vitro. Toxicol Sci. 2019;167:408-418.
  • Létourneau IJ, Bowers RJ, Deeley RG, et al. Limited modulation of the transport activity of the human multidrug resistance proteins MRP1, MRP2 and MRP3 by nicotine glucuronide metabolites. Toxicol Lett. 2005;157:9–19.
  • Guo J, Chu M, Abbeyquaye T, et al. Persistent nicotine treatment potentiates amplification of the dihydrofolate reductase gene in rat lung epithelial cells as a consequence of Ras activation. J Biol Chem. 2005;280:30422–30431.
  • Baskar R, Dai J, Wenlong N, et al. Biological response of cancer cells to radiation treatment. Front Mol Biosci. 2014;1:24.
  • Nyati MK, Morgan MA, Feng FY, et al. Integration of EGFR inhibitors with radiochemotherapy. Nat Rev Cancer. 2006;6:876–885.
  • Rodemann HP, Dittmann K, Toulany M. Radiation-induced EGFR-signaling and control of DNA-damage repair. Int J Radiat Biol. 2007;83:781–791.
  • Rodemann HP, Blaese MA. Responses of normal cells to ionizing radiation. Semin Radiat Oncol. 2007;17:81–88.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.