612
Views
13
CrossRef citations to date
0
Altmetric
Review

Paroxysmal movement disorders – practical update on diagnosis and management

&
Pages 807-822 | Received 24 May 2019, Accepted 23 Jul 2019, Published online: 08 Aug 2019

References

  • Fahn S, Jankovic J, Hallett M. Principles and practice of movement disorders. 2nd ed. Philadelphia, PA: Elsevier; 2011.
  • Kato N, Sadamatsu M, Kikuchi T, et al. Paroxysmal kinesigenic choreoathetosis: from first discovery in 1892 to genetic linkage with benign familial infantile convulsions. Epilepsy Res. 2006;70:174–184.
  • Smith, Na. Epilepsy and other chronic convulsive diseases, their causes, symptoms and treatment. J Nerv Ment Dis. 1902;29:185–186.
  • Mount LA, Reback S. Familial paroxysmal choreoathetosis: preliminary report on a hitherto undescribed clinical syndrome. Arch Neurol Psychiatry. 1940;44:841–847.
  • Lance JW. Familial paroxysmal dystonic choreoathetosis and its differentiation from related syndromes. Ann Neurol. 1977;2:285–293.
  • Goodenough DJ, Fariello RG, Annis BL, et al. Familial and acquired paroxysmal dyskinesias: a proposed classification with delineation of clinical features. Arch Neurol. 1978;35:827.
  • Fahn S. The paroxysmal dyskinesias. In: Marsden CD, Fahn S, editors. Mov. Disord. 3rd ed. Butterworth- Heinemann; 1994. p. 310–345.
  • Lugaresi E, Cirignotta F. Hypnogenic paroxysmal dystonia: epileptic seizure or a new syndrome? Sleep. 1981;4:129–138.
  • Demirkiran M, Paroxysmal Dyskinesias JJ, Features C. Classlfication. Ann Neurol. 1995;38:571–579.
  • Lugaresi E, Cirignotta F, Montagna P. Nocturnal paroxysmal dystonia. J Neurol Neurosurg Psychiatry. 1986;49:375–380.
  • Provini F, Plazzi G, Lugaresi E. From nocturnal paroxysmal dystonia to nocturnal frontal lobe epilepsy. Clin Neurophysiol. 2000;111(Suppl 2):S2–8.
  • Parker HL. Periodic ataxia. Collect Pap Mayo Clin. 1946;38:642–645. Mayo Found.
  • Klaas JP, Burkholder DB, Singer W, et al. Harry Lee Parker and paroxysmal dysarthria and ataxia. Neurology. 2013;80:311–314.
  • Farmer TW, Mustian VM. Vestibulocerebellar Ataxia: a newly defined hereditary syndrome with periodic manifestations. Arch Neurol. 1963;8:471–480.
  • Hill W, Sherman H. Acute intermittent familial cerebellar ataxia. Arch Neurol. 1968;18:350–357.
  • White JC, Nystagmus FP. Vertigo, and Ataxia. Arch Neurol. 1969;20:276–280.
  • Van Dyke DH, Griggs RC, Murphy MJ, et al. Hereditary myokymia and periodic ataxia. J Neurol Sci. 1975;25:109–118.
  • Hanson PA, Martinez LB, Cassidy R. Contractures, continuous muscle discharges, and titubation. Ann Neurol. 1977;1:120–124.
  • Griggs RC, Moxley RT, Lafrance RA, et al. Hereditary paroxysmal ataxia: response to acetazolamide. Neurology. 1978;28:1259–1264.
  • Donat JR, Auger R. Familial periodic ataxia. Arch Neurol. 1979;36:568–569.
  • Gancher ST, Nutt JG. Autosomal dominant episodic ataxia: a heterogeneous syndrome. Mov Disord. 1986;1:239–253.
  • Bruno MK, Hallett M, Gwinn-Hardy K, et al. Clinical evaluation of idiopathic paroxysmal kinesigenic dyskinesia: new diagnostic criteria. Neurology. 2004;63:2280–2287.
  • Méneret A, Gaudebout C, Riant F, et al. PRRT2 mutations and paroxysmal disorders. Eur J Neurol. 2013;20:872–878.
  • Huang XJ, Wang T, Wang JL, et al. Paroxysmal kinesigenic dyskinesia clinical and genetic analysis of 110 patients. Neurology. 2015;85:1546–1553.
  • Silveira-Moriyama L, Gardiner AR, Meyer E, et al. Clinical features of childhood-onset paroxysmal kinesigenic dyskinesia with PRRT2 gene mutations. Dev Med Child Neurol. 2013;55:327–334.
  • Gardiner AR, Jaffer F, Dale RC, et al. The clinical and genetic heterogeneity of paroxysmal dyskinesias. Brain. 2015;138:3567–3580.
  • Ebrahimi-Fakhari D, Saffari A, Westenberger A, et al. The evolving spectrum of PRRT2-associated paroxysmal diseases. Brain. 2015;138:3476–3495.
  • Huang X-J, Wang T, Wang J-L, et al. Paroxysmal kinesigenic dyskinesia clinical and genetic analyses of 110 patients. Neurology. 2015;85:1546–1553.
  • Seo SY, You SJ. Paroxysmal kinesigenic dyskinesia in a patient with a PRRT2 mutation and centrotemporal spike discharges on electroencephalogram: case report of a 10-year-old girl. Korean J Pediatr. 2016;59:S157–S160.
  • El Achkar CM, Rosen Sheidley B, O’Rourke D, et al. Compound heterozygosity with PRRT2: pushing the phenotypic envelope in genetic epilepsies. Epilepsy Behav Case Rep. 2017;11:125–128.
  • Wang JL, Cao L, Li XH, et al. Identification of PRRT2 as the causative gene of paroxysmal kinesigenic dyskinesias. Brain. 2011 Dec;134(Pt 12):3493–3501.
  • Chen W-J, Lin Y, Xiong Z-Q, et al. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet. 2011;43:1252–1255.
  • Valtorta F, Benfenati F, Zara F, et al. PRRT2: from paroxysmal disorders to regulation of synaptic function. Trends Neurosci. 2016;39:668–679. Elsevier Current Trends.
  • Becker F, Schubert J, Striano P, et al. PRRT2-related disorders: further PKD and ICCA cases and review of the literature. J Neurol. 2013;260:1234–1244.
  • Ono S, Yoshiura K, Kinoshita A, et al. Mutations in PRRT2 responsible for paroxysmal kinesigenic dyskinesias also cause benign familial infantile convulsions. J Hum Genet. 2012;57:338–341.
  • Dale RC, Gardiner A, Antony J, et al. Familial PRRT2 mutation with heterogeneous paroxysmal disorders including paroxysmal torticollis and hemiplegic migraine. Dev Med Child Neurol. 2012;54:958–960.
  • Maini I, Iodice A, Spagnoli C, et al. Expanding phenotype of PRRT2 gene mutations: a new case with epilepsy and benign myoclonus of early infancy. Eur J Paediatr Neurol. 2016;20:454–456.
  • Gardiner AR, Bhatia KP, Stamelou M, et al. PRRT2 gene mutations from paroxysmal dyskinesia to episodic ataxia and hemiplegic migraine. Neurology. 2012;79(21):2115–2121.
  • Scheffer IE, Grinton BE, Heron SE, et al. PRRT2 phenotypic spectrum includes sporadic and fever-related infantile seizures. Neurology. 2012.
  • Méneret A, Grabli D, Depienne C, et al. PRRT2 mutations: a major cause of paroxysmal kinesigenic dyskinesia in the European population. Neurology. 2012;79:170–174.
  • Tian WT, Huang XJ, Mao X, et al. Proline-rich transmembrane protein 2-negative paroxysmal kinesigenic dyskinesia: clinical and genetic analyses of 163 patients. Mov Disord. 2018;33:459–467.
  • Zima L, Ceulemans S, Reiner G, et al. Paroxysmal motor disorders: expanding phenotypes lead to coalescing genotypes. Ann Clin Transl Neurol. 2018;5:996–1010.
  • Kim A, Jang M, Kim H-J, et al. Myotonia congenita can be mistaken as paroxysmal kinesigenic dyskinesia. J Mov Disord. 2018;11:49–51.
  • Wang HX, Li HF, Liu GL, et al. Mutation analysis of MR-1, SLC2A1, and CLCN1 in 28 PRRT2-negative paroxysmal kinesigenic dyskinesia patients. Chin Med J (Engl). 2016;129:1017–1021.
  • Montenegro MA, Scotoni AE, Cendes F. Dyskinesia induced by phenytoin. Arq Neuropsiquiatr. 1999;57:356–360.
  • Ohtsuka Y, Ohmori I, Ogino T, et al. Paroxysmal movement disorders in severe myoclonic epilepsy in infancy. Brain Dev. 2003;25:401–405.
  • Bruno MK, Lee HY, Auburger GWJ, et al. Genotype-phenotype correlation of paroxysmal nonkinesigenic dyskinesia. Neurology. 2007;68:1782–1789.
  • Rainier S, Thomas D, Tokarz D, et al. Myofibrillogenesis regulator 1 gene mutations cause paroxysmal dystonic choreoathetosis. Arch Neurol. 2004;61:1025.
  • Stefanova E, Djarmati A, Momcilovic D, et al. Clinical characteristics of paroxysmal nonkinesigenic dyskinesia in Serbian family with myofibrillogenesis regulator 1 gene mutation. Mov Disord. 2006;21:2010–2015.
  • Pons R, Cuenca-León E, Miravet E, et al. Paroxysmal non-kinesigenic dyskinesia due to a PNKD recurrent mutation: report of two Southern European families. Eur J Paediatr Neurol. 2012;16:86–89.
  • Zittel S, Ganos C, Münchau A. Fatal paroxysmal non-kinesigenic dyskinesia. Eur J Neurol. 2015;22:e30–e31.
  • Zhang Z-B, Tian M-Q, Gao K, et al. De novo KCNMA1 mutations in children with early-onset paroxysmal dyskinesia and developmental delay. Mov Disord. 2015;30:1290–1292.
  • McWilliam CA, Ridout CK, Brown RM, et al. Pyruvate dehydrogenase E2 deficiency: a potentially treatable cause of episodic dystonia. Eur J Paediatr Neurol. 2010;14:349–353.
  • M-H O, Chretien D, Munnich A, et al. A novel mutation in the dihydrolipoamide dehydrogenase E3 subunit gene (DLD) resulting in an atypical form of α-ketoglutarate dehydrogenase deficiency. Hum Mutat. 2005;25:323–324.
  • Barnerias C, Saudubray J-M, Touati G, et al. Pyruvate dehydrogenase complex deficiency: four neurological phenotypes with differing pathogenesis. Dev Med Child Neurol. 2010;52:e1–e9.
  • Gardella E, Becker F, Møller RS, et al. Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann Neurol. 2016;79:428–436.
  • Erro R, Bhatia KP. Unravelling of the paroxysmal dyskinesias. J Neurol Neurosurg Psychiatry. 2019;90:227–234.
  • Spagnoli C, Frattini D, Rizzi S, et al. Early infantile SCN1A epileptic encephalopathy: expanding the genotype-phenotype correlations. Seizure. 2019;65:62–64.
  • Saitsu H, Fukai R, Ben-Zeev B, et al. Phenotypic spectrum of GNAO1 variants: epileptic encephalopathy to involuntary movements with severe developmental delay. Eur J Hum Genet. 2016;24:129–134.
  • Ananth AL, Robichaux-Viehoever A, Kim Y-M, et al. Clinical course of six children with GNAO1 mutations causing a severe and distinctive movement disorder. Pediatr Neurol. 2016;59:81–84.
  • Waak M, Mohammad SS, Coman D, et al. GNAO1-related movement disorder with life-threatening exacerbations: movement phenomenology and response to DBS. J Neurol Neurosurg Psychiatry. 2017;89(2):221–222.
  • Choi K-D, Choi J-H. Episodic ataxias: clinical and genetic features. J Mov Disord. 2016;9:129–135.
  • Plant GT, Williams AC, Earl CJ, et al. Familial paroxysmal dystonia induced by exercise. J Neurol Neurosurg Psychiatry. 1984;47:275–279.
  • Lees AJ, Hardie RJ, Stern GM. Kinesigenic foot dystonia as a presenting feature of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1984;47:885.
  • Bozi M, Bhatia KP. Paroxysmal exercise-induced dystonia as a presenting feature of young-onset Parkinson’s disease. Mov Disord. 2003;18:1545–1547.
  • Clark CN, Weber YW, Lerche H, et al. Paroxysmal exercise-induced dyskinesia of the hands. Mov Disord. 2012;27:1579–1580.
  • Pearson TS, Akman C, Hinton VJ, et al. Phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS). Curr Neurol Neurosci Rep. 2013;13:342.
  • Dale RC, Melchers A, Fung VS, et al. Familial paroxysmal exercise-induced dystonia: atypical presentation of autosomal dominant GTP-cyclohydrolase 1 deficiency. Dev Med Child Neurol. 2010;52:583–586.
  • Lohmann E, Periquet M, Bonifati V, et al. How much phenotypic variation can be attributed to parkin genotype?. Ann Neurol. 2003;54:176–185.
  • Yoshimura K, Kanki R. Child-onset paroxysmal exercise-induced dystonia as the initial manifestation of hereditary Parkinson’s disease. Park Relat Disord. 2018;49:108–109.
  • Ogawa Y, Nakamura K, Ezawa N, et al. A novel CACNA1A nonsense variant in a patient presenting with paroxysmal exertion-induced dyskinesia. J Neurol Sci. 2019;399:214–216.
  • Mahajan A, Constantinou J, Sidiropoulos C. ECHS1 deficiency-associated paroxysmal exercise-induced dyskinesias: case presentation and initial benefit of intervention. J Neurol. 2017;264:185–187.
  • Leuzzi V, Di Sabato ML, Deodato F, et al. Vigabatrin improves paroxysmal dystonia in succinic semialdehyde dehydrogenase deficiency. Neurology. 2007;68:1320–1321.
  • Mongin M, Mezouar N, Dodet P, et al. Paroxysmal exercise-induced dyskinesias caused by GLUT1 deficiency syndrome. Tremor Other Hyperkinet Mov (N Y). 2016;6:371.
  • Klepper J, Leiendecker B, Eltze C, et al. Paroxysmal nonepileptic events in Glut1 deficiency. Mov Disord Clin Pract. 2016;3:607–610.
  • Urbizu A, Cuenca-León E, Raspall-Chaure M, et al. Paroxysmal exercise-induced dyskinesia, writer’s cramp, migraine with aura and absence epilepsy in twin brothers with a novel SLC2A1 missense mutation. J Neurol Sci. 2010;295:110–113.
  • Ramm-Pettersen A, Nakken KO, Haavardsholm KC, et al. GLUT1-deficiency syndrome: report of a four-generation Norwegian family with a mild phenotype. Epilepsy Behav. 2017;70:1–4.
  • Roubergue A, Apartis E, Mesnage V, et al. Dystonic tremor caused by mutation of the glucose transporter gene GLUT1. J Inherit Metab Dis. 2011;34:483–488.
  • Zorzi G, Castelloti B, Zibordi F, et al. Paroxysmal movement disorders in Glut 1 deficiency syndrome. Neurology. 2008;71:146–148.
  • Tacik P, Loens S, Schrader C, et al. Severe familial paroxysmal exercise-induced dyskinesia. J Neurol. 2014;261:2009–2015.
  • Ogunyemi AO, Gomez MR, Klass DW. Seizures induced by exercise. Neurology. 1998;38:633–634.
  • Tinuper P, Bisulli F, Provini F, et al. Familial frontal lobe epilepsy and its relationship with other nocturnal paroxysmal events. Epilepsia. 2010;51:51–53.
  • Heron SE, Smith KR, Bahlo M, et al. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet. 2012;44:1188–1190.
  • Dibbens LM, de Vries B, Donatello S, et al. Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat Genet. 2013;45:546–551.
  • Tinuper P, Bisulli F. From nocturnal frontal lobe epilepsy to sleep-related hypermotor epilepsy: a 35-year diagnostic challenge. Seizure. 2017;44:87–92.
  • Lee BI, Lesser RP, Pippenger CE, et al. Familial Paroxysmal hypnogenic dystonia. Neurology. 1985;35:1357–1360.
  • Liu X-R, Huang D, Wang J, et al. Paroxysmal hypnogenic dyskinesia is associated with mutations in the PRRT2 gene. Neurol Genet. 2016;2:e66.
  • Chen Y-Z, Friedman JR, Chen D-H, et al. Gain-of-function ADCY5 mutations in familial dyskinesia with facial myokymia. Ann Neurol. 2014;75:542–549.
  • Friedman JR, Méneret A, Chen D-H, et al. ADCY5 mutation carriers display pleiotropic paroxysmal day and nighttime dyskinesias. Mov Disord. 2016;31:147–148.
  • Carecchio M, Mencacci NE, Iodice A, et al. ADCY5-related movement disorders: frequency, disease course and phenotypic variability in a cohort of paediatric patients. Park Relat Disord. 2017;41:37–43.
  • Provini F, Plazzi G, Montagna P, et al. The wide clinical spectrum of nocturnal frontal lobe epilepsy. Sleep Med Rev. 2000;4:375–386.
  • Browne DL, Gancher ST, Nutt JG, et al. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet. 1994;8:136–140.
  • Graves TD, Cha Y-H, Hahn AF, et al. Episodic ataxia type 1: clinical characterization, quality of life and genotype-phenotype correlation. Brain. 2014;137:1009–1018.
  • Jen JC, Graves TD, Hess EJ, et al. Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain. 2007;130:2484–2493.
  • Kipfer S, Strupp M. The clinical spectrum of autosomal-dominant episodic ataxias. Mov Disord Clin Pract. 2014;1:285–290.
  • Lee H, Wang H, Jen JC, et al. A novel mutation in KCNA1 causes episodic ataxia without myokymia. Hum Mutat. 2004;24:1–7.
  • Shook SJ, Mamsa H, Jen JC, et al. Novel mutation in KCNA1 causes episodic ataxia with paroxysmal dyspnea. Muscle Nerve. 2008;37:399–402.
  • Eunson LH, Rea R, Zuberi SM, et al. Clinical, genetic, and expression studies of mutations in the potassium channel gene KCNA1 reveal new phenotypic variability. Ann Neurol. 2000;48:647–656.
  • Klein A, Boltshauser E, Jen J, et al. Episodic ataxia type 1 with distal weakness: a novel manifestation of a potassium channelopathy. Neuropediatrics. 2004;35:147–149.
  • Glaudemans B, van der Wijst J, Scola RH, et al. A missense mutation in the Kv1.1 voltage-gated potassium channel–encoding gene KCNA1 is linked to human autosomal dominant hypomagnesemia. J Clin Invest. 2009;119:936–942.
  • van der Wijst J, Konrad M, Verkaart SAJ, et al. A de novo KCNA1 mutation in a patient with tetany and hypomagnesemia. Nephron. 2018;139:359–366.
  • Baloh RW. Episodic ataxias 1 and 2. Handb Clin Neurol. 2012;103:595–602.
  • Von BB, Hahn AF, Koopman WJ, et al. Mapping the gene for acetazolamide responsive hereditary paryoxysmal cerebellar ataxia to chromosome 19p. Hum Mol Genet. 1995;4:279–284.
  • Vahedi K, Joutel A, van Bogaert P, et al. A gene for hereditary paroxysmal cerebellar ataxia maps to chromosome 19p. Ann Neurol. 1995;37:289–293.
  • Ophoff RA, Terwindt GM, Vergouwe MN, et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell. 1996;87:543–552.
  • Griggs RC, Nutt JG. Episodic ataxias as channelopathies. Ann Neurol. 1995;37:285–287.
  • Zhou L, Zhang CL, Messing A, et al. Temperature-sensitive neuromuscular transmission in Kv1.1 null mice: role of potassium channels under the myelin sheath in young nerves. J Neurosci. 1998;18:7200–7215.
  • Mori Y, Friedrich T, Kim M-S, et al. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature. 1991;350:398–402.
  • Zhuchenko O, Bailey J, Bonnen P, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansion in the α1A-voltage-dependent calcium channel. Nat Genet. 1997;15:62–69.
  • Bürk K, Kaiser FJ, Tennstedt S, et al. A novel missense mutation in CACNA1A evaluated by in silico protein modeling is associated with non-episodic spinocerebellar ataxia with slow progression. Eur J Med Genet. 2014;57:207–211.
  • Jen J, Wan J, Graves M, et al. Loss-of-function EA2 mutations are associated with impaired neuromuscular transmission. Neurology. 2001;57:1843–1848.
  • Jouvenceau A, Eunson LH, Spauschus A, et al. Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet. 2001;358:801–807.
  • Spacey SD, Materek LA, Szczygielski BI, et al. Two novel CACNA1A gene mutations associated with episodic ataxia type 2 and interictal dystonia. Arch Neurol. 2005;62:314–316.
  • Subramony SH, Schott K, Raike RS, et al. Novel CACNA1A mutation causes febrile episodic ataxia with interictal cerebellar deficits. Ann Neurol. 2003;54:725–731.
  • Baloh RW, Yue Q, Furman JM, et al. Familial episodic ataxia: clinical heterogeneity in four families linked to chromosome 19p. Ann Neurol. 1997;41:8–16.
  • Jen J, Kim GW, Baloh RW. Clinical spectrum of episodic ataxia type 2. Neurology. 2004;62:17–22.
  • Bertholon P, Chabrier S, Riant F, et al. Episodic ataxia type 2: unusual aspects in clinical and genetic presentation Special emphasis in childhood. J Neurol Neurosurg Psychiatry. 2009;80:1289–1292.
  • Giffin NJ, Benton S, Goadsby PJ. Benign paroxysmal torticollis of infancy: four new cases and linkage to CACNA1A muta1. Dev Med Child Neurol. 2002;44(7):490–493.
  • Roubertie A, Echenne B, Leydet J, et al. Benign paroxysmal tonic upgaze, benign paroxysmal torticollis, episodic ataxia and CACNA1A mutation in a family. J Neurol. 2008;255:1600–1602.
  • Mantuano E, Romano S, Veneziano L, et al. Identification of novel and recurrent CACNA1A gene mutations in fifteen patients with episodic ataxia type 2. J Neurol Sci. 2010;291:30–36.
  • Harries AM, Sandhu M, Spacey SD, et al. Unilateral pallidal deep brain stimulation in a patient with dystonia secondary to episodic ataxia type 2 Stereotact Funct Neurosurg. 2013;91:233–235.
  • Jen JC, Wan J. Episodic ataxias. Handb Clin Neurol. 2018;155:205–215. Elsevier.
  • Steckley JL, Ebers GC, Cader MZ, et al. An autosomal dominant disorder with episodic ataxia, vertigo, and tinnitus. Neurology. 2001;57:1499–1502.
  • Cader MZ, Steckley JL, Dyment DA, et al. A genome-wide screen and linkage mapping for a large pedigree with episodic ataxia. Neurology. 2005;65:156–158.
  • Damji KF, Allingham RR, Pollock SC, et al. Periodic vestibulocerebellar ataxia, an autosomal dominant ataxia with defective smooth pursuit, is genetically distinct from other autosomal dominant ataxias. Arch Neurol. 1996;53:338–344.
  • Escayg A, De Waard M, Lee DD, et al. Coding and noncoding variation of the human calcium-channel β4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet. 2000;66:1531–1539.
  • de Vries B, Mamsa H, Stam AH, et al. Episodic ataxia associated with EAAT1 mutation C186S affecting glutamate reuptake. Arch Neurol. 2009;66:97–101.
  • Choi K-D, Jen JC, Choi SY, et al. Late-onset episodic ataxia associated with SLC1A3 mutation. J Hum Genet. 2017;62:443–446.
  • Jen JC, Wan J, Palos TP, et al. Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology. 2005;65:529–534.
  • Adamczyk A, Gause CD, Sattler R, et al. Genetic and functional studies of a missense variant in a glutamate transporter, SLC1A3, in Tourette syndrome. Psychiatr Genet. 2011;21:90–97.
  • van Amen-Hellebrekers CJM, Jansen S, Pfundt R, et al. Duplications of SLC1A3: associated with ADHD and autism. Eur J Med Genet. 2016;59:373–376.
  • Kerber KA, Jen JC, Lee H, et al. A new episodic ataxia syndrome with linkage to chromosome 19q13. Arch Neurol. 2007;64:749–752.
  • Conroy J, McGettigan P, Murphy R, et al. A novel locus for episodic ataxia: UBR4 the likely candidate. Eur J Hum Genet. 2014;22:505–510.
  • Choquet K, La Piana R, Brais B. A novel frameshift mutation in FGF14 causes an autosomal dominant episodic ataxia. Neurogenetics. 2015;16:233–236.
  • Schesny M, Joncourt F, Tarnutzer AA. Acetazolamide-responsive episodic ataxia linked to novel splice site variant in FGF14 gene. Cerebellum. 2019;18:649–653.
  • Blakeley J, Jankovic J. Secondary paroxysmal dyskinesias. Mov Disord. 2002;17:726–734.
  • Roze E, Meneret A, Vidailhet M. Paroxysmal movement disorders: clinical and genetic features. In: LeDoux MS, editor. Mov. Disord. Genet. Model. 2nd ed. London: Elsevier; 2015. p. 767–778.
  • Ganos C, Aguirregomozcorta M, Batla A, et al. Psychogenic paroxysmal movement disorders – clinical features anddiagnostic clues. Park Relat Disord. 2014;20:41–46.
  • Amos Parkinson P, Factor SA, Disorders M, et al. Recent developments in drug-induced movement disorders: a mixed picture. Lancet Neurol. 2019. [cited 2019 Jul 3], doi:10.1016/S1474-4422(19)30152-8
  • Erro R, Stamelou M, Ganos C, et al. The clinical syndrome of paroxysmal exercise-induced dystonia: diagnostic outcomes and an algorithm. Mov Disord Clin Pract. 2014;1:57–61.
  • Leen WG, Wevers RA, Kamsteeg E-J, et al. Cerebrospinal fluid analysis in the workup of GLUT1 deficiency syndrome. JAMA Neurol. 2013;70:1440.
  • Van Vliet R, Breedveld G, De Rijk-Van Andel J, et al. PRRT2 phenotypes and penetrance of paroxysmal kinesigenic dyskinesia and infantile convulsions. Neurology. 2012;79:777–784.
  • Wang D, Pascual JM, De VD. Glucose transporter Type 1 deficiency syndrome. Seattle: University of Washington; 2018.
  • Rotstein M, Engelstad K, Yang H, et al. Glut1 deficiency: inheritance pattern determined by haploinsufficiency. Ann Neurol. 2010;68:955–958.
  • Jen J, Yue Q, Nelson SF, et al. A novel nonsense mutation in CACNA1A causes episodic ataxia and hemiplegia. Neurology. 1999;53:34–37.
  • Silveira-Moriyama L, Paciorkowski AR. Genetic diagnostics for neurologists. Contin Lifelong Learn Neurol. 2018;24:18–36.
  • Wang D, Pascual JM, De Vivo D. Glucose transporter Type 1 deficiency syndrome. Seattle: University of Washington; 1993. GeneReviews®.
  • Jodice C, Mantuano E, Veneziano L, et al. Episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6) due to CAG repeat expansion in the CACNA1A gene on chromosome 19p. Hum Mol Genet. 1997;6:1973–1978.
  • Silveira-Moriyama L, Kovac S, Kurian MA, et al. Phenotypes, genotypes, and the management of paroxysmal movement disorders. Dev Med Child Neurol. 2018;60:559–566.
  • Erro R, Bhatia KP, Espay AJ, et al. The epileptic and nonepileptic spectrum of paroxysmal dyskinesias: channelopathies, synaptopathies, and transportopathies. Mov Disord. 2017;32:310–318.
  • Kertesz A. Paroxysmal kinesigenic choreoathetosis. Neurology. 1967 Jul;17(7):680–690.
  • Loong S, Ong Y. Paroxysmal kinesigenic choreoathetosis report of a case relieved by L-dopa. J Neurol Neurosurg Psychiatry. 1973;36:921–924.
  • Diamox: MS. A carbonic anhydrase inhibitor: its use in epilepsy. Neurology. 1954;4:863.
  • Resnick JS, Engel WK, Griggs RC, et al. Acetazolamide prophylaxis in hypokalemic periodic paralysis. N Engl J Med. 1968;278:582–586.
  • Strupp M, Kalla R, Claassen J, et al. A randomized trial of 4-aminopyridine in EA2 and related familial episodic ataxias. Neurology. 2011;77:269–275.
  • Baschieri F, Batla A, Erro R, et al. Paroxysmal exercise-induced dystonia due to GLUT1 mutation can be responsive to levodopa: a case report. J Neurol. 2014;261:615–616.
  • Labate A, Tarantino P, Viri M, et al. Homozygous c.649dupC mutation in PRRT2 worsens the BFIS/PKD phenotype with mental retardation, episodic ataxia, and absences. Epilepsia. 2012;53:e196–e199.
  • Dale RC, Gardiner A, Branson JA, et al. Benefit of carbamazepine in a patient with hemiplegic migraine associated with PRRT2 mutation. Dev Med Child Neurol. 2014;56:910.
  • Amstutz U, Shear NH, Rieder MJ, et al. Recommendations for HLA-B*15:02 and HLA-A*31:01 genetic testing to reduce the risk of carbamazepine-induced hypersensitivity reactions. Epilepsia. 2014;55:496–506.
  • Plumpton CO, Yip VLM, Alfirevic A, et al. Cost-effectiveness of screening for HLA-A∗31:01 prior to initiation of carbamazepine in epilepsy. Epilepsia. 2015;56:556–563.
  • Tangamornsuksan W, Chaiyakunapruk N, Somkrua R, et al. Relationship between the HLA-B*1502 allele and carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. JAMA Dermatol. 2013;149:1025–1032.
  • Danti FR, Galosi S, Romani M, et al. GNAO1 encephalopathy: broadening the phenotype and evaluating treatment and outcome. Neurol Genet. 2017;3:e143.
  • Dy ME, Chang FCF, De JS, et al. Treatment of ADCY5 -associated dystonia, chorea, and hyperkinetic disorders with deep brain stimulation. J Child Neurol. 2016;31:1027–1035.
  • Van CR, Slabbert P, Vaidyanathan J, et al. Successful treatment of disabling paroxysmal nonkinesigenic dyskinesia with deep brain stimulation of the globus pallidus internus. Stereotact Funct Neurosurg. 2014;92:388–392.
  • Li F, Lin Z, Hu Y, et al. Lamotrigine monotherapy for paroxysmal kinesigenic dyskinesia in children. Seizure. 2016;37:41–44.
  • Erro R. Familial paroxysmal nonkinesigenic dyskinesia. Seattle: University of Washington; 1993. GeneReviews®.
  • Szczałuba K, Jurek M, Szczepanik E, et al. A family with paroxysmal nonkinesigenic dyskinesia: genetic and treatment issues. Pediatr Neurol. 2009;41:135–138.
  • Leen WG, Mewasingh L, Verbeek MM, et al. Movement disorders in GLUT1 deficiency syndrome respond to the modified Atkins diet. Mov Disord. 2013;28:1439–1442.
  • Mochel F, Hainque E, Gras D, et al. Triheptanoin dramatically reduces paroxysmal motor disorder in patients with GLUT1 deficiency. J Neurol Neurosurg Psychiatry. 2016;87:550–553.
  • Hainque E, Gras D, Meneret A, et al. Long-term follow-up in an open-label trial of triheptanoin in GLUT1 deficiency syndrome: a sustained dramatic effect. J Neurol Neurosurg Psychiatry. 2019. jnnp-2018-320283.
  • Anheim M, Maillart E, Vuillaumier-Barrot S, et al. Excellent response to acetazolamide in a case of paroxysmal dyskinesias due to GLUT1-deficiency. J Neurol. 2011;258:316–317.
  • Guimarães J, Vale Santos J. Paroxysmal dystonia induced by exercise and acetazolamide. Eur J Neurol. 2000;7:237–240.
  • Bovi T, Fasano A, Juergenson I, et al. Paroxysmal exercise-induced dyskinesia with self-limiting partial epilepsy: a novel GLUT-1 mutation with benign phenotype. Parkinsonism Relat Disord. 2011;17:479–481.
  • Sethi KD, Hess DC, Huffnagle VH, et al. Acetazolamide treatment of paroxysmal dystonia in central demyelinating disease. Neurology. 1992;42:919–921.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.