473
Views
11
CrossRef citations to date
0
Altmetric
Review

Update on the treatment of vitamin B6 dependent epilepsies

&
Pages 1135-1147 | Received 03 Jun 2019, Accepted 23 Jul 2019, Published online: 29 Jul 2019

References

  • Wilson MP, Plecko B, Mills PB, et al. Disorders affecting vitamin B6 metabolism. J Inherit Metab Dis. 2019;42:629–646.
  • Mastrangelo M. Actual insights into treatable inborn errors of metabolism causing epilepsy. J Pediatr Neurosci. 2018;13:13–23.
  • Stockler S, Plecko B, Gospe SM Jr, et al. Pyridoxine dependent epilepsy and antiquitin deficiency: clinical and molecular characteristics and recommendations for diagnosis, treatment and follow-up. Mol Genet Metab. 2011;104:48–60.
  • Gospe SM Jr, Hecht ST. Longitudinal MRI findings in pyridoxine-dependent seizures. Neurology. 1998;51:74–78.
  • Gospe SM Jr. Neonatal vitamin-responsive epileptic encephalopathies. Chang Gung Med J. 2010;33:1–12.
  • Friedman SD1, Ishak GE, Poliachik SL, et al. Callosal alterations in pyridoxine-dependent epilepsy. Dev Med Child Neurol. 2014;56:1106–1110.
  • Hunt AD Jr, Stokes J Jr, Mccrory WW, et al. Pyridoxine dependency: report of a case of intractable convulsions in an infant controlled by pyridoxine. Pediatrics. 1954;13:140–145.
  • Mills PB, Struys E, Jakobs C, et al. Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat Med. 2006;12:307–309.
  • Mills PB, Surtees RA, Champion MP. Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5ʹ-phosphate oxidase. Hum Mol Genet. 2005;14:1077–1086.
  • Yang Z, Yang X, Wu Y. Clinical diagnosis, treatment, and ALDH7A1 mutations in pyridoxine-dependent epilepsy in three Chinese infants. PLoS One. 2014;9:e92803.
  • Ville D, Ginguene C, Marignier S, et al. Early diagnosis of pyridoxine-dependent epilepsy: video-EEG monitoring and biochemical and genetic investigation. Eur J Paediatr Neurol. 2013;17:676–680.
  • Oliveira R, Pereira C, Rodrigues F. Pyridoxine-dependent epilepsy due to antiquitin deficiency: achieving a favourable outcome. Epileptic Disord. 2013;15:400–406.
  • Scharer G, Brocker C, Vasiliou V. The genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy due to mutations in ALDH7A1. J Inherit Metab Dis. 2010;33:571–581.
  • Yeghiazaryan NS, Striano P, Spaccini L. Long-term follow-up in two siblings with pyridoxine-dependent seizures associated with a novel ALDH7A1 mutation. Eur J Paediatr Neurol. 2011;15:547–550.
  • Proudfoot M, Jardine P, Straukiene A. Long-term follow-up of a successfully treated case of congenital pyridoxine-dependent epilepsy. JIMD Rep. 2013;10:103–106.
  • Tamaura M, Shimbo H, Iai M, et al. Seizure recurrence following pyridoxine withdrawal in a patient with pyridoxine-dependent epilepsy. Brain Dev. 2015;37:442–445.
  • Rankin PM, Harrison S, Chong WK, et al. Pyridoxine-dependent seizures: a family phenotype that leads to severe cognitive deficits, regardless of treatment regime. Dev Med Child Neurol. 2007;49:300–305.
  • Milh M, Pop A, Kanhai W. Atypical pyridoxine-dependent epilepsy due to a pseudoexon in ALDH7A1. Mol Genet Metab. 2012;105:684–686.
  • Jain-Ghai S, Mishra N, Hahn C, et al. Fetal onset ventriculomegaly and subependymal cysts in a pyridoxine dependent epilepsy patient. Pediatrics. 2014;133:e1092–6.
  • Cirillo M, Venkatesan C, Millichap JJ, et al. Case report: intravenous and oral pyridoxine trial for diagnosis of pyridoxine-dependent epilepsy. Pediatrics. 2015;136:e257–61.
  • Yeghiazaryan NS, Zara F, Capovilla G, et al. Pyridoxine-dependent epilepsy: an under-recognised cause of intractable seizures. J Paediatr Child Health. 2012;48:E113–5.
  • Striano P, Battaglia S, Giordano L. Two novel ALDH7A1 (antiquitin) splicing mutations associated with pyridoxine-dependent seizures. Epilepsia. 2009;50:933–936.
  • Mercimek-Mahmutoglu S, Horvath GA, Coulter-Mackie M. Profound neonatal hypoglycemia and lactic acidosis caused by pyridoxine-dependent epilepsy. Pediatrics. 2012;129:e1368–72.
  • Tincheva S, Todorov T, Todorova A. First cases of pyridoxine-dependent epilepsy in Bulgaria: novel mutation in the ALDH7A1 gene. Neurol Sci. 2015;36:2209–2212.
  • Bok LA, Halbertsma F, Kerkhoff F, et al. Roth spots in pyridoxine dependent epilepsy. BMJ Case Rep. 2011;bcr0520114209. DOI:10.1136/bcr.05.2011.4209
  • Wang S, Sun J, Tu Y, et al. Clinical and genetic characteristics of pyridoxine-dependent epilepsy: case series report of three Chinese patients with phenotypic variability. Exp Ther Med. 2017;14:1989–1992.
  • Marguet F, Barakizou H, Tebani A Pyridoxine-dependent epilepsy: report on three families with neuropathology. Metab Brain Dis. 2016; 31:1435–1443
  • Yuzyuk T, Thomas A, Viau K. Effect of dietary lysine restriction and arginine supplementation in two patients with pyridoxine-dependent epilepsy. Mol Genet Metab. 2016;118:167–172.
  • Bok LA, Been JV, Struys EA, et al. Antenatal treatment in two dutch families with pyridoxine-dependent seizures. Eur J Pediatr. 2010;169:297–303.
  • Alfadhel M, Sirrs S, Waters PJ. Variability of phenotype in two sisters with pyridoxine dependent epilepsy. Can J Neurol Sci. 2012;39:516–519.
  • Toldo I, Bonardi CM, Bettella E Brain malformations associated to ALDH7A1 gene mutations: report of a novel homozygous mutation and literature review. Eur J Paediatr Neurol. 2018; 22: 1042–1053
  • Gallagher RC, Van Hove JL, Scharer G. Folinic acid-responsive seizures are identical to pyridoxine-dependent epilepsy. Ann Neurol. 2009;65:550–556.
  • Al-Saman A, Rizk TM, MD FRCPCH. A case of extreme prematurity and delayed diagnosis of pyridoxine-dependent epilepsy. Neurosciences. 2012;17:371–373.
  • Millet A, Salomons GS, Cneude F. Novel mutations in pyridoxine-dependent epilepsy. Eur J Paediatr Neurol. 2011;15:74–77.
  • Nam SH, Kwon MJ, Lee J. Clinical and genetic analysis of three Korean children with pyridoxine-dependent epilepsy. Ann Clin Lab Sci. 2012;42:65–72.
  • Coci EG, Codutti L, Fink C. Novel homozygous missense mutation in ALDH7A1 causes neonatal pyridoxine dependent epilepsy. Mol Cell Probes. 2017;32:18–23.
  • Srinivasaraghavan R, Parameswaran N, Mathis D, et al. Antiquitin deficiency with adolescent onset epilepsy: molecular diagnosis in a mother of affected offsprings. Neuropediatrics. 2018;49:154–157.
  • Bok LA, Maurits NM, Willemsen MA, et al. The EEG response to pyridoxine-IV neither identifies nor excludes pyridoxine-dependent epilepsy. Epilepsia. 2010;51:2406–2411.
  • Pérez B, Gutiérrez-Solana LG, Verdú A. Clinical, biochemical, and molecular studies in pyridoxine-dependent epilepsy. Antisense therapy as possible new therapeutic option. Epilepsia. 2013;54:239–248.
  • Coughlin 2nd CR, van Karnebeek CD, Al-Hertani W. Triple therapy with pyridoxine, arginine supplementation and dietary lysine restriction in pyridoxine-dependent epilepsy: neurodevelopmental outcome. Mol Genet Metab. 2015;116:35–43.
  • Kluger G, Blank R, Paul K. Pyridoxine-dependent epilepsy: normal outcome in a patient with late diagnosis after prolonged status epilepticus causing cortical blindness. Neuropediatrics. 2008;39:276–279.
  • Kaczorowska M, Kmiec T, Jakobs C, et al. Pyridoxine-dependent seizures caused by alpha amino adipic semialdehyde dehydrogenase deficiency: the first polish case with confirmed biochemical and molecular pathology. J Child Neurol. 2008;23:1455–1459.
  • Jagadeesh S, Suresh B, Murugan V, et al. Pyridoxine-dependent epilepsy owing to antiquitin deficiency–mutation in the ALDH7A1 gene. Paediatr Int Child Health. 2013;33:113–115.
  • Mercimek-Mahmutoglu S, Cordeiro D, Cruz V, et al. Novel therapy for pyridoxine dependent epilepsy due to ALDH7A1 genetic defect: L-arginine supplementation alternative to lysine-restricted diet. Eur J Paediatr Neurol. 2014;18:741–746.
  • Riikonen R, Mankinen K, Gaily E. Long-term outcome in pyridoxine-responsive infantile epilepsy. Eur J Paediatr Neurol. 2015;19:647–651.
  • Yusuf IH, Sandford V, Hildebrand GD. Congenital cataract in a child with pyridoxine-dependent epilepsy. J Aapos. 2013;17:315–317.
  • Tlili A, Hamida Hentati N, Chaabane R, et al. Pyridoxine-dependent epilepsy in Tunisia is caused by a founder missense mutation of the ALDH7A1 gene. Gene. 2013;518:242–245.
  • Haidar Z, Jalkh N, Corbani S, et al. Atypical pyridoxine dependent epilepsy resulting from a new homozygous missense mutation, in ALDH7A1. Seizure. 2018;57:32–33.
  • Navarro-Abia V, Soriano-Ramos M, Núñez-Enamorado N. Hydrocephalus in pyridoxine-dependent epilepsy: new case and literature review. Brain Dev. 2018;40:348–352.
  • Ben Younes T, Kraoua I, Benrhouma H. Pyridoxine-dependent epilepsy: A novel mutation in a Tunisian child. Arch Pediatr. 2017;24:241–243.
  • de Rooy RLP, Halbertsma FJ, Struijs EA. Pyridoxine dependent epilepsy: is late onset a predictor for favorable outcome? Eur J Paediatr Neurol. 2018;22:662–666.
  • Nasr E, Mamak E, Feigenbaum A, et al. Long-term treatment outcome of two patients with pyridoxine-dependent epilepsy caused by ALDH7A1 mutations: normal neurocognitive outcome. J Child Neurol. 2015;30:648–653.
  • Samanta D. A 15-year-old with seizures: late diagnosis of pyridoxine-dependent epilepsy. Acta Neurol Belg. 2016;116:667–669.
  • van Karnebeek CD, Hartmann H, Jaggumantri S. Lysine restricted diet for pyridoxine-dependent epilepsy: first evidence and future trials. Mol Genet Metab. 2012;107:335–344.
  • Bok LA, Halbertsma FJ, Houterman S. Long-term outcome in pyridoxine-dependent epilepsy. Dev Med Child Neurol. 2012;54:849–854.
  • Al Teneiji A, Bruun TU, Cordeiro D. Phenotype, biochemical features, genotype and treatment outcome of pyridoxine-dependent epilepsy. Metab Brain Dis. 2017;32:443–451.
  • Plecko B, Paul K, Paschke E. Biochemical and molecular characterization of 18 patients with pyridoxine-dependent epilepsy and mutations of the antiquitin (ALDH7A1) gene. Hum Mutat. 2007;28:19–26.
  • Sadilkovaa K, Gospe M Jr, Houn Hahna SH. Simultaneous determination of alpha-aminoadipic semialdehyde, piperideine-6-carboxylate and pipecolic acid by LC–MS/MS for pyridoxine-dependent seizures and folinic acid-responsive seizures. J Neurosci Methods. 2009;184:136–141.
  • Mathis D, Abela L, Albersen M. The value of plasma vitamin B6 profiles in early onset epileptic encephalopathies. J Inherit Metab Dis. 2016;39:733–741.
  • Mercimek-Mahmutoglu S, Donner EJ, Siriwardena K. Normal plasma pipecolic acid level in pyridoxine dependent epilepsy due to ALDH7A1 mutations. Mol Genet Metab. 2013;110:197.
  • Basura GJ, Hagland SP, Wiltse AM, et al. Clinical features and the management of pyridoxine-dependent and pyridoxine-responsive seizures: review of 63 North American cases submitted to a patient registry. Eur J Pediatr. 2009;168:697–704.
  • Hartmann H, Fingerhut M, Jakobs C, et al. Status epilepticus in a neonate treated with pyridoxine because of a familial recurrence risk for antiquitin deficiency: pyridoxine toxicity? Dev Med Child Neurol. 2011;53:1150–1153.
  • Mercimek-Mahmutoglu S, Corderio D, Nagy L, et al. Lysine-restricted diet and mild cerebral serotonin deficiency in a patient with pyridoxine-dependent epilepsy caused by ALDH7A1 genetic defect. Mol Genet Metab Rep. 2014;1:124–128.
  • van Karnebeek CD, Stockler-Ipsiroglu S, Jaggumantri S, et al. Lysine-restricted diet as adjunct therapy for pyridoxine-dependent epilepsy: the PDE consortium consensus recommendations. JIMD Rep. 2014;15:1–11.
  • Mahajnah M, Corderio D, Austin V. A prospective case study of the safety and efficacy of lysine-restricted diet and arginine supplementation therapy in a patient with pyridoxine-dependent epilepsy caused by mutations in ALDH7A1. Pediatr Neurol. 2016;60:60–65.
  • Pena IA, MacKenzie A, van Karnebeek CDM. Current knowledge for pyridoxine-dependent epilepsy: a 2016 update. Expert Rev Endocrinol Metab. 2017;12:5–20.
  • Pena IA, Marques LA, Laranjeira ÂB. Mouse lysine catabolism to aminoadipate occurs primarily through the saccharopine pathway; implications for pyridoxine dependent epilepsy (PDE). Biochim Biophys Acta Mol Basis Dis. 2017;1863:121–128.
  • Guerin A, Aziz AS, Mutch C, et al. Pyridox(am)ine-5-phosphate oxidase deficiency treatable cause of neonatal epileptic encephalopathy with burst suppression: case report and review of the literature. J Child Neurol. 2015;30:1218–1225
  • Raimondi F, Mills P, Clayton PT, et al. A preterm neonate with seizures unresponsive to conventional treatment. BMJ Case Rep. 2015. DOI:10.1136/bcr-2015-209743
  • Hatch J, Coman D, Clayton P. Normal neurodevelopmental outcomes in pnpo deficiency: a case series and literature review. JIMD Rep. 2016;26:91–97.
  • Veeravigrom M, Damrongphol P, Ittiwut R, et al. Pyridoxal 5-phosphate-responsive epilepsy with novel mutations in the PNPO gene: a case report. Genet Mol Res. 2015;14:14130–14135.
  • Ruiz A, García-Villoria J, Ormazabal A. A new fatal case of pyridox(am)ine 5ʹ-phosphate oxidase (PNPO) deficiency. Mol Genet Metab. 2008;93:216–218.
  • Mills PB, Camuzeaux SS, Footitt EJ. Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome. Brain. 2014;137:1350–1360.
  • Porri S, Fluss J, Plecko B, et al. Positive outcome following early diagnosis and treatment of pyridoxal-5ʹ-phosphate oxidase deficiency: a case report. Neuropediatrics. 2014;45:64–68.
  • Ware TL, Earl J, Salomons GS. Typical and atypical phenotypes of PNPO deficiency with elevated CSF and plasma pyridoxamine on treatment. Dev Med Child Neurol. 2014;56:498–502.
  • Goyal M, Fequiere PR, McGrath TM, et al. Seizures with decreased levels of pyridoxal phosphate in cerebrospinal fluid. Pediatr Neurol. 2013;48:227–231.
  • Hoffmann GF, Schmitt B, Windfuhr M. Pyridoxal 5ʹ-phosphate may be curative in early-onset epileptic encephalopathy. J Inherit Metab Dis. 2007;30:96–99.
  • Xue J, Chang X, Zhang Y, et al. Novel phenotypes of pyridox(am)ine-5ʹ-phosphate oxidase deficiency and high prevalence of c.445_448del mutation in Chinese patients. Metab Brain Dis. 2017;32:1081–1087.
  • Sudarsanam A, Singh H, Wilcken B, et al. Cirrhosis associated with pyridoxal 5ʹ-phosphate treatment of pyridoxamine 5ʹ-phosphate oxidase deficiency. JIMD Rep. 2014;17:67–70.
  • Jaeger B, Abeling NG, Salomons GS, et al. Pyridoxine responsive epilepsy caused by a novel homozygous PNPO mutation. Mol Genet Metab Rep. 2016;6:60–63.
  • Di Salvo ML, Mastrangelo M, Nogués I, et al. Pyridoxine-5ʹ-phosphate oxidase (PNPO) deficiency: clinical and biochemical alterations associated with the C.347g>A (P.·Arg116gln) mutation. Mol Genet Metab. 2017;122:135–142.
  • Plecko B, Paul K, Mills P, et al. Pyridoxine responsiveness in novel mutations of the PNPO gene. Neurology. 2014;82:1425–1433.
  • Johnstone DL, Al-Shekaili HH, Tarailo-Graovac M. PLPHP deficiency: clinical, genetic, biochemical, and mechanistic insights. Brain. 2019;142:542–559.
  • Shiraku H, Nakashima M, Takeshita S. PLPBP mutations cause variable phenotypes of developmental and epileptic encephalopathy. Epilepsia Open. 2018;3:495–502.
  • Plecko B, Zweier M, Begemann A. Confirmation of mutations in PROSC as a novel cause of vitamin B 6 -dependent epilepsy. J Med Genet. 2017;54:809–814.
  • Darin N, Reid E, Prunetti L. Mutations in PROSC disrupt cellular pyridoxal phosphate homeostasis and cause vitamin-B6-dependent epilepsy. Am J Hum Genet. 2016;99:1325–1337.
  • Farrant RD, Walker V, Mills GA, et al. Pyridoxal phosphate de-activation by pyrroline-5-carboxylic acid. Increased risk of vitamin B6 deficiency and seizures in hyperprolinemia type II. J Biol Chem. 2001;276:15107–15116.
  • van de Ven S, Gardeitchik T, Kouwenberg D, et al. Long-term clinical outcome, therapy and mild mitochondrial dysfunction in hyperprolinemia. J Inherit Metab Dis. 2014;37:383–390.
  • Walker V, Mills GA, Peters SA, et al. Fits, pyridoxine, and hyperprolinaemia type II. Arch Dis Child. 2000;82:236–237.
  • Balasubramaniam S, Bowling F, Carpenter K. Perinatal hypophosphatasia presenting as neonatal epileptic encephalopathy with abnormal neurotransmitter metabolism secondary to reduced co-factor pyridoxal-5ʹ-phosphate availability. J Inherit Metab Dis. 2010;33(Suppl 3):S25–33.
  • Ng BG, Freeze HH. Human genetic disorders involving glycosylphosphatidylinositol (GPI) anchors and glycosphingolipids (GSL). J Inherit Metab Dis. 2015;38:171–178.
  • Baumgartner-Sigl S, Haberlandt E, Mumm S, et al. Pyridoxine-responsive seizures as the first symptom of infantile hypophosphatasia caused by two novel missense mutations (c.677T>C, p.M226T; c.1112C>T, p.T371I) of the tissue-nonspecific alkaline phosphatase gene. Bone. 2007;40:1655–1661.
  • Oyachi M, Harada D, Sakamoto N. A case of perinatal hypophosphatasia with a novel mutation in the ALPL gene: clinical course and review of the literature. Clin Pediatr Endocrinol. 2018;27:179–186.
  • Belachew D, Kazmerski T, Libman I. Infantile hypophosphatasia secondary to a novel compound heterozygous mutation presenting with pyridoxine-responsive seizures. JIMD Rep. 2013;11:17–24.
  • Demirbilek H, Alanay Y, Alikaşifoğlu A. Hypophosphatasia presenting with pyridoxine-responsive seizures, hypercalcemia, and pseudotumor cerebri: case report. J Clin Res Pediatr Endocrinol. 2012;4:34–38.
  • Güzel Nur B, Çelmeli G, Manguoğlu E, et al. Pyridoxine-responsive seizures in infantile hypophosphatasia and a novel homozygous mutation in ALPL gene. J Clin Res Pediatr Endocrinol. 2016;8:360–364.
  • Balasubramaniam S, Bowling F, Carpenter K. Perinatal hypophosphatasia presenting as neonatal epileptic encephalopathy with abnormal neurotransmitter metabolism secondary to reduced co-factor pyridoxal-5ʹ-phosphate availability. J Inherit Metab Dis. 2010;33(Suppl 3):S25–33.
  • Kuki I, Takahashi Y, Okazaki S. Vitamin B6-responsive epilepsy due to inherited GPI deficiency. Neurology. 2013;81:1467–1469.
  • Xue J, Li H, Zhang Y, et al. Clinical and genetic analysis of two Chinese infants with Mabry syndrome. Brain Dev. 2016;38:807–818.
  • Tanigawa J, Mimatsu H, Mizuno S, et al. Phenotype-genotype correlations of PIGO deficiency with variable phenotypes from infantile lethality to mild learning difficulties. Hum Mutat. 2017;38:805–815.
  • Thompson MD, Roscioli T, Marcelis C. Phenotypic variability in hyperphosphatasia with seizures and neurologic deficit (Mabry syndrome). Am J Med Genet A. 2012;158A:553–558.
  • Johnstone DL, Nguyen TT, Murakami Y. Compound heterozygous mutations in the gene PIGP are associated with early infantile epileptic encephalopathy. Hum Mol Genet. 2017;26:1706–1715.
  • Mogami Y, Suzuki Y, Murakami Y. Early infancy-onset stimulation-induced myoclonic seizures in three siblings with inherited glycosylphosphatidylinositol (GPI) anchor deficiency. Epileptic Disord. 2018;20:42–50.
  • Almeida AM, Murakami Y, Baker A. Targeted therapy for inherited gpi deficiency. N Engl J Med. 2007;356:1641–1647.
  • Wempe MF, Kumar A, Kumar V. Identification of a novel biomarker for pyridoxine-dependent epilepsy: implications for newborn screening. J Inherit Metab Dis. 2019;42:565–574.
  • Khayat M, Korman SH, Frankel P. PNPO deficiency: an under diagnosed inborn error of pyridoxine metabolism. Mol Genet Metab. 2008;94:431–434.
  • Pena IA, Roussel Y, Daniel K. Pyridoxine-dependent epilepsy in Zebrafish Caused by ALDH7A1 deficiency. Genetics. 2017;207:1501–1518.
  • Zabinyakov N1, Bullivant G2, Cao F, et al. Characterization of the first knock-out aldh7a1 zebrafish model for pyridoxine-dependent epilepsy using CRISPR-Cas9 technology. PLoS One. 2017;12(10):e0186645.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.