471
Views
5
CrossRef citations to date
0
Altmetric
Review

Therapeutic approaches to cholinergic deficiency in Lewy body diseases

, , &
Pages 41-53 | Received 06 Aug 2019, Accepted 01 Oct 2019, Published online: 12 Oct 2019

References

  • Litvan I, Aarsland D, Adler CH, et al. MDS task force on mild cognitive impairment in Parkinson’s Disease: critical review of PD-MCI. Mov.Disord. 2011;26:1814–1824.
  • McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy Bodies: 4th consensus report of the DLB consortium. Neurology. 2017;89:88–100.
  • Fereshtehnejad SM, Yao C, Pelletier A, et al. Evolution of prodromal Parkinson’s disease and dementia with Lewy Bodies: a prospective study. Brain. 2019;142:2051–2067.
  • Haba-Rubio J, Frauscher B, Marques-Vidal P, et al. Prevalence and determinants of REM sleep behavior disorder in the general population. Sleep. 2017 Dec 5. [Epub ahead of print].
  • Postuma RB, Gagnon JF, Tuineaig M, et al. Antidepressants and REM sleep behavior disorder: isolated side effect or neurodegenerative signal? Sleep. 2013;36:1579–1585.
  • Zhang C, Zhou P, Yuan T. The cholinergic system in the cerebellum: from structure to function. Rev.Neurosci. 2016;27:769–776.
  • Bigl V, Woolf NJ, Butcher LL. Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: a combined fluorescent tracer and acetylcholinesterase analysis. Brain ResBull. 1982;8:727–749.
  • Mesulam MM, Mufson EJ, Levey AI, et al. Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (Substantia Innominata), and hypothalamus in the rhesus monkey. J.Comp.Neurol. 1983;214:170–197.
  • Mesulam MM, Mufson EJ, Wainer BH, et al. Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience. 1983;10:1185–1201.
  • Lewy FH. Zur Pathologischen Anatomie Der Paralysis Agitans. Dtsch Ztschr Nervenheilkunde. 1914;50:50–55.
  • Gaspar P, Gray F. Dementia in idiopathic Parkinson’s Disease. A neuropathological study of 32 cases. Acta Neuropathol. 1984;64:43–52.
  • Nakano I, Hirano A. Parkinson’s Disease: neuron loss in the nucleus basalis without concomitant Alzheimer’s disease. Ann.Neurol. 1984;15:415–418.
  • Arendt T, Bigl V, Arendt A, et al. Loss of neurons in the nucleus basalis of meynert in Alzheimer’s Disease, paralysis agitans and Korsakoff’s Disease. Acta Neuropathol. 1983;61:101–108.
  • Whitehouse PJ, Hedreen JC, White CL 3rd, et al. Basal forebrain neurons in the dementia of Parkinson Disease. Ann.Neurol. 1983;13:243–248.
  • Perry EK, Curtis M, Dick DJ, et al. Cholinergic correlates of cognitive impairment in Parkinson’s Disease: comparisons with Alzheimer’s Disease. J.Neurol.Neurosurg.Psychiatry. 1985;48:413–421.
  • Candy JM, Perry RH, Perry EK, et al. Pathological changes in the nucleus of meynert in Alzheimer’s and Parkinson’s Diseases. J.Neurol.Sci. 1983;59:277–289.
  • Perry EK, Irving D, Kerwin JM, et al. Cholinergic transmitter and neurotrophic activities in Lewy Body dementia: similarity to Parkinson’s and distinction from Alzheimer Disease. Alzheimer DisAssocDisord. 1993;7:69–79.
  • Tiraboschi P, Hansen LA, Alford M, et al. Cholinergic dysfunction in diseases with Lewy Bodies. Neurology. 2000;54:407–411.
  • Bohnen NI, Kaufer DI, Ivanco LS, et al. Cortical cholinergic function is more severely affected in Parkinsonian Dementia than in Alzheimer Disease: an in vivo positron emission tomographic study. Arch.Neurol. 2003;60:1745–1748.
  • Hilker R, Thomas AV, Klein JC, et al. Dementia in Parkinson Disease: functional imaging of cholinergic and dopaminergic pathways. Neurology. 2005;65:1716–1722.
  • Shimada H, Hirano S, Shinotoh H, et al. Mapping of brain acetylcholinesterase alterations in Lewy Body disease by PET. Neurology. 2009;73:273–278.
  • Tokimura H, Di Lazzaro V, Tokimura Y, et al. Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J.Physiol. 2000;523 Pt(2):503–513.
  • Cromarty RA, Elder GJ, Graziadio S, et al. Neurophysiological biomarkers for Lewy Body dementias. Clin.Neurophysiol. 2016;127:349–359.
  • Di Lazzaro V, Oliviero A, Profice P, et al. Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. ExpBrain Res. 2000;135:455–461.
  • Yarnall AJ, Rochester L, Baker MR, et al. Short latency afferent inhibition: a biomarker for mild cognitive impairment in Parkinson’s Disease? Mov.Disord. 2013;28:1285–1288.
  • Celebi O, Temucin CM, Elibol B, et al. Short latency afferent inhibition in Parkinson’s Disease patients with dementia. Mov.Disord. 2012;27:1052–1055.
  • Di Lazzaro V, Pilato F, Dileone M, et al. Functional evaluation of cerebral cortex in dementia with Lewy Bodies. Neuroimage. 2007;37:422–429.
  • Oikawa H, Sasaki M, Ehara S, et al. Substantia innominata: MR findings in Parkinson’s Disease. Neuroradiology. 2004;46:817–821.
  • Choi SH, Jung TM, Lee JE, et al. Volumetric analysis of the substantia innominata in patients with Parkinson’s Disease according to cognitive status. Neurobiol.Aging. 2012;33:1265–1272.
  • Lee JE, Cho KH, Song SK, et al. Exploratory analysis of neuropsychological and neuroanatomical correlates of progressive mild cognitive impairment in Parkinson’s Disease. J Neurol Neurosurg Psychiatry. 2014;85:7–16.
  • Zaborszky L, Hoemke L, Mohlberg H, et al. Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain. Neuroimage. 2008;42:1127–1141.
  • Ray NJ, Bradburn S, Murgatroyd C, et al. In vivo cholinergic basal forebrain atrophy predicts cognitive decline in De Novo Parkinson’s Disease. Brain. 2018;141:165–176.
  • Schulz J, Pagano G, Fernandez Bonfante JA, et al. Nucleus basalis of meynert degeneration precedes and predicts cognitive impairment in Parkinson’s Disease. Brain. 2018;141:1501–1516.
  • Bohnen NI, Kaufer DI, Hendrickson R, et al. Cognitive correlates of cortical cholinergic denervation in Parkinson’s Disease and Parkinsonian dementia. J.Neurol. 2006;253:242–247.
  • Bohnen NI, Albin RL, Muller ML, et al. Frequency of cholinergic and caudate nucleus dopaminergic deficits across the predemented cognitive spectrum of Parkinson Disease and evidence of interaction effects. JAMA Neurol. 2015;72:194–200.
  • Barrett MJ, Sperling SA, Blair JC, et al. Lower Volume, more impairment: reduced cholinergic basal forebrain grey matter density is associated with impaired cognition in Parkinson Disease. J.Neurol.Neurosurg.Psychiatry. 2019.
  • Shinotoh H, Namba H, Yamaguchi M, et al. Positron emission tomographic measurement of acetylcholinesterase activity reveals differential loss of ascending cholinergic systems in Parkinson’s Disease and progressive supranuclear palsy. Ann.Neurol. 1999;46:62–69.
  • Manganelli F, Vitale C, Santangelo G, et al. Functional involvement of central cholinergic circuits and visual hallucinations in Parkinson’s Disease. Brain. 2009;132:2350–2355.
  • Barrett MJ, Blair JC, Sperling SA, et al. Baseline symptoms and basal forebrain volume predict future psychosis in early Parkinson Disease. Neurology. 2018;90:e1618–e1626.
  • Bohnen NI, Kaufer DI, Hendrickson R, et al. Cortical cholinergic denervation is associated with depressive symptoms in Parkinson’s Disease and Parkinsonian Dementia. J.Neurol.Neurosurg.Psychiatry. 2007;78:641–643.
  • McKeith I, Del Ser T, Spano P, et al. Efficacy of Rivastigmine in dementia with Lewy Bodies: a randomised, double-blind, placebo-controlled international study. Lancet. 2000;356:2031–2036.
  • Fabbrini G, Barbanti P, Aurilia C, et al. Donepezil in the treatment of hallucinations and delusions in Parkinson’s Disease. Neurol.Sci. 2002;23:41–43.
  • Kurita A, Ochiai Y, Kono Y, et al. The beneficial effect of donepezil on visual hallucinations in three patients with Parkinson’s Disease. JGeriatrPsychiatry Neurol. 2003;16:184–188.
  • Bergman J, Lerner V. Successful use of donepezil for the treatment of psychotic symptoms in patients with Parkinson’s Disease. Clin.Neuropharmacol. 2002;25:107–110.
  • Reading PJ, Luce AK, McKeith IG. Rivastigmine in the Treatment of Parkinsonian Psychosis and Cognitive Impairment: preliminary findings from an open trial. Mov.Disord. 2001;16:1171–1174.
  • Rovers JM, Dautzenberg PL, Bruggen JPT. Rivastigmine as adjunctive therapy in the therapeutic dilemma for the treatment of hallucinations due to Parkinson Disease]. Tijdschr.Gerontol.Geriatr. 2006;37:117–120.
  • Burn D, Emre M, McKeith I, et al. Effects of rivastigmine in patients with and without visual hallucinations in dementia associated with Parkinson’s Disease. Mov.Disord. 2006;21:1899–1907.
  • Bullock R, Cameron A. Rivastigmine for the treatment of dementia and visual hallucinations associated with Parkinson’s Disease: a case series. Curr.Med.Res.Opin. 2002;18:258–264.
  • Devos D, Moreau C, Maltete D, et al. Rivastigmine in apathetic but dementia and depression-free patients with Parkinson’s Disease: a double-blind, placebo-controlled, randomised clinical trial. J.Neurol.Neurosurg.Psychiatry. 2014;85:668–674.
  • Lemstra AW, Eikelenboom P, van Gool WA. The cholinergic deficiency syndrome and its therapeutic implications. Gerontology. 2003;49:55–60.
  • Pinto T, Lanctot KL, Herrmann N. Revisiting the cholinergic hypothesis of behavioral and psychological symptoms in dementia of the Alzheimer’s Type. Ageing ResRev. 2011;10:404–412.
  • Bohnen NI, Frey KA, Studenski S, et al. Gait speed in Parkinson Disease correlates with cholinergic degeneration. Neurology. 2013;81:1611–1616.
  • Rochester L, Yarnall AJ, Baker MR, et al. Cholinergic dysfunction contributes to gait disturbance in early Parkinson’s Disease. Brain. 2012;135:2779–2788.
  • Chung KA, Lobb BM, Nutt JG, et al. Effects of a central cholinesterase inhibitor on reducing falls in Parkinson Disease. Neurology. 2010;75:1263–1269.
  • Henderson EJ, Lord SR, Brodie MA, et al. Rivastigmine for gait stability in patients with Parkinson’s Disease (ReSPonD): a randomised, double-blind, placebo-controlled, Phase 2 trial. Lancet Neurol. 2016;15:249–258.
  • Li Z, Yu Z, Zhang J, et al. Impact of rivastigmine on cognitive dysfunction and falling in Parkinson’s Disease Patients. Eur.Neurol. 2015;74:86–91.
  • Bohnen NI, Muller ML, Kotagal V, et al. Heterogeneity of cholinergic denervation in Parkinson’s Disease without dementia. JCerebBlood Flow Metab. 2012;32:1609–1617.
  • Saxena M, Dubey R. Target Enzyme in Alzheimer’s Disease: acetylcholinesterase Inhibitors. Curr Top Med Chem. 2019;19:264–275.
  • Chitnis S, Rao J. Rivastigmine in Parkinson’s Disease dementia. Expert Opin Drug Metab Toxicol. 2009;5:941–955.
  • Lilienfeld S. Galantamine–a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s Disease. CNS Drug Rev. 2002;8:159–176.
  • Goldman JG, Vaughan CL, Goetz CG. An update expert opinion on management and research strategies in Parkinson’s Disease psychosis. Expert OpinPharmacother. 2011;12:2009–2024.
  • Pagano G, Rengo G, Pasqualetti G, et al. Cholinesterase inhibitors for Parkinson’s Disease: a systematic review and meta-analysis. J.Neurol.Neurosurg.Psychiatr. 2015;86:767–773.
  • van Laar T, De Deyn PP, Aarsland D, et al. Effects of cholinesterase inhibitors in Parkinson’s disease dementia: a review of clinical data. CNS Neurosci Ther. 2011;17:428–441.
  • Aarsland D, Ballard C, Rongve A, et al. Clinical trials of dementia with Lewy Bodies and Parkinson’s Disease dementia. Curr Neurol Neurosci Rep. 2012;12:492–501.
  • Stinton C, McKeith I, Taylor JP, et al. Pharmacological management of Lewy Body dementia: a systematic review and meta-analysis. Am.J.Psychiatry. 2015;172:731–742.
  • Emre M, Aarsland D, Albanese A, et al. Rivastigmine for dementia associated with Parkinson’s Disease. N.Engl.J.Med. 2004;351:2509–2518.
  • Emre M, Poewe W, De Deyn PP, et al. Long-term safety of rivastigmine in Parkinson Disease dementia: an open-label, randomized study. Clin.Neuropharmacol. 2014;37:9–16.
  • Emre M, Cummings JL, Lane RM. Rivastigmine in dementia associated with Parkinson’s Disease and Alzheimer’s Disease: similarities and differences. JAlzheimer’s Dis. 2007;11:509–519.
  • Dubois B, Tolosa E, Katzenschlager R, et al. Donepezil in Parkinson’s Disease dementia: a randomized, double-blind efficacy and safety study. Mov.Disord. 2012;27:1230–1238.
  • Beversdorf DQ, Warner JL, Davis RA, et al. Donepezil in the treatment of dementia with Lewy Bodies. Am.J.Geriatr.Psychiatry. 2004;12:542–544.
  • Mori E, Ikeda M, Kosaka K, et al. Donepezil for dementia with Lewy Bodies: a randomized, placebo-controlled trial. Ann.Neurol. 2012;72:41–52.
  • Thomas AJ, Burn DJ, Rowan EN, et al. A comparison of the efficacy of donepezil in Parkinson’s Disease with dementia and dementia with Lewy Bodies. Int.J.Geriatr.Psychiatry. 2005;20:938–944.
  • Aarsland D, Hutchinson M, Larsen JP. Cognitive, psychiatric and motor response to galantamine in Parkinson’s Disease with dementia. Int.J.Geriatr.Psychiatry. 2003;18:937–941.
  • Litvinenko IV, Odinak MM, Mogil’naya VI, et al. Efficacy and safety of galantamine (Reminyl) for dementia in patients with Parkinson’s Disease (an Open controlled trial). Neurosci.Behav.Physiol. 2008;38:937–945.
  • Grace J, Amick MM, Friedman JH. A double-blind comparison of galantamine hydrobromide ER and placebo in Parkinson Disease. J.Neurol.Neurosurg.Psychiatr. 2009;80:18–23.
  • Edwards K, Royall D, Hershey L, et al. Efficacy and safety of galantamine in patients with dementia with Lewy Bodies: a 24-week open-label study. Dement.Geriatr.Cogn.Disord. 2007;23:401–405.
  • Seppi K, Ray Chaudhuri K, Coelho M, et al., Sampaio and the collaborators of the Parkinson’s Disease Update on Non-Motor Symptoms Study Group on behalf of the Movement Disorders,Society Evidence. Update on treatments for nonmotor symptoms of Parkinson’s Disease-an evidence-based medicine review. Mov.Disord. 2019;34:180–198.
  • Pink J, O’Brien J, Robinson L, et al. Dementia: assessment, management and support: summary of updated NICE guidance. BMJ. 2018;361:k2438.
  • Sawada H, Oeda T, Kohsaka M, et al. Early use of donepezil against psychosis and cognitive decline in Parkinson’s Disease: a randomised controlled trial for 2 Years. J Neurol Neurosurg. 2018;89:1332–1340.
  • Noetzli M, Eap CB. Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of Alzheimer’s Disease. Clin.Pharmacokinet. 2013;52:225–241.
  • Medhurst AD, Lezoualc’h F, Fischmeister R, et al. Quantitative mRNA analysis of five C-terminal splice variants of the human 5-HT4 receptor in the central nervous system by taqman real time RT-PCR. Brain ResMolBrain Res. 2001;90:125–134.
  • Varnäs K, Halldin C, Pike VW, et al. Distribution of 5-HT4 receptors in the postmortem human brain--an autoradiographic study using [125I]SB 207710. Eur.Neuropsychopharmacol. 2003;13:228–234.
  • Mohler EG, Shacham S, Noiman S, et al. VRX-03011, a novel 5-HT4 Agonist, enhances memory and hippocampal acetylcholine efflux. Neuropharmacology. 2007;53:563–573.
  • Shen F, Smith JAM, Chang R, et al. 5-HT(4) Receptor agonist mediated enhancement of cognitive function in vivo and amyloid precursor protein processing in vitro: a pharmacodynamic and pharmacokinetic assessment. Neuropharmacology. 2011;61:69–79.
  • Megerian JT, Kalafer M, Schacham S, et al. Results of a phase 2A study of a novel 5HT4 agonist for the treatment of Alzheimer’s Disease. American Society for Experimental Neurotherapeutics Annual Meeting; 2009. Chicago, IL.
  • Marcos B, Gil-Bea F, Hirst WD, et al. Lack of localization of 5-HT6 receptors on cholinergic neurons: implication of multiple neurotransmitter systems in 5-HT6 receptor-mediated acetylcholine release. Eur.J.Neurosci. 2006;24:1299–1306.
  • de Jong IEM, Mørk A. Antagonism of the 5-HT6 receptor - preclinical rationale for the treatment of Alzheimer’s Disease. Neuropharmacology. 2017;125:50–63.
  • Wess J, Eglen RM, Gautam D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. NatRevDrug Discov. 2007;6:721–733.
  • Ruberg M, Ploska A, Javoy-Agid F, et al. Muscarinic binding and choline acetyltransferase activity in parkinsonian subjects with reference to dementia. Brain Res. 1982;232:129–139.
  • Dubois B, Ruberg M, Javoy-Agid F, et al. A subcortico-cortical cholinergic system is affected in Parkinson’s Disease. Brain Res. 1983;288:213–218.
  • Rinne JO, Lönnberg P, Marjamäki P, et al. Brain muscarinic receptor subtypes are differently affected in Alzheimer’s Disease and Parkinson’s Disease. Brain Res. 1989;483:402–406.
  • Ballard C, Piggott M, Johnson M, et al. Delusions associated with elevated muscarinic binding in dementia with Lewy Bodies. Ann.Neurol. 2000;48:868–876.
  • Bohnen NI, Kanel P, Müller MLTM. Molecular imaging of the cholinergic system in Parkinson’s Disease. Int.Rev.Neurobiol. 2018;141:211–250.
  • Colloby SJ, McKeith IG, Burn DJ, et al. Cholinergic and perfusion brain networks in Parkinson Disease dementia. Neurology. 2016;87:178–185.
  • Duvoisin RC. Cholinergic-anticholinergic antagonism in parkinsonism. Arch.Neurol. 1967;17:124–136.
  • Langmead CJ, Watson J, Reavill C. Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol.Ther. 2008;117:232–243.
  • Clader JW, Wang Y. Muscarinic receptor agonists and antagonists in the treatment of Alzheimer’s Disease. Curr.Pharm.Des. 2005;11:3353–3361.
  • Bodick NC, Offen WW, Levey AI, et al. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer Disease. Arch.Neurol. 1997;54:465–473.
  • Fisher A, Heldman E, Gurwitz D, et al. M1 agonists for the treatment of Alzheimer’s Disease. Novel properties and clinical update. Ann.N.Y.Acad.Sci. 1996;777:189–196.
  • Zoli M, Pistillo F, Gotti C. Diversity of native nicotinic receptor subtypes in mammalian brain. Neuropharmacology. 2015;96:302–311.
  • Quik M, Zhang D, McGregor M, et al. Alpha7 nicotinic receptors as therapeutic targets for Parkinson’s Disease. Biochem.Pharmacol. 2015;97:399–407.
  • Lange KW, Wells FR, Jenner P, et al. Altered muscarinic and nicotinic receptor densities in cortical and subcortical brain regions in Parkinson’s Disease. J.Neurochem. 1993;60:197–203.
  • Rinne JO, Myllykylä T, Lönnberg P, et al. A postmortem study of brain nicotinic receptors in Parkinson’s and Alzheimer’s Disease. Brain Res. 1991;547:167–170.
  • Whitehouse PJ, Martino AM, Wagster MV, et al. Reductions in [3H]nicotinic acetylcholine binding in Alzheimer’s Disease and Parkinson’s Disease: an autoradiographic study. Neurology. 1988;38:720–723.
  • Reid RT, Sabbagh MN, Corey-Bloom J, et al. Nicotinic receptor losses in dementia with Lewy Bodies: comparisons with Alzheimer’s Disease. Neurobiol.Aging. 2000;21:741–746.
  • Court JA, Ballard CG, Piggott MA, et al. Visual hallucinations are associated with Lower alpha bungarotoxin binding in dementia with Lewy Bodies. Pharmacol.Biochem.Behav. 2001;70:571–579.
  • Meyer PM, Strecker K, Kendziorra K, et al. Reduced alpha4beta2*-Nicotinic acetylcholine receptor binding and its relationship to mild cognitive and depressive symptoms in Parkinson Disease. Arch.Gen.Psychiatry. 2009;66:866–877.
  • Fujita M, Ichise M, Zoghbi SS, et al. Widespread decrease of nicotinic acetylcholine receptors in Parkinson’s Disease. Ann.Neurol. 2006;59:174–177.
  • Colloby SJ, Perry EK, Pakrasi S, et al. Nicotinic 123I-5IA-85380 single photon emission computed tomography as a predictor of cognitive progression in Alzheimer’s Disease and dementia with Lewy Bodies. Am.J.Geriatr.Psychiatry. 2010;18:86–90.
  • Pimlott SL, Piggott M, Owens J, et al. Nicotinic acetylcholine receptor distribution in Alzheimer’s Disease, dementia with Lewy Bodies, Parkinson’s Disease, and vascular dementia: in vitro binding study using 5-[(125)i]-a-85380. Neuropsychopharmacology. 2004;29:108–116.
  • Quik M, O’Leary K, Tanner CM. Nicotine and Parkinson’s Disease: implications for therapy. Mov.Disord. 2008;23:1641–1652.
  • Oertel W, Müller H, Schade-Brittinger C, et al. The NIC-PD-study –a randomized, placebo-controlled, double-blind, multi-centre trial to assess the disease-modifying potential of transdermal nicotine in Early Parkinson‘s Disease in Germany and N. America. Mov Disord. 2018;33(suppl 2):S159–S160.
  • Villafane G, Thiriez C, Audureau E, et al. High-dose transdermal nicotine in Parkinson’s Disease patients: a randomized, open-label, blinded-endpoint evaluation Phase 2 Study. Eur.J.Neurol. 2018;25:120–127.
  • Clemens P, Baron JA, Coffey D, et al. The short-term effect of nicotine chewing gum in patients with Parkinson’s Disease. Psychopharmacology (Berl). 1995;117:253–256.
  • Lieberman A, Lockhart TE, Olson MC, et al. Nicotine bitartrate reduces falls and freezing of gait in Parkinson Disease: a reanalysis. Front.Neurol. 2019;10:424.
  • Kelton MC, Kahn HJ, Conrath CL, et al. The effects of nicotine on Parkinson’s Disease. Brain Cogn. 2000;43:274–282.
  • Lemay S, Chouinard S, Blanchet P, et al. Lack of efficacy of a nicotine transdermal treatment on motor and cognitive deficits in Parkinson’s Disease. Prog.Neuropsychopharmacol.Biol.Psychiatry. 2004;28:31–39.
  • Newhouse P, Kellar K, Aisen P, et al. Nicotine treatment of mild cognitive impairment: A 6-month double-blind pilot clinical trial. Neurology. 2012;78:91–101.
  • Hukkanen J, Jacob P 3rd, Benowitz NL. Metabolism and disposition kinetics of nicotine. Pharmacol.Rev. 2005;57:79–115.
  • Trenkwalder C, Berg D, Rascol O, et al. A placebo-controlled trial of AQW051 in patients with moderate to severe levodopa-induced dyskinesia. Mov.Disord. 2016;31:1049–1054.
  • Parkinson Study Group. Randomized placebo-controlled study of the nicotinic agonist SIB-1508Y in Parkinson Disease. Neurology. 2006;66:408–410.
  • Berger-Sweeney J, Stearns NA, Frick KM, et al. Cholinergic basal forebrain is critical for social transmission of food preferences. Hippocampus. 2000;10:729–738.
  • Butt AE, Schultz JA, Arnold LL, et al. Lesions of the rat nucleus basalis magnocellularis disrupt appetitive-to-aversive transfer learning. Integr Physiol Behav Sci. 2003;38:253–271.
  • Chudasama Y. Cholinergic modulation of visual attention and working memory: dissociable effects of basal forebrain 192-IgG-saporin lesions and intraprefrontal infusions of scopolamine. Learn Memory. 2004;11:78–86.
  • Linster C, Garcia PA, Hasselmo ME, et al. Selective loss of cholinergic neurons projecting to the olfactory system increases perceptual generalization between similar, but not dissimilar, odorants. Behav.Neurosci. 2001;115:826–833.
  • Kurosawa M, Sato A, Sato Y. Stimulation of the nucleus basalis of meynert increases acetylcholine release in the cerebral cortex in rats. Neurosci.Lett. 1989;98:45–50.
  • McLin DE, Miasnikov AA, Weinberger NM. Induction of behavioral associative memory by stimulation of the nucleus basalis. Proc.Natl.Acad.Sci.U.S.A. 2002;99:4002–4007.
  • Bakin JS, Weinberger NM. Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proc Nat Acad Sci. 1996;93:11219–11224.
  • Kilgard MP, Vazquez JL, Engineer ND, et al. Experience dependent plasticity alters cortical synchronization. Hear.Res. 2007;229:171–179.
  • Weinberger NM, Miasnikov AA, Chen JC. Sensory memory consolidation observed: increased specificity of detail over days. Neurobiol.Learn.Mem. 2009;91:273–286.
  • Miasnikov AA, Chen JC, Weinberger NM. Consolidation and long-term retention of an implanted behavioral memory. Neurobiol.Learn.Mem. 2011;95:286–295.
  • Weinberger NM, Miasnikov AA, Bieszczad KM, et al. Gamma band plasticity in sensory cortex is a signature of the strongest memory rather than memory of the training stimulus. Neurobiol.Learn.Mem. 2013;104:49–63.
  • Montero-Pastor A, Vale-Martínez A, Guillazo-Blanch G, et al. Effects of electrical stimulation of the nucleus basalis on two-way active avoidance acquisition, retention, and retrieval. BehavBrain Res. 2004;154:41–54.
  • Freund H, Kuhn J, Lenartz D, et al. Cognitive functions in a patient with parkinson-dementia syndrome undergoing deep brain stimulation. Arch.Neurol. 2009;66:781–785.
  • Barnikol TT, Pawelczyk NBA, Barnikol UB, et al. Changes in apraxia after deep brain stimulation of the nucleus basalis meynert in a patient with parkinson dementia syndrome. Mov Disord. 2010;25:1519–1520.
  • Slomine BS, Silverstein FS, Christensen J, et al. Neuropsychological outcomes of Children 1 Year after pediatric cardiac arrest: secondary analysis of 2 randomized clinical Trials. JAMA Neurol. 2018;75:1502–1510.
  • Kuhn J, Hardenacke K, Lenartz D, et al. Deep brain stimulation of the nucleus basalis of meynert in Alzheimer’s Dementia. Mol.Psychiatry. 2015;20:353–360.
  • Thevathasan W, Pogosyan A, Hyam JA, et al. Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism. Brain. 2012;135:148–160.
  • Thevathasan W, Debu B, Aziz T, et al. Pedunculopontine nucleus deep brain stimulation in Parkinson’s Disease: a clinical review. Mov Disord. 2018;33:10–20.
  • Zrinzo L, Zrinzo LV, Hariz M. The peripeduncular nucleus: a novel target for deep brain stimulation? Neuroreport. 2007;18:1301–1302.
  • Yelnik J. PPN or PPD, what is the target for deep brain stimulation in Parkinson’s Disease? Brain. 2007;130:e79–e79.
  • Jenkinson N, Nandi D, Muthusamy K, et al. Anatomy, physiology, and pathophysiology of the pedunculopontine nucleus. Mov.Disord. 2009;24:319–328.
  • Garcia-Rill E, Houser CR, Skinner RD, et al. Locomotion-inducing sites in the vicinity of the pedunculopontine nucleus. Brain ResBull. 1987;18:731–738.
  • Nandi D, Aziz TZ, Giladi N, et al. Reversal of akinesia in experimental parkinsonism by GABA antagonist microinjections in the pedunculopontine nucleus. Brain. 2002;125:2418–2430.
  • Wang J, Zhang Y, Zhang X, et al. Deep brain stimulation of pedunculopontine nucleus for postural instability and gait disorder after Parkinson Disease: a meta-analysis of individual patient data. World Neurosurg. 2017;102:72–78.
  • Plaha P, Gill SS. Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s Disease. Neuroreport. 2005;16:1883–1887.
  • Ferraye MU, Debû B, Fraix V, et al. Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s Disease. Brain. 2010;133:205–214.
  • Moro E, Hamani C, Poon Y, et al. Unilateral pedunculopontine stimulation improves falls in Parkinson’s Disease. Brain. 2010;133:215–224.
  • Strafella AP, Lozano AM, Ballanger B, et al. rCBF changes associated with PPN stimulation in a patient with Parkinson’s Disease: A PET study. Mov Disord. 2008;23:1051–1054.
  • Thevathasan W, Coyne TJ, Hyam JA, et al. Pedunculopontine nucleus stimulation improves gait freezing in Parkinson Disease. Neurosurgery. 2011;69:1248–53; discussion 1254. discussion 1254.
  • Mestre TA, Sidiropoulos C, Hamani C, et al. Long-term double-blinded unilateral pedunculopontine area stimulation in Parkinson’s Disease. Mov Disord. 2016;31:1570–1574.
  • Thevathasan W, Cole MH, Graepel CL, et al. A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation. Brain. 2012;135:1446–1454.
  • Thevathasan W, Silburn PA, Brooker H, et al. The impact of low-frequency stimulation of the pedunculopontine nucleus region on reaction time in parkinsonism. J Neurol Neurosurg. 2010;81:1099–1104.
  • Welter M, Demain A, Ewenczyk C, et al. PPNa-DBS for gait and balance disorders in Parkinson’s Disease: a double-blind, randomised study. J.Neurol. 2015;262:1515–1525.
  • Stefani A, Lozano AM, Peppe A, et al. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s Disease. Brain. 2007;130:1596–1607.
  • Nosko D, Ferraye MU, Fraix V, et al. Low-frequency versus high-frequency stimulation of the pedunculopontine nucleus area in Parkinson’s Disease: a randomised controlled trial. J Neurol Neurosurg. 2015;86:674–679.
  • Khan S, Mooney L, Plaha P, et al. Outcomes from stimulation of the caudal zona incerta and pedunculopontine nucleus in patients with Parkinson’s Disease. Br.J.Neurosurg. 2011;25:273–280.
  • Khan S, Gill SS, Mooney L, et al. Combined pedunculopontine-subthalamic stimulation in Parkinson Disease. Neurology. 2012;78:1090–1095.
  • Thevathasan W, Pogosyan A, Hyam JA, et al. A block to pre-prepared movement in gait freezing, relieved by pedunculopontine nucleus stimulation. Brain. 2011;134:2085–2095.
  • Fischer J, Schwiecker K, Bittner V, et al. Modulation of attentional processing by deep brain stimulation of the pedunculopontine nucleus region in patients with Parkinsonian Disorders. Neuropsychology. 2015;29:632–637.
  • Duncan T, Valenzuela M. Alzheimer’s disease, dementia, and stem cell therapy. Stem Cell Res Ther. 2017;8:111.
  • Bissonnette CJ, Lyass L, Bhattacharyya BJ, et al. The controlled generation of functional basal forebrain cholinergic neurons from human embryonic stem cells. Stem Cells. 2011;29:802–811.
  • Moghadam FH, Alaie H, Karbalaie K, et al. Transplantation of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves cognitive function in alzheimerian rats. Differentiation. 2009;78:59–68. Special Issue on Stem Cells.
  • Wang H, Hu Y-C, Markoulaki S, et al. Neurophysiological biomarkers for Lewy body dementias. Nat.Biotechnol. 2016;127:349–359.
  • Fong C, Gauthaman K, Bongso A. Teratomas from pluripotent stem cells: a clinical hurdle. J.Cell.Biochem. 2010;111:769–781.
  • Goldberg NRS, Marsh SE, Ochaba J, et al. Human neural progenitor transplantation rescues behavior and reduces α-synuclein in a transgenic model of dementia with Lewy Bodies. Stem Cells Transl Med. 2017;6:1477–1490.
  • McGinley LM, Kashlan ON, Bruno ES, et al. Human neural stem cell transplantation improves cognition in a murine model of Alzheimer’s Disease. Sci Rep. 2018;8:14776.
  • Xuan AG, Luo M, Ji WD, et al. Effects of engrafted neural stem cells in Alzheimer’s Disease rats. Neurosci.Lett. 2009;450:167–171.
  • Hossini AM, Megges M, Prigione A, et al. Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer’s Disease donor as a model for investigating AD-Associated Gene regulatory networks. BMC Genomics. 2015;16:84.
  • Muratore CR, Rice HC, Srikanth P, et al. The familial Alzheimer’s Disease APPV717I mutation alters APP processing and tau expression in iPSC-derived neurons. Hum.Mol.Genet. 2014;23:3523–3536.
  • Balez R, Steiner N, Engel M, et al. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s Disease. Sci Rep. 2016;6:31450.
  • Chakari-Khiavi F, Dolati S, Chakari-Khiavi A, et al. Prospects for the application of mesenchymal stem cells in Alzheimer’s Disease treatment. Life Sci. 2019;231:116564.
  • Oh SH, Kim HN, Park H, et al. Mesenchymal stem cells increase hippocampal neurogenesis and neuronal differentiation by enhancing the wnt signaling pathway in an Alzheimer’s Disease model. Cell Transplant. 2015;24:1097–1109.
  • Ra JC, Shin IS, Kim SH, et al. Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev. 2011;20:1297–1308.
  • Lee J, Kuroda S, Shichinohe H, et al. Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice. Neuropathology. 2003;23:169–180.
  • Park H, Oh J, Shim G, et al. In vivo neuronal gene editing via CRISPR-Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s Disease. Nat.Neurosci. 2019;22:524–528.
  • Jiang S, Wen N, Li Z, et al.,, . Integrative system biology analyses of CRISPR-Edited iPSC-derived neurons and human brains reveal deficiencies of presynaptic signaling in FTLD and PSP. Transl Psychiatry. 2018;8:265.
  • García-León JA, Cabrera-Socorro A, Eggermont K, et al. Generation of a human induced pluripotent stem cell-based model for tauopathies combining three microtubule-associated protein TAU mutations which displays several phenotypes linked to neurodegeneration. Alzheimers Dement. 2018;14:1261–1280.
  • Domenico AD, Carola G, Calatayud C, et al. Patient-specific iPSC-derived astrocytes contribute to non-cell-autonomous neurodegeneration in Parkinson’s Disease. Stem Cell Reports. 2019;12:213–229.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.