527
Views
20
CrossRef citations to date
0
Altmetric
Review

Alzheimer’s disease: review of current nanotechnological therapeutic strategies

ORCID Icon &
Pages 271-279 | Received 05 Sep 2019, Accepted 17 Jan 2020, Published online: 27 Jan 2020

References

  • Goedert M. Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Aß, tau, and a-synuclein. Science. 2015;349:6248:1255555.
  • Cam JA, Bu G. Modulation of b-amyloid precursor protein trafficking and processing by the low density lipoprotein receptor family. Mol Neurodegener. 2006;1:1–13.
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–356.
  • Pimplikar SW, Nixon RA, Robakis NK, et al. Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis. J Neurosci. 2010;30:14946–14954.
  • Kimura R, Ohno M. Impairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse model. Neurobiol Dis. 2009;33:229–235.
  • Thal DR, Fändrich M. Protein aggregation in Alzheimer’s disease: ab and t and their potential roles in the pathogenesis of AD. Acta Neuropathol. 2015;129:163–165.
  • Alzheimer’s Association Report. 2016 Alzheimer's disease fact and figures. Alzheimer’s & Dementia. 2016;12:459–509.
  • Serrano-Pozo MP, Frosch E, Masliah BT, et al. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011;1:a006189.
  • Tanzi R, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell. 2005;120:545–555.
  • Peric A, Annaert W. Early etiology of Alzheimer’s disease: tipping the balance toward autophagy or endosomal dysfunction? Acta Neuropathol. 2015;129:363–381.
  • Migliore L, Uboldi C, Di S, et al. Nanomaterials and neurodegeneration. Environ Mol Mutagen. 2015;56:149–170.
  • Liu G, Men P, Harris PLR, et al. Nanoparticle iron chelators: A new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. Neurosci Lett. 2006;406:189–193.
  • Du H, Guo L, Yan SQ, et al. Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc Natl Acad Sci USA. 2010;107:18670–18675.
  • Albarracin SL, Stab B, Casas Z, et al. Effects of natural antioxidants in neurodegenerative disease. Nutr Neurosci. 2012;15:1–9.
  • Zhang L, Zhao P, Yue C, et al. Sustained release of bioactive hydrogen by Pd hydride nanoparticles overcomes Alzheimer’s disease. Biomaterials. 2019;197:393–404.
  • Leszek J, Barreto GE, Gasiorowski K, et al. Inflammatory mechanisms and oxidative stress as key factors responsible for progression of neurodegeneration: role of brain innate immune system. CNS Neurol Disord Drug Targets. 2016;15:329–336.
  • Lauzon MA, Daviau A, Marcos B, et al. Nanoparticle-mediated growth factor delivery systems: A new way to treat Alzheimer’s disease, J. Control Release. 2015;206:187–205.
  • Huisa BN, Thomas RG, Jin S, et al. Memantine and acetylcholinesterase inhibitor use in Alzheimer’s Disease clinical trials: potential for confounding by indication. J Alzheimers Dis. 2019;67:707–713.
  • Colovic MB, Krstic DZ, Lazarevic-Pašti TD, et al. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol. 2013;11:315–335.
  • Szwajgier D, Baranowska-Wójcik E, Borowiec K. Phenolic acids exert anticholinesterase and cognition-improving effects. Curr Alzheimer Res. 2018;15:531–543.
  • Tan CC, Yu JT, Wang HF, et al. Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease: A systematic review and meta-analysis. J Alzheimers Dis. 2014;41:615–631.
  • Zhang C, Wan X, Zheng X, et al. Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’s disease mice. Biomaterials. 2014;35:456–465.
  • Ali IU, Chen X. Penetrating the blood-brain barrier: promise of novel nanoplatforms and delivery vehicles. ACS Nano. 2015;9:9470–9474.
  • Modi G, Pillay V, Choonara YE. Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann NY Acad Sci. 2010;1184:154–172.
  • Re F, Gregori M, Masserini M. Nanotechnology for neurodegenerative disorders. Nanomeded-Nanotechnol. 2012;8:S51–8.
  • Chakravarthy M, Chen SX, Dodd PR, et al. Nucleic acid-based theranostics for tackling Alzheimer’s disease. Theranostics. 2017;7:3933–3947.
  • Liao YH, Chang YJ, Yoshiike Y, et al. Negatively charged gold nanoparticles inhibit Alzheimer’s amyloid-ß fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small. 2012;8:3631–3639.
  • Busquets MA, Sabate R, Estelrich J. Potential applications of magnetic particles to detect and treat Alzheimer’s disease. Nanoscale Res Lett. 2014;9:538–548.
  • Frost B, Diamond MI. Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci. 2010;11:155–159.
  • Kumar K, Kumar A, Keegan RM. Recent advances in the neurobiology and neuropharmacology of Alzheimer’s disease. Biomed Pharmacother. 2018;98:297–307.
  • Suzuki T, Nakaya T. Regulation of amyloid-protein precursor by phosphorylation and protein interactions. J Biol Chem. 2008;283:29633–29637.
  • Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001;81:741–766.
  • Schelterns P, Feldman H. Treatment of Alzheimer’s disease; current status and new perspectives. Lancet Neurol. 2003;2:539–547.
  • Casadesus G, Smith MA, Zhu X, et al. Alzheimer disease: evidence for a central pathogenic role of iron-mediated reactive oxygen species. J Alzheimer’s Dis. 2004;6:165–169.
  • Danysz W, Parsons CG. Alzheimer’s disease, ß-amyloid, glutamate, NMDA receptors and memantine–searching for the connections. Br J Pharmacol. 2012;167:324–352.
  • Ferreira ST, Clarke JR, Bomfim TR, et al. Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer’s disease. Alzheimers Dement. 2014;10:S76–83.
  • Maulik M, Westaway D, Jhamandas J, et al. Role of cholesterol in APP metabolism and its significance in Alzheimer’s disease pathogenesis. Mol Neurobiol. 2013;47:37–63.
  • Komane PP, Choonara YE, Du Toit LC, et al. Diagnosis and treatment of neurological and ischemic disorders employing carbon nanotube technology. J Nanomater. 2016;2016:1–19.
  • Masters CL, Bateman R, Blennow K, et al. Alzheimer’s disease. Nat Rev Dis Primers. 2015;1:15056.
  • Kaur M, Singh G, Khanna K, et al. Nanotechnology: A review. In Proceedings of the Second National Conference on Advances in Manufacturing Systems, S B S State Technical Campus, Ferozepur, India, 2015;23–24
  • Fakhoury M, Takechi R, Al-Salami H. Drug permeation across the blood-brain barrier: applications of nanotechnology. Br J Med Med Res. 2015;6:547–556.
  • Leszek J, Ashraf G, Tse WH, et al. Nanotechnology for Alzheimer disease. Curr Alzheimer Res. 2017;14:1182–1189.
  • Spuch C, Saida O, Navarro C. Advances in the treatment of neurodegenerative disorders employing nanoparticles. Recent Patents Drug Deliv Formulat. 2012;6:2–18.
  • Kim JH, Hong CO, Koo YC, et al. Antiglycation effect of gold nanoparticles on collagen. Biol Pharm Bull. 2012;35:260–264.
  • Knop K, Hoogenboom R, Fischer D, et al. Poly (ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed. 2010;49:6288–6308.
  • Li Y, Liu R, Ji W, et al. Delivery systems for theranostics in neurodegenerative Diseases. Nano Res. 2018;11:5535–5555.
  • Karthivashan G, Ganesan P, Park SY, et al. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv. 2018;25:307–320.
  • Dubois B, Feldman HH, Jacova C, et al. Cummings, Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–629.
  • McGhee DJM, Ritchie CW, Thompson PA, et al. A systematic review of biomarkers for disease progression in Alzheimer’s disease. PLoS ONE. 2014;9:e88854.
  • Waser M, Benke T, Dal-Bianco P, et al. Neuroimaging markers of global cognition in early Alzheimer’s disease: A magnetic resonance imaging-electroencephalography study. Brain Behav. 2019;9:e01197.
  • Ajetunmobi A, Prina-Mello A, Volkov Y, et al. Nanotechnologies for the study of the central nervous system. Prog Neurobiol. 2014;123:18–36.
  • Pedram MZ, Shamloo A, Alasty A, et al. Optimal magnetic field for crossing super-para-magnetic nanoparticles through the brain blood barrier: a computational approach. Biosensors (Basel). 2016;6:25.
  • Finnegan ME, Visanji NP, Romero-Canelon I, et al. Synchrotron XRF imaging of Alzheimer’s disease basal ganglia reveals lineardependence of high-field magnetic resonance microscopy on tissue ironconcentration. J Neurosci Meth. 2019;319:28–39.
  • Shokrollahi H. Contrast agents for MRI. Mater Sci Eng C. 2013;33:4485–4497.
  • Pansieri J, Gerstenmayer M, Lux F, et al. Magnetic nanoparticles applications foramyloidosis study and detection: a review. Nanomaterials –Basel. 2018;8:740.
  • Xie J, Lee S, Chen XY. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev. 2010;62:1064–1079.
  • McCullough B, Kolokythas O, Maki J, et al. Ferumoxytol in clinical practice: implications for MRI. J Magn Reson Imaging. 2012;36:1476–1479.
  • Wadghiri Y, Li J, Wang J, et al. Detection of amyloid plaques targeted by bifunctional USPIO in Alzheimer’s disease transgenic mice using magnetic resonance microimaging. PLoS ONE. 2013;8:e57097.
  • Cheng KK, Chan PS, Fan SJ, et al. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer’s disease mice using magnetic resonance imaging (MRI). Biomaterials. 2015;44:155–172.
  • Skaat H, Margel S. Newly designed magnetic and non-magnetic nanoparticles for potential diagnostics and therapy of Alzheimer’s Disease. J Biotechnol Biomater. 2013;3:156.
  • Kim JY, Choi WI, Kim YH, et al. Brain-targeted delivery of protein using chitosan- and RVG peptideconjugated, pluronic-based nano-carrier. Biomaterials. 2013;34:1170–1178.
  • Barchet TM, Amiji MM. Challenges and opportunities in CNS delivery of therapeutics for neurodegenerative diseases. Expert Opin Drug Deliv. 2009;6:211–225.
  • Mc Carthy JD, Meenakshi M, O’Mahony AM, et al. Nanoparticles and the blood-brain barrier: advancing from in-vitro models towards therapeutic significance. Pharm Res. 2015;32:1161–1185.
  • Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86:215–223.
  • YLi C, Jiang Q, Huang Q, et al. Enhanced endosomal/lysosomal escape by distearoyl phosphoethanolamine-polycarboxybetaine lipid for systemic delivery of siRNA. J Control Release. 2014;176:104–114.
  • Lu ZG, Li Y, Shi YJ, et al. Traceable nanoparticles with spatiotemporally controlled release ability for synergistic glioblastoma multiforme treatment. Adv Funct Mater. 2017;27:1703967.
  • Çetin M, Aytekin E, Yavuz B, et al. Chapter 7—Nanoscience in targeted brain drug delivery. In: Gürsoy-Özdemir Y, Bozdag-Pehlivan S, Sekerdag E editors. Nanotechnology methods for neurological diseases and brain tumors. Cambridge, MA, USA: Academic Press; 2017. p. 117–147. Publisher: Elsevier DOI: 10.1016/B978-0-12-803796-6.00007-1
  • Saraiva C, Praça C, Ferreira R, et al. Nanoparticle-mediated brain drug delivery: overcoming blood–brainbarrier to treat neurodegenerative diseases. J Control Release. 2016;235:34–47.
  • Prades R, Guerrero S, Araya E, et al. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials. 2012;33:7194–7205.
  • Liu G, Garrett MR, Men P, et al. Nanoparticle and other metal chelation therapeutics in Alzheimer disease. Biochim Biophys Acta. 2005;1741:246–252.
  • Robinson M, Leeand BY, Leonenko Z. Drugs and drug delivery systems targeting amyloid-ß in Alzheimer’s disease. AIMS Mol Sci. 2015;2:332–358.
  • Skaat H, Shafir G, Margel S. Acceleration and inhibition of amyloid-ß fibril formation by peptide-conjugated fluorescent-maghemite nanoparticles. J Nanopart Res. 2011;13:3521–3534.
  • Herr?n E, Pérez-Gonz?lez R, Igartua M, et al. VEGF-releasing biodegradable nanospheres administered by craniotomy: A novel therapeutic approach in the APP/Ps1 mouse model of Alzheimer’s disease. J Control Release. 2013;170:111–119.
  • Ashraf JM, Ansari MA, Fatma S, et al. Inhibiting effect of Zinc oxide nanoparticles on advanced glycation products and oxidative modifications: a potential tool to counteract oxidative stress in neurodegenerative diseases molecular. Neurobiology. 2018;55:7438–7452.
  • Gasiorowski K, Brokos B, Echeverria V, et al. RAGE-TLR crosstalk sustains chronic inflammation in neurodegeneration. Mol Neurobiol. 2018;55:1463–1476.
  • Arfat MY, Ashraf JM, Arif Z, et al. Fine characterization of glucosylated human IgG by biochemical and biophysical methods. Int J Biol Macromol. 2014;69:408–415.
  • Taylor M, Moore S, Mourtas S, et al. Effect of curcumin-associated and lipid ligand-functionalizednanoliposomes on aggregation of the Alzheimer’s Aßpeptide. Nanomed. 2011;7:541–550.
  • Balducci C, Mancini S. Multifunctional liposomes reduce brain b-amyloid burden and ameliorate memory impairment in Alzheimer’s disease mouse models. J Neurosci. 2014;34: 14022–14031. 34.
  • Brambilla D, Verpillot R, Droumaguet BL, et al. PEGylated nanoparticles bind to and alteramyloid-beta peptide conformation: toward engineering of functional nanomedicines for Alzheimer’s Disease. ACS Nano. 2012;6:5897–5908.
  • Ordóñez-Gutiérrez L, Re F, Bereczki E, et al. Repeated intraperitoneal injections of liposomes containing phosphatidic acid and cardiolipin reduce amyloid-b levels in APP/PS1 transgenic mice. Nanomedicine. 2015;11:421–430.
  • Jia H, Wang P, Song T. The influence of extremely low-frequency magnetic field and magnetic nanoparticle on ab40 aggregation in vitro. IEEE Trans Magnet. 2015;51:1–5.
  • Mancini S, Minniti S, Gregori M, et al. The hunt for brain Aß oligomers by peripherally circulating multi-functional nanoparticles: potential therapeutic approach for Alzheimer disease. Nanomed-Nanotechnol. 2016;12:43–52.
  • Singh NA, Bhardwaj V, Ravi C, et al. EGCG nanoparticles attenuate aluminum chloride induced neurobehavioral deficits, beta amyloid and tau pathology in a rat model of Alzheimer’s Disease. Front Aging Neurosci. 2018b;10:244.
  • Gutteridge JM. Hydroxyl radicals, iron, oxidative stress, and neurodegeneration. NY Ann Acad Sci. 1994;738:201–213.
  • Bondy SC, Guo-Ross SX, Truong AT. Promotion of transition metal-induced reactive oxygen species fo rmation by beta-amyloid. Brain Res. 1998;799:91–96.
  • Singh NA, Kalam A, Mandal A, et al. Inhibition of Al(III)-induced Ab42 fibrillation and reduction of neurotoxicity by epigallocatechin-3-gallate nanoparticles. J Biomed Nanotechnol. 2018a;14:1147–1158.
  • Shi P, Li M, Ren JS, et al. Gold nanocage-based dual responsive “caged metal chelator” release system: noninvasive remote control with near infrared for potential treatment of Alzheimer’s disease. Adv Funct Mater. 2013;23:5412–5419.
  • Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64:557–570.
  • Lundquist P, Artursson P. Oral absorption of peptides and anoparticles across the human intestine: opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev. 2016;106:256–276.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.