305
Views
8
CrossRef citations to date
0
Altmetric
Review

Emerging treatments for progressive myoclonus epilepsies

, , , , , , , ORCID Icon & ORCID Icon show all
Pages 341-350 | Received 27 Jan 2020, Accepted 09 Mar 2020, Published online: 17 Mar 2020

References

  • Kälviäinen R. Progressive myoclonus epilepsies. Semin Neurol. 2015;35(3):239.
  • Leppik IE. Classification of the myoclonic epilepsies. Epilepsia. 2003;44(Suppl 11):2–6.
  • Franceschetti S, Michelucci R, Canafoglia L, et al. Collaborative LICE group on PMEs. Progressive myoclonic epilepsies: definitive and still undetermined causes. Neurology. 2014 Feb 4;82(5):405–411.
  • Orsini A, Valetto A, Bertini V, et al. The best evidence for progressive myoclonic epilepsy: a pathway to precision therapy. Seizure. 2019 Oct;71:247–257.
  • Striano P, Belcastro V. Update on pharmacotherapy of myoclonic seizures. Expert Opin Pharmacother. 2017;18(2):187–193.
  • Ghodke-Puranik Y, Thorn CF, Lamba JK, et al. Valproic acid pathway: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics. 2013;23(4):236–241.
  • Belcastro V, D’Egidio C, Striano P, et al. Metabolic and endocrine effects of valproic acid chronic treatment. Epilepsy Res. 2013;107(1–2):1–8.
  • Mihic SJ, Whiting PJ, Klein RL, et al. A single amino acid of the human gamma-aminobutyric acid type a receptor gamma 2 subunit determines benzodiazepine efficacy. J Biol Chem. 1994;269(52):32768–32773.
  • Farrell K. Benzodiazepines in the treatment of children with epilepsy. Epilepsia. 1986;27:S45–S51.
  • Koskiniemi M, Van Vleymen B, Hakamies L, et al. Piracetam relieves symptoms in progressive myoclonus epilepsy: a multicenter, randomized, double-blind, cross-over study comparing the efficacy and safety of three dosages of oral piracetam with placebo. J Neurol Neurosurg Psychiatry. 1998;64(3):344–348.
  • Klitgaard H, Matagne A, Nicolas J-M, et al. Brivaracetam: rationale for discovery and preclinical profile of a selective SV2A ligand for epilepsy treatment. Epilepsia. 2016;57(4):538–548.
  • Madeja M, Georg Margineanu D, Gorji A, et al. Reduction of voltage-operated potassium currents by levetiracetam: a novel antiepileptic mechanism of action? Neuropharmacology. 2003;45(5):661–671.
  • Mula M, Agrawal N, Mustafa Z, et al. Self-reported aggressiveness during treatment with levetiracetam correlates with depression. Epilepsy Behav. 2015;45:64–67.
  • Wilder RM. The effects of ketonemia on the course of epilepsy. Clin Bull. 1921;2:307.
  • Barzegar M, Afghan M, Tarmahi V, et al. Ketogenic diet: overview, types, and possible anti-seizure mechanisms. Nutr Neurosci. 2019 June 26: 1–10. DOI:10.1080/1028415X.2019.1627769
  • Giordano C, Marchiò M, Timofeeva E, et al. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front Neurol. 2014;5:63.
  • Marchiò M, Roli L, Giordano C, et al. Decreased ghrelin and des-acyl ghrelin plasma levels in patients affected by pharmacoresistant epilepsy and maintained on the ketogenic diet. Clin Nutr. 2019;38(2):954–957.
  • Cheng CM, Hicks K, Wang J, et al. Caloric restriction augments brain glutamic acid decarboxylase-65 and −67 expression. J Neurosci Res. 2004 July 15;77(2):270–276.
  • Suzuki Y, Takahashi H, Fukuda M, et al. Beta-hydroxybutyrate alters GABA-transaminase activity in cultured astrocytes. Brain Res. 2009 May 1;1268:17–23.
  • Olson CA, Vuong HE, Yano JM, et al. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell. 2018 June;173(7):1728–1741.e13.
  • Lefevre F, Aronson N. Ketogenic diet for the treatment of refractory epilepsy in children: a systematic review of efficacy. Pediatrics. 2000;105(4):e46.
  • Keene DL. A systematic review of the use of the ketogenic diet in childhood epilepsy. Pediatr Neurol. 2006;35(1):1–5.
  • Iannone LF, Preda A, Blottière HM, et al. Microbiota-gut brain axis involvement in neuropsychiatric disorders. Expert Rev Neurother. 2019 Oct;19(10):1037–1050.
  • Nitschke F, Ahonen SJ, Nitschke S, et al. Lafora disease – from pathogenesis to treatment strategies. Nat Rev Neurol. 2018 Oct;14(10):606–617.
  • Striano P, Zara F, Turnbull J, et al. Typical progression of myoclonic epilepsy of the Lafora type: a case report. Nat Clin Pract Neurol. 2008 Feb;4(2):106–111.
  • Cardinali S, Canafoglia L, Bertoli S, et al. A pilot study of a ketogenic diet in patients with Lafora body disease. Epilepsy Research. 2006 May;69(2):129–134.
  • van Egmond ME, Weijenberg A, van Rijn ME, et al. The efficacy of the modified Atkins diet in North Sea progressive myoclonus epilepsy: an observational prospective open-label study. Orphanet J Rare Dis. 2017 Mar 7;12(1):45.
  • Porta N, Vallée L, Boutry E, et al. Comparison of seizure reduction and serum fatty acid levels after receiving the ketogenic and modified Atkins diet. Seizure. 2009 June;18(5):359–364.
  • Krishna V, Sammartino F, King NK, et al. Neuromodulation for Epilepsy. Neurosurg Clin N Am. 2016 Jan;27(1):123–131.
  • Fisher RS, Velasco AL. Electrical brain stimulation for epilepsy. Nat Rev Neurol. 2014 May;10(5):261–270.
  • Sharan I, Sharan A, Soltani A. Neuromodulation and Epilepsy. Pract Neurol. 2018;10:27–30.
  • Wheless JW, Gienapp AJ, Ryvlin P. Vagus nerve stimulation (VNS) therapy update. Epilepsy Behav. 2018 Nov;88S:2–10.
  • Henry TR. Therapeutic mechanisms of vagus nerve stimulation. Neurology. 2002 Sept 24;59(6 Suppl 4):S3–S14.
  • Bonaz B, Picq C, Sinniger V, et al. Vagus nerve stimulation: from epilepsy to the cholinergic anti-inflammatory pathway. Neurogastroenterol Motil. 2013 Mar;25(3):208–221.
  • Krahl SE, Clark K. Vagus nerve stimulation for epilepsy: a review of central mechanisms. Surg Neurol Int. 2012;3(Suppl 4):S255–S259.
  • Groves DA, Brown VJ. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev. 2005 May;29(3):493–500.
  • Johnson RL, Wilson CG. A review of vagus nerve stimulation as a therapeutic intervention. J Inflamm Res. 2018 May;11:203–2013.
  • Smith B, Shatz R, Elisevich K, et al. Effects of vagus nerve stimulation on progressive myoclonus epilepsy of Unverricht-Lundborg type. Epilepsia. 2000 Aug;41(8):1046–1048.
  • Fujimoto A, Yamazoe T, Yokota T, et al. Clinical utility of vagus nerve stimulation for progressive myoclonic epilepsy. Seizure. 2012;21(10):810–812.
  • Hajnsek S, Petelin Gadze Z, Borovecki F, et al. Vagus nerve stimulation in Lafora body disease. Epilepsy Behav Case Rep. 2013;1:150–152.
  • Mikati MA, Tabbara F. Managing Lafora body disease with vagal nerve stimulation. Epileptic Disord. 2017 Mar;19(1):82–86.
  • Mostacci B, Bisulli F, Muccioli L, et al. Super refractory status epilepticus in Lafora disease interrupted by vagus nerve stimulation: a case report. Brain Stimul. 2019 Nov-Dec;12(6):1605–1607.
  • Miocinovic S, Somayajula S, Chitnis S, et al. History, applications, and mechanisms of deep brain stimulation. JAMA Neurol. 2013 Feb;70(2):163–171.
  • Li MCH, Cook MJ. Deep Brain stimulation for drug-resistant epilepsy. Epilepsia. 2018 Feb;59(2):273–290.
  • Cukiert A, Lehtimäki K. Deep brain stimulation targeting in refractory epilepsy. Epilepsia. 2017 Apr;58(Suppl 1):80–84.
  • Vesper J, Steinhoff B, Rona S, et al. Chronic high-frequency deep brain stimulation of the STN/SNr for progressive myoclonic epilepsy. Epilepsia. 2007 Oct;48(10):1984–1989.
  • Di Giacopo A, Baumann CR, Kurthen M, et al. Selective deep brain stimulation in the substantia nigra reduces myoclonus in progressive myoclonic epilepsy: a novel observation and short review of the literature. Epileptic Disord. 2019 June;21(3):283–288.
  • Klomjai W, Katz R, Lackmy-Vallée A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med. 2015 Sept;58(4):208–213.
  • Kimiskidis VK. Transcranial magnetic stimulation for drug-resistant epilepsies: rationale and clinical experience. Eur Neurol. 2010;63(4):205–210.
  • Chen R, Spencer DC, Weston J, et al. Transcranial magnetic stimulation for the treatment of epilepsy. Cochrane Database Syst Rev. 2016;8:CD011025.
  • Rossi Sebastiano D, Magaudda A, Quartarone A, et al. Effect of repetitive transcranial magnetic stimulation on action myoclonus: a pilot study in patients with EPM1. Epilepsy Behav. 2018 Mar;80:33–36.
  • Vezzani A, French J, Bartfai T, et al. The role of inflammation in epilepsy. Nat Rev Neurol. 2011 Jan;7(1):31–40.
  • Okuneva O, Li Z, Körber I, et al. Brain inflammation is accompanied by peripheral inflammation in Cstb−/- mice, a model for progressive myoclonus epilepsy. J Neuroinflammation. 2016 Nov;13(1):298.
  • Mukherjee AB, Appu AP, Sadhukhan T, et al. Emerging new roles of the lysosome and neuronal ceroid lipofuscinoses. Mol Neurodegener. 2019 Jan;14(1):4.
  • Ge W, Li D, Gao Y, et al. The roles of lysosomes in inflammation and autoimmune diseases. Int Rev Immunol. 2015;34(5):415–431.
  • Aldrich A, Bosch ME, Fallet R, et al. Efficacy of phosphodiesterase-4 inhibitors in juvenile batten disease (CLN3). Ann Neurol. 2016 Dec;80(6):909–923.
  • Palmieri M, Pal R, Nelvagal HR, et al. mTORC1-independent TFEB activation via akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat Commun. 2017 Feb;8(1):14338.
  • Groh J, Berve K, Martini R. Fingolimod and teriflunomide attenuate neurodegeneration in mouse models of neuronal ceroid lipofuscinosis. Mol Ther. 2017 Aug;25(8):1889–1899.
  • Das AK, Becerra CH, Yi W, et al. Molecular genetics of palmitoyl-protein thioesterase deficiency in the U.S. J Clin Invest. 1998 July 15;102(2):361–370.
  • Kohlschütter A, Schulz A. CLN2 disease (classic late infantile neuronal ceroid lipofuscinosis). Pediatr Endocrinol Rev. 2016 June;13(Suppl 1):682–688.
  • Tamaki SJ, Jacobs Y, Dohse M, et al. Neuroprotection of host cells by human central nervous system stem cells in a mouse model of infantile neuronal ceroid lipofuscinosis. Cell Stem Cell. 2009 Sept 4;5(3):310–319.
  • Selden NR, Al-Uzri A, Huhn SL, et al. Central nervous system stem cell transplantation for children with neuronal ceroid lipofuscinosis. J Neurosurg Pediatr. 2013 June;11(6):643–652.
  • Schulz A, Ajayi T, Specchio N, et al. Study of intraventricular cerliponase alfa for CLN2 disease. N Engl J Med. 378(20): 1898–1970. 2018.
  • Cherukuri A, Cahan H, de Hart G, et al. Immunogenicity to cerliponase alfa intracerebroventricular enzyme replacement therapy for CLN2 disease: results from a Phase 1/2 study. Clin Immunol. 2018 Dec;197:68–76.
  • Riban V, Fitzsimons HL, During MJ. Gene therapy in epilepsy. Epilepsia. 2009 Jan;50(1):24–32.
  • Anguela XM, High KA. Entering the modern era of gene therapy. Annu Rev Med. 2019 Jan 27;70:273–288.
  • Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019 May;18(5):358–378.
  • Souweidane MM, Fraser JF, Arkin LM, et al. Gene therapy for late infantile neuronal ceroid lipofuscinosis: neurosurgical considerations. J Neurosurg Pediatr. 2010 Aug;6(2):115–122.
  • Kleine Holthaus SM, Martin-Herranz S, Massaro G, et al. Neonatal brain-directed gene therapy rescues a mouse model of neurodegenerative CLN6 Batten disease. Hum Mol Genet. 2019 Dec 1;28(23):3867–3879.
  • Whiting RE, Jensen CA, Pearce JW, et al. Intracerebroventricular gene therapy that delays neurological disease progression is associated with selective preservation of retinal ganglion cells in a canine model of CLN2 disease. Exp Eye Res. 2016 May;146:276–282.
  • Katz ML, Johnson GC, Leach SB, et al. Extraneuronal pathology in a canine model of CLN2 neuronal ceroid lipofuscinosis after intracerebroventricular gene therapy that delays neurological disease progression. Gene Ther. 2017 Apr;24(4):215–223.
  • Yin H, Kanasty RL, Eltoukhy AA, et al. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014 Aug;15(8):541–555.
  • Foldvari M, Chen DW, Nafissi N, et al. Non-viral gene therapy: gains and challenges of non-invasive administration methods. J Control Release. 2016 Oct 28;240:165–190.
  • Dias N, Stein CA. Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther. 2002 Mar;1(5):347–355.
  • Matos L, Duarte AJ, Ribeiro D, et al. Correction of a splicing mutation affecting an unverricht-lundborg disease patient by antisense therapy. Genes (Basel). 2018 Sept 11;9(9):455.
  • Kim J, Hu C, Moufawad El Achkar C, et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N Engl J Med. 2019 Oct 24;381(17):1644–1652.
  • Yarham JW, McFarland R, Taylor RW, et al. Mitochondrial tRNA mutations and disease. Wiley Interdiscip Rev RNA. 2010 Sep–Oct;1(2):304–324.
  • Suomalainen A, Battersby BJ. Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat Rev Mol Cell Biol. 2018 Feb;19(2):77–92.
  • Richter U, Evans ME, Clark WC, et al. RNA modification landscape of the human mitochondrial tRNALys regulates protein synthesis. Nat Commun. 2018 Sept 27;9(1):3966.
  • Enriquez JA, Chomyn A, Attardi G. MtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNA (Lys) and premature translation termination. Nat Genet. 1995 May;10(1):47–55.
  • Schwarze SR, Ho A, Vocero-Akbani A, et al. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science. 1999 Sept 3;285(5433):1569–1572.
  • Yanagishita M, Hascall VC. Cell surface heparan sulfate proteoglycans. J Biol Chem. 1992 May 15;267(14):9451–9454.
  • Tyagi M, Rusnati M, Presta M, et al. Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem. 2001 Feb 2;276(5):3254–3261.
  • Hakansson S, Jacobs A, Caffrey M. Heparin binding by the HIV-1 tat protein transduction domain. Protein Sci. 2001 Oct;10(10):2138–2139.
  • Andrade DM, Scherer SW, Minassian BA, et al. Protein therapy for unverricht–lundborg disease using cystatin B transduction by TAT-PTD. is it that simple? Epilepsy Res. 2006 Nov;72(1):75–79.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.