684
Views
24
CrossRef citations to date
0
Altmetric
Review

The dichotomous role of the gut microbiome in exacerbating and ameliorating neurodegenerative disorders

ORCID Icon, , & ORCID Icon
Pages 673-686 | Received 02 Mar 2020, Accepted 26 May 2020, Published online: 27 Jun 2020

References

  • Guarner F, Malagelada J-R. Gut flora in health and disease. Lancet. 2003;361:512–519.
  • Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project. Nature. 2007;449:804–810.
  • Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. Plos Biol. 2016;14:e1002533.
  • Rajilić-Stojanović M. Function of the microbiota. Best Pract Res Clin Gastroenterol. 2013;27:5–16.
  • Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des. 2009;15:1546–1558.
  • Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–249.
  • Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–323.
  • LeBlanc JG, Milani C, de Giori GS, et al. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24:160–168.
  • Flint HJ, Scott KP, Louis P, et al. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol. 2012;9:577–589.
  • Cryan JF, O’Riordan KJ, Sandhu K, et al. The gut microbiome in neurological disorders. Lancet Neurol. 2020;19:179–194.
  • The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214.
  • Mandal RS, Saha S, Das S. Metagenomic Surveys of Gut Microbiota. Genomics Proteomics Bioinformatics. 2015;13:148–158.
  • Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.
  • Petra AI, Panagiotidou S, Hatziagelaki E, et al. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther. 2015;37:984–995.
  • Neunlist M, Van Landeghem L, Mahé MM, et al. The digestive neuronal–glial–epithelial unit: a new actor in gut health and disease. Nat Rev Gastroenterol Hepatol. 2013;10:90–100.
  • Zhu S, Jiang Y, Xu K, et al. The progress of gut microbiome research related to brain disorders. J Neuroinflammation. 2020;17:25.
  • Carmody RN, Turnbaugh PJ. Host-microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics. J Clin Invest. 2014;124:4173–4181.
  • Noble EE, Hsu TM, Kanoski SE. Gut to Brain Dysbiosis: mechanisms Linking Western Diet Consumption, the Microbiome, and Cognitive Impairment. Front Behav Neurosci. [Internet]. 2017 [cited 2020 Feb 10];11. Available from http://journal.frontiersin.org/article/10.3389/fnbeh.2017.00009/full
  • Mulak A. Brain-gut-microbiota axis in Parkinson’s disease. WJG. 2015;21:10609.
  • Friedland RP. Mechanisms of molecular mimicry involving the microbiota in neurodegeneration. JAD. 2015;45:349–362.
  • Gooch CL, Pracht E, Borenstein AR The burden of neurological disease in the United States: A summary report and call to action: burden of Neurological Disease. Ann Neurol. 2017;81:479–484.
  • Matthews KA, Xu W, Gaglioti AH, et al. Racial and ethnic estimates of Alzheimer’s disease and related dementias in the United States (2015-2060) in adults aged ≥65 years. Alzheimers Dement. 2019;15:17–24.
  • Zhu X, Raina AK, Lee H-G, et al. Oxidative stress signalling in Alzheimer’s disease. Brain Res. 2004;1000:32–39.
  • Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration: microbiota-gut-brain axis across the lifespan. J Physiol. 2017;595:489–503.
  • Franceschi C, Chronic Inflammation CJ. (Inflammaging) and its potential contribution to age-associated diseases. J Gerontol Ser A. 2014;69:S4–S9.
  • Smith K, McCoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol. 2007;19:59–69.
  • Miraglia F, Colla E. Microbiome, Parkinson’s disease and Molecular Mimicry. Cells. 2019;8(3):222.
  • Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–450.
  • Wesemann DR, Portuguese AJ, Meyers RM, et al. Microbial colonization influences early B-lineage development in the gut lamina propria. Nature. 2013;501:112–115.
  • Sabroe I, Parker L, Dower S, et al. The role of TLR activation in inflammation. J Pathol. 2008;214:126–135.
  • Podolsky DK, Gerken G, Eyking A, et al. Colitis-Associated Variant of TLR2 causes impaired mucosal repair because of TFF3 Deficiency. Gastroenterology. 2009;137:209–220.
  • Barberi C, Campana S, De Pasquale C, et al. T cell polarizing properties of probiotic bacteria. Immunol Lett. 2015;168:337–342.
  • Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427–434.
  • Westfall S, Pasinetti GM. The Gut microbiota links dietary polyphenols with management of psychiatric mood disorders. Front Neurosci. 2019;13:1196.
  • Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Nat Acad Sci. 2010;107:12204–12209.
  • Mazmanian SK, Liu CH, Tzianabos AO, et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122:107–118.
  • Luczynski P, K-A MN, Oriach CS, et al. Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int J Neuropsychopharmacol. 2016;19:pyw020…
  • Diaz Heijtz R, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA. 2011;108:3047–3052.
  • Ogbonnaya ES, Clarke G, Shanahan F, et al. Adult hippocampal neurogenesis is regulated by the microbiome. Biol Psychiatry. 2015;78:e7–9.
  • Luczynski P, Whelan SO, O’Sullivan C, et al. Adult microbiota-deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus. Eur J Neurosci. 2016;44:2654–2666.
  • Koh A, De Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165:1332–1345.
  • Hossain A, Menezes G, Al M, et al. Role of gut microbiome in the modulation of environmental toxicants and therapeutic agents. In: Debasis B, Anand S, Stohs S, editors. Food Toxicology. [Internet]. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press; 2016 [cited 2020 Feb 11]. p. 491–518. Available from http://www.crcnetbase.com/doi/10.1201/9781315371443-25
  • Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest. 2015;125:926–938.
  • Obata Y, Pachnis V. The effect of microbiota and the immune system on the development and organization of the enteric nervous system. Gastroenterology. 2016;151:836–844.
  • Rajilić-Stojanović M, Smidt H, de Vos WM. Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol. 2007;9:2125–2136.
  • Everard A, Cani PD. Gut microbiota and GLP-1. Rev Endocr Metab Disord. 2014;15(3):189–196.
  • Westfall S, Dinh DM, Pasinetti GM. Investigation of potential brain microbiome in alzheimer’s disease: implications of study Bias. J Alzheimers Dis. 2020;75:1–12.
  • Westfall S, Lomis N, Kahouli I, et al. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci. 2017;74:3769–3787.
  • Erny D, Hrabě de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18:965–977.
  • Deretzi G, Kountouras J, Grigoriadis N, et al. From the “little brain” gastrointestinal infection to the “big brain” neuroinflammation: A proposed fast axonal transport pathway involved in multiple sclerosis. Med Hypotheses. 2009;73:781–787.
  • O’Mahony SM, Clarke G, Borre YE, et al. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015;277:32–48.
  • Wall R, Cryan JF, Ross RP, et al. Bacterial neuroactive compounds produced by psychobiotics. Adv Exp Med Biol. 2014;817:221–239.
  • Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 2009;6:306–314.
  • Obrenovich M. Leaky gut, leaky brain? Microorganisms. 2018;6:107.
  • Gruber J, Kennedy BK. Microbiome and longevity: gut microbes send signals to host mitochondria. Cell. 2017;169:1168–1169.
  • Forsyth CB, Shannon KM, Kordower JH, et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early parkinson’s disease. PLoS ONE. 2011;6:e28032.
  • Caputi V, Giron M. Microbiome-gut-brain axis and toll-like receptors in Parkinson’s disease. IJMS. 2018;19:1689.
  • Wang J, Gu X, Yang J, et al. Gut microbiota dysbiosis and increased plasma LPS and TMAO levels in patients with preeclampsia. Front Cell Infect Microbiol. [Internet]. 2019 [cited 2020 Feb 18];9. Available from https://www.frontiersin.org/article/10.3389/fcimb.2019.00409/full
  • Jackson A, Forsyth CB, Shaikh M, et al. Diet in Parkinson’s disease: critical role for the microbiome. Front Neurol. 2019;10:1245.
  • Gagliani N, Palm NW, de Zoete MR, et al. Inflammasomes and intestinal homeostasis: regulating and connecting infection, inflammation and the microbiota. Int Immunol. 2014;26:495–499.
  • Ma Q, Xing C, Long W, et al. Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J Neuroinflammation. 2019;16:53.
  • Herman FJ, Pasinetti GM. Principles of inflammasome priming and inhibition: implications for psychiatric disorders. Brain Behav Immun. 2018;73:66–84.
  • Levy M, Thaiss CA, Zeevi D, et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating nlrp6 inflammasome signaling. Cell. 2015;163:1428–1443.
  • Park JY, Kang YW, Cho WG. Inflammasome-mediated inflammation in neurodegenerative diseases. Open Neurol J. 2019;13:55–62.
  • Macia L, Tan J, Vieira AT, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun. 2015;6:6734.
  • Heneka MT, Kummer MP, Stutz A, et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013;493:674–678.
  • Codolo G, Plotegher N, Pozzobon T, et al. Triggering of Inflammasome by Aggregated α–Synuclein, an Inflammatory Response in Synucleinopathies. PLoS ONE. 2013;8:e55375.
  • Johann S, Heitzer M, Kanagaratnam M, et al. NLRP3 inflammasome is expressed by astrocytes in the SOD1 mouse model of ALS and in human sporadic ALS patients. Glia. 2015;63:2260–2273.
  • Weiss G, Rasmussen S, Zeuthen LH, et al. Lactobacillus acidophilus induces virus immune defence genes in murine dendritic cells by a Toll-like receptor-2-dependent mechanism: induction of virus defence in dendritic cells by Lactobacillus acidophilus. Immunology. 2010;131:268–281.
  • Steed AL, Christophi GP, Kaiko GE, et al. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science. 2017;357:498–502.
  • Kawashima T, Kosaka A, Yan H, et al. Double-Stranded RNA of intestinal commensal but not pathogenic bacteria triggers production of protective interferon-β. Immunity. 2013;38:1187–1197.
  • Giles EM, Stagg AJ. Type 1 Interferon in the human intestine—a co-ordinator of the immune response to the microbiota. Inflamm Bowel Dis. 2017;23:524–533.
  • Taylor JM, Moore Z, Minter MR, et al. Type-I interferon pathway in neuroinflammation and neurodegeneration: focus on Alzheimer’s disease. J Neural Transm. 2018;125:797–807.
  • Camandola S, MP M. NF-κB as a therapeutic target in neurodegenerative diseases. Expert Opin Ther Targets. 2007;11:123–132.
  • Kouli A, Horne CB, Williams-Gray CH. Toll-like receptors and their therapeutic potential in Parkinson’s disease and α-synucleinopathies. Brain Behav Immun. 2019;81:41–51.
  • Masanta WO, Heimesaat MM, Bereswill S, et al. Modification of intestinal microbiota and its consequences for innate immune response in the pathogenesis of campylobacteriosis. Clin Dev Immunol. 2013;2013:1–10.
  • Truax AD, Chen L, Tam JW, et al. The Inhibitory Innate Immune Sensor NLRP12 maintains a threshold against obesity by regulating gut microbiota homeostasis. Cell Host Microbe. 2018;24(3):364–378.e6. .
  • Hölscher C. Central effects of GLP-1: new opportunities for treatments of neurodegenerative diseases. J Endocrinol. 2014;221:T31–T41.
  • Kim DS, Choi H-I, Wang Y, et al. A new treatment strategy for parkinson’s disease through the gut–brain axis: the glucagon-like peptide-1 receptor pathway. Cell Transplant. 2017;26:1560–1571.
  • Mercado NM, Collier TJ, Sortwell CE, et al. BDNF in the aged brain: translational implications for parkinson’s disease. Austin Neurol Neurosci. 2017;2.
  • Yamane S, Inagaki N. Regulation of glucagon-like peptide-1 sensitivity by gut microbiota dysbiosis. J Diabetes Investig. 2018;9:262–264.
  • Kappe C, Tracy LM, Patrone C, et al. GLP-1 secretion by microglial cells and decreased CNS expression in obesity. J Neuroinflammation. 2012;9:766.
  • Bercik P, Denou E, Collins J, et al. The Intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in Mice. Gastroenterology. 2011;141(599–609.e3). DOI:10.1053/j.gastro.2011.04.052.
  • Marras C, Beck JC, Bower JH, et al. Prevalence of Parkinson’s disease across North America. NPJ Parkinson’s Dis. [Internet]. 2018 [cited 2020 Feb 28];4. Available from http://www.nature.com/articles/s41531-018-0058-0
  • Dorsey ER, Elbaz A, Nichols E, et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17:939–953.
  • Jellinger KA, Korczyn AD. Are dementia with Lewy bodies and Parkinson’s disease dementia the same disease? BMC Med. [Internet]. 2018 [cited 2020 Feb 28];16. Available from. [];. https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-018-1016-8
  • Noyce AJ, Bestwick JP, Silveira-Moriyama L, et al. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol. 2012;72:893–901.
  • Yang D, Zhao D, Ali Shah SZ, et al. The role of the gut microbiota in the pathogenesis of Parkinson’s Disease. Front Neurol. 2019;10:1155.
  • Roy Sarkar S, Banerjee S. Gut microbiota in neurodegenerative disorders. J Neuroimmunol. 2019;328:98–104.
  • Rite I, Machado A, Cano J, et al. Blood brain barrier disruption induces in vivo degeneration of nigral dopaminergic neurons. J Neurochem. 2007;101:1567–1582.
  • Keshavarzian A, Green SJ, Engen PA, et al. Colonic bacterial composition in Parkinson’s disease. Mov Disord. 2015;30:1351–1360.
  • Sampson TR, Debelius JW, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson’s disease. Cell. 2016;167:1469–1480.e12.
  • Heneka MT, Carson MJ, Khoury JE, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405.
  • Lukiw WJ. Bacteroides fragilis Lipopolysaccharide and Inflammatory Signaling in Alzheimer’s Disease. Front Microbiol. [Internet]. 2016 [cited 2020 Feb 21];7. Available from http://journal.frontiersin.org/Article/10.3389/fmicb.2016.01544/abstract
  • Zhang L, Wang Y, Xiayu X, et al. Altered gut microbiota in a mouse model of alzheimer’s disease. J Alzheimers Dis. 2017;60:1241–1257.
  • Shen H, Guan Q, Zhang X, et al. New mechanism of neuroinflammation in Alzheimer’s disease: the activation of NLRP3 inflammasome mediated by gut microbiota. Prog Neuro Psychopharmacol Biol Psychiatry. 2020;100:109884.
  • Wang W-Y, Tan M-S, Yu J-T, et al. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med. 2015;3:136.
  • Dodiya HB, Kuntz T, Shaik SM, et al. Sex-specific effects of microbiome perturbations on cerebral Aβ amyloidosis and microglia phenotypes. J Exp Med. 2019;216:1542–1560.
  • Minter MR, Zhang C, Leone V, et al. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci Rep. 2016;6:30028.
  • Brenner D, Hiergeist A, Adis C, et al. The fecal microbiome of ALS patients. Neurobiol Aging. 2018;61:132–137.
  • Fang X, Wang X, Yang S, et al. Evaluation of the microbial diversity in amyotrophic lateral sclerosis using high-throughput sequencing. Front Microbiol. 2016;7:1479.
  • Berer K, Mues M, Koutrolos M, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479:538–541.
  • Chen J, Chia N, Kalari KR, et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep. 2016;6:28484.
  • Mete A, Garcia J, Ortega J, et al. Brain Lesions associated with clostridium perfringens Type D epsilon toxin in a holstein heifer calf. Vet Pathol. 2013;50:765–768.
  • Lu K, Abo RP, Schlieper KA, et al. Arsenic Exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect. 2014;122:284–291.
  • Gao B, Chi L, Mahbub R, et al. Multi-Omics Reveals that lead exposure disturbs gut microbiome development, key metabolites, and metabolic pathways. Chem Res Toxicol. 2017;30:996–1005.
  • Rosenfeld CS. Gut Dysbiosis in animals due to environmental Chemical Exposures. Front Cell Infect Microbiol. 2017;7:396.
  • Kish L, Hotte N, Kaplan GG, et al. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome. PLoS ONE. 2013;8:e62220.
  • Javurek AB, Spollen WG, Johnson SA, et al. Effects of exposure to bisphenol A and ethinyl estradiol on the gut microbiota of parents and their offspring in a rodent model. Gut Microbes. 2016;7:471–485.
  • David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563.
  • Turnbaugh PJ, Ridaura VK, Faith JJ, et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1:6ra14–6ra14.
  • Singh RK, Chang H-W, Yan D, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15:73.
  • Jantchou P, Morois S, Clavel-Chapelon F, et al. Animal protein intake and risk of inflammatory bowel disease: the E3N prospective study. Am J Gastroenterol. 2010;105:2195–2201.
  • Romond MB, Ais A, Guillemot F, et al. Cell-free whey from milk fermented with Bifidobacterium breve C50 used to modify the colonic microflora of healthy subjects. J Dairy Sci. 1998;81:1229–1235.
  • Świątecka D, Ś D, Narbad A, et al. The study on the impact of glycated pea proteins on human intestinal bacteria. Int J Food Microbiol. 2011;145:267–272.
  • Kim CH, Park J, Kim M. Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation. Immune Netw. 2014;14:277–288.
  • Fava F, Gitau R, Griffin BA, et al. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome “at-risk” population. Int J Obes (Lond). 2013;37:216–223.
  • Eid N, Enani S, Walton G, et al. The impact of date palm fruits and their component polyphenols, on gut microbial ecology, bacterial metabolites and colon cancer cell proliferation. J Nutr Sci. 2014;3:e46.
  • Suez J, Korem T, Zeevi D, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514:181–186.
  • Martínez I, Lattimer JM, Hubach KL, et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. Isme J. 2013;7:269–280.
  • Kim M-S, Hwang -S-S, Park E-J, et al. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation. Environ Microbiol Rep. 2013;5:765–775.
  • Rajkumar H, Mahmood N, Kumar M, et al. Effect of probiotic (VSL#3) and omega-3 on lipid profile, insulin sensitivity, inflammatory markers, and gut colonization in overweight adults: a randomized, controlled trial. Mediators Inflamm. 2014;2014:348959.
  • Liu J-E, Zhang Y, Zhang J, et al. Probiotic yogurt effects on intestinal flora of patients with chronic liver disease. Nurs Res. 2010;59:426–432.
  • Hirschberg S, Gisevius B, Duscha A, et al. Implications of Diet and the gut microbiome in neuroinflammatory and neurodegenerative diseases. Int J Mol Sci. 2019;20:3109.
  • Pérez-Jiménez J, Neveu V, Vos F, et al. Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. Eur J Clin Nutr. 2010;64(Suppl 3):S112–120. .
  • Cuervo A, Valdés L, Salazar N, et al. Pilot study of diet and microbiota: interactive associations of fibers and polyphenols with human intestinal bacteria. J Agric Food Chem. 2014;62:5330–5336.
  • Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics- a review. J Food Sci Technol. 2015;52:7577–7587.
  • Benjamin JL, Hedin CRH, Koutsoumpas A, et al. Smokers with active Crohn’s disease have a clinically relevant dysbiosis of the gastrointestinal microbiota. Inflamm Bowel Dis. 2012;18:1092–1100.
  • Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients. 2014;7:17–44.
  • Lutgendorff F, Akkermans LMA, Söderholm JD. The role of microbiota and probiotics in stress-induced gastro-intestinal damage. Curr Mol Med. 2008;8:282–298.
  • Clarke SF, Murphy EF, O’Sullivan O, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63:1913–1920.
  • Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–227.
  • De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107:14691–14696.
  • Di Meo F, Donato S, Di Pardo A, et al. New Therapeutic drugs from bioactive natural molecules: the role of gut microbiota metabolism in neurodegenerative diseases. CDM. 2018;19:478–489.
  • Ho L, Ono K, Tsuji M, et al. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother. 2018;18:83–90.
  • Wiciński M, Gębalski J, Mazurek E, et al. The Influence of polyphenol compounds on human gastrointestinal tract microbiota. Nutrients. 2020;12:350.
  • Jäger R, Mohr AE, Carpenter KC, et al. International society of sports nutrition position stand: probiotics. J Int Soc Sports Nutr. 2019;16:62.
  • Lievin-Le Moal V, Servin AL. Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin Microbiol Rev. 2014;27:167–199.
  • Cassani E, Privitera G, Pezzoli G, et al. Use of probiotics for the treatment of constipation in Parkinson’s disease patients. Minerva Gastroenterol Dietol. 2011;57:117–121.
  • Tamtaji OR, Taghizadeh M, Daneshvar Kakhaki R, et al. Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Clin Nutr. 2019;38:1031–1035.
  • Gorecki AM, Dunlop SA, Rodger J, et al. The gut-brain axis and gut inflammation in Parkinson’s disease: stopping neurodegeneration at the toll gate. In: Daniele Santini, editor. Expert opinion on therapeutic targets. England: Taylor and Francis. 2020. p. 1–4.
  • Gill HS, Rutherfurd KJ, Cross ML, et al. Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. Am J Clin Nutr. 2001;74:833–839.
  • Goya ME, Xue F, Sampedro-Torres-Quevedo C, et al. Probiotic bacillus subtilis protects against α-synuclein aggregation in C. elegans. Cell Rep. 2020;30(367–380.e7). DOI:10.1016/j.celrep.2019.12.078.
  • Akbari E, Asemi Z, Daneshvar Kakhaki R, et al. Effect of probiotic supplementation on cognitive function and metabolic status in alzheimer’s disease: a randomized, double-blind and controlled trial. Front Aging Neurosci. [Internet] 2016 [cited 2020 Feb 24];8. Available from http://journal.frontiersin.org/article/10.3389/fnagi.2016.00256/full
  • Westfall S, Lomis N, Prakash S. Longevity extension in Drosophila through gut-brain communication. Sci Rep. 2018;8:8362.
  • Westfall S, Iqbal U, Sebastian M, et al. Gut microbiota mediated allostasis prevents stress-induced neuroinflammatory risk factors of Alzheimer’s disease. Prog Mol Biol Transl Sci. [Internet]. Elsevier; 2019 [cited 2020 Feb 27]. p. 147–181. Available from https://linkinghub.elsevier.com/retrieve/pii/S1877117319301036
  • Westfall S, Lomis N, Prakash S. A novel synbiotic delays Alzheimer’s disease onset via combinatorial gut-brain-axis signaling in Drosophila melanogaster. Broughton SJ, editor. PLoS One. 2019;14:e0214985.
  • Bartosch S, Woodmansey EJ, Paterson JCM, et al. Microbiological Effects of Consuming a Synbiotic Containing Bifidobacterium bifidum, Bifidobacterium lactis, and oligofructose in elderly persons, determined by real-time polymerase chain reaction and counting of viable bacteria. Clinl Infect Dis. 2005;40:28–37.
  • Macfarlane S, Cleary S, Bahrami B, et al. Synbiotic consumption changes the metabolism and composition of the gut microbiota in older people and modifies inflammatory processes: a randomised, double-blind, placebo-controlled crossover study. Aliment Pharmacol Ther. 2013;38:804–816.
  • Tankou SK, Regev K, Healy BC, et al. A probiotic modulates the microbiome and immunity in multiple sclerosis. Ann Neurol. 2018;83:1147–1161.
  • Fasching P, Stradner M, Graninger W, et al. Therapeutic Potential of Targeting the Th17/Treg Axis in Autoimmune Disorders. Molecules. 2017;22:134.
  • Caracci F, Harary J, Simkovic S, et al. Grape-Derived polyphenols ameliorate stress-induced depression by regulating synaptic plasticity. J Agric Food Chem. 2020;68(7):1808–1815. .
  • Wang J, Hodes GE, Zhang H, et al. Epigenetic modulation of inflammation and synaptic plasticity promotes resilience against stress in mice. Nat Commun. 2018;9(1):477.
  • Pasinetti GM, Wang J, Ho L, et al. Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2015;1852(6):1202–1208. .
  • Ho L, Zhao D, Ono K, et al. Heterogeneity in gut microbiota drive polyphenol metabolism that influences α-synuclein misfolding and toxicity. J Nutr Biochem. 2019;64:170–181.
  • Zhang F, Wang H, Wu Q, et al. Resveratrol protects cortical neurons against microglia-mediated neuroinflammation: resveratrol protected against microglia-mediated neuroinflammation. Phytother Res. 2013;27(3):344–349. .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.