284
Views
20
CrossRef citations to date
0
Altmetric
Review

What is the potential of neurostimulation in the treatment of motor symptoms in schizophrenia?

, &
Pages 697-706 | Received 20 Mar 2020, Accepted 26 May 2020, Published online: 16 Jun 2020

References

  • Walther S, Strik W. Motor symptoms and schizophrenia. Neuropsychobiology. 2012;66(2):77–92.
  • Walther S, Mittal VA. Motor system pathology in psychosis. Curr Psychiatry Rep. 2017 Oct 30;19(12):97.
  • Whitty PF, Owoeye O, Waddington JL. Neurological signs and involuntary movements in schizophrenia: intrinsic to and informative on systems pathobiology. Schizophr Bull. 2009 Mar;35(2):415–424.
  • Mittal VA, Walther S. As motor system pathophysiology returns to the forefront of psychosis research, clinical implications should hold center stage. Schizophr Bull. 2019 Apr 25;45(3):495–497.
  • Walther S, Stegmayer K, Wilson JE, et al. Structure and neural mechanisms of catatonia. Lancet Psychiatry. 2019 Jul;6(7):610–619.
  • Osborne KJ, Walther S, Shankman SA, et al. Psychomotor Slowing in Schizophrenia: implications for endophenotype and biomarker development. Biomarkers Neuropsychiatry. 2020 May 12:100016.
  • Morrens M, Hulstijn W, Sabbe B. Psychomotor slowing in schizophrenia. Schizophr Bull. 2007 Jul;33(4):1038–1053.
  • Hirjak D, Meyer-Lindenberg A, Fritze S, et al. Motor dysfunction as research domain across bipolar, obsessive-compulsive and neurodevelopmental disorders. Neurosci Biobehav Rev. 2018;95:315–335.
  • Peralta V, Cuesta MJ. Motor abnormalities: from neurodevelopmental to neurodegenerative through “functional” (neuro)psychiatric disorders. Schizophr Bull. 2017 Sep 1;43(5):956–971.
  • Pappa S, Dazzan P. Spontaneous movement disorders in antipsychotic-naive patients with first-episode psychoses: a systematic review. Psychol Med. 2009 Jul;39(7):1065–1076.
  • Quinn J, Meagher D, Murphy P, et al. Vulnerability to involuntary movements over a lifetime trajectory of schizophrenia approaches 100%, in association with executive (frontal) dysfunction. Schizophr Res. 2001 Apr 15;49(1–2):79–87.
  • Kindler J, Schultze-Lutter F, Michel C, et al. Abnormal involuntary movements are linked to psychosis-risk in children and adolescents: results of a population-based study. Schizophr Res. 2016 Jul;174(1–3):58–64.
  • Kindler J, Michel C, Schultze-Lutter F, et al. Functional and structural correlates of abnormal involuntary movements in psychosis risk and first episode psychosis. Schizophr Res. 2019;212:196–203.
  • Damme KSF, Osborne KJ, Gold JM, et al. Detecting motor slowing in clinical high risk for psychosis in a computerized finger tapping model. Eur Arch Psychiatry Clin Neurosci. 2019 Aug 20;270(3):393–397.
  • Dean DJ, Walther S, Bernard JA, et al. Motor clusters reveal differences in risk for psychosis, cognitive functioning, and thalamocortical connectivity: evidence for vulnerability subtypes. Clin Psychol Sci. 2018 Sep 1;6(5):721–734.
  • van Harten PN, Walther S, Kent JS, et al. The clinical and prognostic value of motor abnormalities in psychosis, and the importance of instrumental assessment. Neurosci Biobehav Rev. 2017;80:476–487.
  • Cuesta MJ, Sanchez-Torres AM, de Jalon EG, et al. Spontaneous parkinsonism is associated with cognitive impairment in antipsychotic-naive patients with first-episode psychosis: a 6-month follow-up study. Schizophr Bull. 2014 Sep;40(5):1164–1173.
  • Cuesta MJ, Garcia de Jalon E, MS C, et al. Motor abnormalities in first-episode psychosis patients and long-term psychosocial functioning. Schizophr Res. 2018;200:97–103.
  • Walther S, Eisenhardt S, Bohlhalter S, et al. Gesture performance in schizophrenia predicts functional outcome after 6 months. Schizophr Bull. 2016 Nov;42(6):1326–1333.
  • Putzhammer A, Perfahl M, Pfeiff L, et al. Correlation of subjective well-being in schizophrenic patients with gait parameters, expert-rated motor disturbances, and psychopathological status. Pharmacopsychiatry. 2005 May;38(3):132–138.
  • Lieberman JA, Stroup TS, McEvoy JP, et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med. 2005 Sep 22;353(12):1209–1223.
  • Ayd FJ Jr. A survey of drug-induced extrapyramidal reactions. JAMA. 1961 Mar;25(175):1054–1060.
  • Stegmayer K, Walther S, van Harten P. Tardive dyskinesia associated with atypical antipsychotics: prevalence, mechanisms and management strategies. CNS Drugs. 2018 Feb;32(2):135–147.
  • Miller DD, Caroff SN, Davis SM, et al. Extrapyramidal side-effects of antipsychotics in a randomised trial. Br J Psychiatry. 2008 Oct;193(4):279–288.
  • Peralta V, Cuesta MJ. The effect of antipsychotic medication on neuromotor abnormalities in neuroleptic-naive nonaffective psychotic patients: a naturalistic study with haloperidol, risperidone, or olanzapine. Prim Care Companion J Clin Psychiatry. 2010;12:2.
  • Mittal VA, Bernard JA, Northoff G. What can different motor circuits tell us about psychosis? An RDoC perspective. Schizophr Bull. 2017 Sep 1;43(5):949–955.
  • Bernard JA, Russell CE, Newberry RE, et al. Patients with schizophrenia show aberrant patterns of basal ganglia activation: evidence from ALE meta-analysis. Neuroimage Clin. 2017;14:450–463.
  • Bernard JA, Mittal VA. Dysfunctional activation of the cerebellum in schizophrenia: a functional neuroimaging meta-analysis. Clin Psychol Sci. 2015 Jul 1;3(4):545–566.
  • Zhao Q, Li Z, Huang J, et al. Neurological soft signs are not “soft” in brain structure and functional networks: evidence from ALE meta-analysis. Schizophr Bull. 2014 May;40(3):626–641.
  • Walther S. Psychomotor symptoms of schizophrenia map on the cerebral motor circuit. Psychiatry Res. 2015 Sep 30;233(3):293–298.
  • Bernard JA, Goen JRM, Maldonado T. A case for motor network contributions to schizophrenia symptoms: evidence from resting-state connectivity. Hum Brain Mapp. 2017 Sep;38(9):4535–4545.
  • Walther S, Stegmayer K, Federspiel A, et al. Aberrant hyperconnectivity in the motor system at rest is linked to motor abnormalities in schizophrenia spectrum disorders. Schizophr Bull. 2017 Sep 1;43(5):982–992.
  • Martino M, Magioncalda P, Yu H, et al. Abnormal resting-state connectivity in a substantia nigra-related striato-thalamo-cortical network in a large sample of first-episode drug-naive patients with schizophrenia. Schizophr Bull. 2018 Feb 15;44(2):419–431.
  • Foucher JR, Zhang YF, Roser M, et al. A double dissociation between two psychotic phenotypes: periodic catatonia and cataphasia. Prog Neuropsychopharmacol Biol Psychiatry. 2018 Aug;30(86):363–369.
  • Walther S, Schappi L, Federspiel A, et al. Resting-state hyperperfusion of the supplementary motor area in Catatonia. Schizophr Bull. 2017 Sep 1;43(5):972–981.
  • Fassbender C, Scangos K, Lesh TA, et al. RT distributional analysis of cognitive-control-related brain activity in first-episode schizophrenia. Cogn Affect Behav Neurosci. 2014 Mar;14(1):175–188.
  • Woodward ND, Waldie B, Rogers B, et al. Abnormal prefrontal cortical activity and connectivity during response selection in first episode psychosis, chronic schizophrenia, and unaffected siblings of individuals with schizophrenia. Schizophr Res. 2009 Apr;109(1–3):182–190.
  • Johansson G. Visual-perception of biological motion and a model for its analysis. Percept Psychophys. 1973;14(2):201–211.
  • Rizzolatti G, Craighero L. The mirror-neuron system. Annu Rev Neurosci. 2004;27:169–192.
  • Pavlidou A, Schnitzler A, Lange J. Distinct spatio-temporal profiles of beta-oscillations within visual and sensorimotor areas during action recognition as revealed by MEG [Research support, Non-U.S. Gov’t]. Cortex. 2014 May;54:106–116.
  • Okruszek L, Pilecka I. Biological motion processing in schizophrenia - systematic review and meta-analysis. Schizophr Res. 2017 Dec;190:3–10.
  • Chail A, Saini RK, Bhat PS, et al. Transcranial magnetic stimulation: a review of its evolution and current applications. Ind Psychiatry J. 2018 Jul-Dec;27(2):172–180.
  • Terranova C, Rizzo V, Cacciola A, et al. Is there a future for non-invasive brain stimulation as a therapeutic tool? Front Neurol. 2018;9:1146.
  • Alvaro Pascual-Leone FF, Steven-Wheeler MS, Forrow L. Non-invasive brain stimulation as a therapeutic and investigative tool: an ethical appraisal. New York, NY: Oxford Handbook of Neuroethics; 2011.
  • Vosskuhl J, Struber D, Herrmann CS. Non-invasive brain stimulation: a paradigm shift in understanding brain oscillations. Front Hum Neurosci. 2018;12:211.
  • Li LM, Uehara K, Hanakawa T. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front Cell Neurosci. 2015;9:181.
  • Wang HY, Crupi D, Liu J, et al. Repetitive transcranial magnetic stimulation enhances BDNF-TrkB signaling in both brain and lymphocyte. J Neurosci. 2011 Jul 27;31(30):11044–11054.
  • Fresnoza S, Paulus W, Nitsche MA, et al. Nonlinear dose-dependent impact of D1 receptor activation on motor cortex plasticity in humans. J Neurosci. 2014 Feb 12;34(7):2744–2753.
  • Pascual-Leone A, Tarazona F, Catala MD. Applications of transcranial magnetic stimulation in studies on motor learning. Electroencephalogr Clin Neurophysiol Suppl. 1999;51:157–161.
  • Smyth C, Summers JJ, Garry MI. Differences in motor learning success are associated with differences in M1 excitability. Hum Mov Sci. 2010 Oct;29(5):618–630.
  • Muellbacher W, Ziemann U, Wissel J, et al. Early consolidation in human primary motor cortex. Nature. 2002 Feb 7;415(6872):640–644.
  • Reis J, Swayne OB, Vandermeeren Y, et al. Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J Physiol. 2008 Jan 15;586(2):325–351.
  • Krakauer JW, Mazzoni P. Human sensorimotor learning: adaptation, skill, and beyond. Curr Opin Neurobiol. 2011 Aug;21(4):636–644.
  • Shmuelof L, Krakauer JW, Mazzoni P. How is a motor skill learned? Change and invariance at the levels of task success and trajectory control. J Neurophysiol. 2012 Jul;108(2):578–594.
  • Jancke L, Steinmetz H, Benilow S, et al. Slowing fastest finger movements of the dominant hand with low-frequency rTMS of the hand area of the primary motor cortex. Exp Brain Res. 2004 Mar;155(2):196–203.
  • Avanzino L, Bove M, Tacchino A, et al. Interaction between finger opposition movements and aftereffects of 1Hz-rTMS on ipsilateral motor cortex. J Neurophysiol. 2009 Mar;101(3):1690–1694.
  • Di Lorenzo C, Tavernese E, Lepre C, et al. Influence of rTMS over the left primary motor cortex on initiation and performance of a simple movement executed with the contralateral arm in healthy volunteers. Exp Brain Res. 2013 Feb;224(3):383–392.
  • Vines BW, Nair DG, Schlaug G. Contralateral and ipsilateral motor effects after transcranial direct current stimulation. Neuroreport. 2006 Apr 24;17(6):671–674.
  • Vines BW, Cerruti C, Schlaug G. Dual-hemisphere tDCS facilitates greater improvements for healthy subjects’ non-dominant hand compared to uni-hemisphere stimulation. BMC Neurosci. 2008;9:103.
  • Schambra HM, Abe M, Luckenbaugh DA, et al. Probing for hemispheric specialization for motor skill learning: a transcranial direct current stimulation study. J Neurophysiol. 2011 Aug;106(2):652–661.
  • Platz T, Adler-Wiebe M, Roschka S, et al. Enhancement of motor learning by focal intermittent theta burst stimulation (iTBS) of either the primary motor (M1) or somatosensory area (S1) in healthy human subjects. Restor Neurol Neurosci. 2018;36(1):117–130.
  • Morya E, Monte-Silva K, Bikson M, et al. Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes. J Neuroeng Rehabil. 2019 Nov 15;16(1):141.
  • Bikson M, Grossman P, Thomas C, et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 2016 Sep-Oct;9(5):641–661.
  • Machado S, Arias-Carrion O, Paes F, et al. Repetitive transcranial magnetic stimulation for clinical applications in neurological and psychiatric disorders: an overview. Eurasian J Med. 2013 Oct;45(3):191–206.
  • Liew SL, Santarnecchi E, Buch ER, et al. Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery. Front Hum Neurosci. 2014;8:378.
  • Nowak DA, Grefkes C, Ameli M, et al. Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand. Neurorehabil Neural Repair. 2009 Sep;23(7):641–656.
  • Lefebvre S, Liew SL. Anatomical parameters of tDCS to modulate the motor system after stroke: a review. Front Neurol. 2017;8:29.
  • Sasaki N, Kakuda W, Abo M. Bilateral high- and low-frequency rTMS in acute stroke patients with hemiparesis: a comparative study with unilateral high-frequency rTMS. Brain Inj. 2014;28(13–14):1682–1686.
  • Lefebvre S, Dricot L, Laloux P, et al. Neural substrates underlying stimulation-enhanced motor skill learning after stroke. Brain. 2015 Jan;138(Pt 1):149–163.
  • Kumru H, Benito J, Murillo N, et al. Effects of high-frequency repetitive transcranial magnetic stimulation on motor and gait improvement in incomplete spinal cord injury patients. Neurorehabil Neural Repair. 2013 Jun ;27(5):421–429.
  • Hamada M, Ugawa Y, Tsuji S. High-frequency rTMS over the supplementary motor area improves bradykinesia in Parkinson’s disease: subanalysis of double-blind sham-controlled study. J Neurol Sci. 2009 Dec 15;287(1–2):143–146.
  • Ishikuro K, Dougu N, Nukui T, et al. Effects of transcranial direct current stimulation (tDCS) Over the frontal polar area on motor and executive functions in Parkinson’s disease; a pilot study. Front Aging Neurosci. 2018;10:231.
  • Carpenter WT, Koenig JI. The evolution of drug development in schizophrenia: past issues and future opportunities. Neuropsychopharmacology. 2008 Aug;33(9):2061–2079.
  • van den Buuse M. Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr Bull. 2010 Mar;36(2):246–270.
  • Hadar R, Winter R, Edemann-Callesen H, et al. Prevention of schizophrenia deficits via non-invasive adolescent frontal cortex stimulation in rats. Mol Psychiatry. 2019 Apr;25(4):896–905.
  • Howes OD, Montgomery AJ, Asselin MC, et al. Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry. 2009 Jan;66(1):13–20.
  • Kegeles LS, Abi-Dargham A, Frankle WG, et al. Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch Gen Psychiatry. 2010 Mar;67(3):231–239.
  • Laruelle M, Kegeles LS, Frankle GW, et al. Schizophrenia is associated with increased synaptic dopamine in associative rather than limbic regions of the striatum. Neuropsychopharmacology. 2005;30:S196–S196.
  • Lu C, Wei Y, Hu R, et al. Transcranial direct current stimulation ameliorates behavioral deficits and reduces oxidative stress in 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-induced mouse model of Parkinson’s disease. Neuromodulation. 2015 Aug;18(6):442–446. discussion 447.
  • Tanaka T, Takano Y, Tanaka S, et al. Transcranial direct-current stimulation increases extracellular dopamine levels in the rat striatum. Front Syst Neurosci. 2013;7:6.
  • Li H, Lei X, Yan T, et al. The temporary and accumulated effects of transcranial direct current stimulation for the treatment of advanced Parkinson’s disease monkeys. Sci Rep. 2015 Jul;29(5):12178.
  • Lee JY, Kim SH, Ko AR, et al. Therapeutic effects of repetitive transcranial magnetic stimulation in an animal model of Parkinson’s disease. Brain Res. 2013 Nov;6(1537):290–302.
  • Boonzaier J, van Tilborg GAF, Neggers SFW, et al. Noninvasive brain stimulation to enhance functional recovery after stroke: studies in animal models. Neurorehabil Neural Repair. 2018 Nov;32(11):927–940.
  • Kim SJ, Kim BK, Ko YJ, et al. Functional and histologic changes after repeated transcranial direct current stimulation in rat stroke model. J Korean Med Sci. 2010 Oct;25(10):1499–1505.
  • Braun R, Klein R, Walter HL, et al. Transcranial direct current stimulation accelerates recovery of function, induces neurogenesis and recruits oligodendrocyte precursors in a rat model of stroke. Exp Neurol. 2016;279:127–136.
  • Yoon KJ, Lee YT, Han TR. Mechanism of functional recovery after repetitive transcranial magnetic stimulation (rTMS) in the subacute cerebral ischemic rat model: neural plasticity or anti-apoptosis? Exp Brain Res. 2011 Oct;214(4):549–556.
  • Ljubisavljevic MR, Javid A, Oommen J, et al. The effects of different repetitive transcranial magnetic stimulation (rTMS) protocols on cortical gene expression in a rat model of cerebral ischemic-reperfusion injury. PLoS One. 2015;10(10):e0139892.
  • Jones CA, Watson DJ, Fone KC. Animal models of schizophrenia. Br J Pharmacol. 2011 Oct;164(4):1162–1194.
  • Young JW, Zhou X, Geyer MA. Animal models of schizophrenia. Curr Top Behav Neurosci. 2010;4:391–433.
  • Bernard JA, Orr JM, Dean DJ, et al. The cerebellum and learning of non-motor associations in individuals at clinical-high risk for psychosis. Neuroimage Clin. 2018;19:137–146.
  • Dean DJ, Orr JM, Newberry RE, et al. Motor behavior reflects reduced hemispheric asymmetry in the psychosis risk period. Schizophr Res. 2016 Jan;170(1):137–142.
  • Dean DJ, Kent JS, Bernard JA, et al. Increased postural sway predicts negative symptom progression in youth at ultrahigh risk for psychosis. Schizophr Res. 2015 Mar;162(1–3):86–89.
  • Millman ZB, Goss J, Schiffman J, et al. Mismatch and lexical retrieval gestures are associated with visual information processing, verbal production, and symptomatology in youth at high risk for psychosis. Schizophr Res. 2014 Sep;158(1–3):64–68.
  • Mittal VA, Dean DJ, Pelletier A, et al. Associations between spontaneous movement abnormalities and psychotic-like experiences in the general population. Schizophr Res. 2011 Nov;132(2–3):194–196.
  • DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch Neurol. 2007 Jan;64(1):20–24.
  • Censor N, Sagi D, Cohen LG. Common mechanisms of human perceptual and motor learning. Nat Rev Neurosci. 2012 Sep;13(9):658–664.
  • Gupta T, Dean DJ, Kelley NJ, et al. Cerebellar transcranial direct current stimulation improves procedural learning in nonclinical psychosis: a double-blind crossover study. Schizophr Bull. 2018 Oct 17;44(6):1373–1380.
  • Osoegawa C, Gomes JS, Grigolon RB, et al. Non-invasive brain stimulation for negative symptoms in schizophrenia: an updated systematic review and meta-analysis. Schizophr Res. 2018 Jul;197:34–44.
  • Zhao S, Kong J, Li S, et al. Randomized controlled trial of four protocols of repetitive transcranial magnetic stimulation for treating the negative symptoms of schizophrenia. Shanghai Arch Psychiatry. 2014 Feb;26(1):15–21.
  • Valiengo L, Goerigk S, Gordon PC, et al. Efficacy and safety of transcranial direct current stimulation for treating negative symptoms in schizophrenia: a randomized clinical trial. JAMA Psychiatry. 2019 Oct 16;77(2):121–129.
  • Kamp D, Engelke C, Wobrock T, et al. Left prefrontal high-frequency rTMS may improve movement disorder in schizophrenia patients with predominant negative symptoms - A secondary analysis of a sham-controlled, randomized multicenter trial. Schizophr Res. 2019;204:445–447.
  • Walther S, Kunz M, Muller M, et al. single session transcranial magnetic stimulation ameliorates hand gesture deficits in schizophrenia. Schizophr Bull. 2020 Feb 26;46(2):286–293.
  • Vanbellingen T, Pastore-Wapp M, Kubel S, et al. Interhemispheric facilitation of gesturing: A combined theta burst stimulation and diffusion tensor imaging study. Brain Stimul. 2020 Mar - Apr;13(2):457–463.
  • Walther S, Alexaki D, Schoretsanitis G, et al. Inhibitory repetitive transcranial magnetic stimulation to treat psychomotor slowing – a transdiagnostic, mechanism based randomized double-blind controlled trial. Schizophr Bull Open 2020. DOI:10.1093/schizbullopen/sgaa020
  • Vanbellingen T, Kersten B, Van Hemelrijk B, et al. Comprehensive assessment of gesture production: a new test of upper limb apraxia (TULIA). Eur J Neurol. 2010 Jan;17(1):59–66.
  • Penta M, Tesio L, Arnould C, et al. The ABILHAND questionnaire as a measure of manual ability in chronic stroke patients: rasch-based validation and relationship to upper limb impairment. Stroke. 2001 Jul;32(7):1627–1634.
  • Pavlidou A, Schnitzler A, Lange J. Interactions between visual and motor areas during the recognition of plausible actions as revealed by magnetoencephalography [Research support, Non-U.S. Gov’t]. Hum Brain Mapp. 2014 Feb;35(2):581–592.
  • Edwards M, Liang Y, Kim T, et al. Physiological role of the interaction between CARMIL1 and capping protein [Research support, N.I.H., Extramural]. Mol Biol Cell. 2013 Oct;24(19):3047–3055.
  • Fischer DB, Fried PJ, Ruffini G, et al. Multifocal tDCS targeting the resting state motor network increases cortical excitability beyond traditional tDCS targeting unilateral motor cortex. Neuroimage. 2017 Aug;15(157):34–44.
  • Mackay WA. Synchronized neuronal oscillations and their role in motor processes. Trends Cogn Sci. 1997 Aug;1(5):176–183.
  • Antal A, Herrmann CS. Transcranial alternating current and random noise stimulation: possible mechanisms. Neural Plast. 2016;2016:3616807.
  • Romero MC, Davare M, Armendariz M, et al. Neural effects of transcranial magnetic stimulation at the single-cell level. Nat Commun. 2019 Jun 14;10(1):2642.
  • Lefebvre S, Jann K, Schmiesing A, et al. Differences in high-definition transcranial direct current stimulation over the motor hotspot versus the premotor cortex on motor network excitability. Sci Rep. 2019 Nov 26;9(1):17605.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.