369
Views
1
CrossRef citations to date
0
Altmetric
Review

Cortical excitability in epilepsy and the impact of antiepileptic drugs: transcranial magnetic stimulation applications

ORCID Icon
Pages 707-723 | Received 30 Jan 2020, Accepted 05 Jun 2020, Published online: 23 Jun 2020

References

  • Neligan A, Hauser WA, Sander JW. The epidemiology of the epilepsies. Handb Clin Neurol. 2012;107:113–133.
  • Kwan P, Brodie MJ. Definition of refractory epilepsy: defining the indefinable? Lancet Neurol. 2010;9(1):27–29.
  • Engel J Jr. Progress in epilepsy: reducing the treatment gap and the promise of biomarkers. Curr Opin Neurol. 2008;21(2):150–154.
  • Tassinari CA, Michelucci R, Forti A, et al. Transcranial magnetic stimulation in epileptic patients: usefulness and safety. Neurology. 1990;40(7):1132–1133.
  • Varrasi C, Civardi C, Boccagni C, et al. Cortical excitability in drug-naive patients with partial epilepsy: a cross-sectional study. Neurology. 2004;63(11):2051–2055.
  • Inghilleri M, Mattia D, Berardelli A, et al. Asymmetry of cortical excitability revealed by transcranial stimulation in a patient with focal motor epilepsy and cortical myoclonus. Electroencephalogr Clin Neurophysiol. 1998;109(1):70–72.
  • Manganotti P, Bongiovanni LG, Zanette G, et al. Early and late intracortical inhibition in juvenile myoclonic epilepsy. Epilepsia. 2000;41(9):1129–1138.
  • Brodtmann A, Macdonell RA, Gilligan AK, et al. Cortical excitability and recovery curve analysis in generalized epilepsy. Neurology. 1999;53(6):1347–1349.
  • Klimpe S, Behrang-Nia M, Bott MC, et al. Recruitment of motor cortex inhibition differentiates between generalized and focal epilepsy. Epilepsy Res. 2009;84(2–3):210–216.
  • Avoli M, de Curtis M. GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity. Prog Neurobiol. 2011;95(2):104–132.
  • Bauer PR, de Goede AA, Stern WM, et al. Long-interval intracortical inhibition as biomarker for epilepsy: a transcranial magnetic stimulation study. Brain. 2018;141(2):409–421..
  • Morgan VL, Abou-Khalil B, Rogers BP. Evolution of functional connectivity of brain networks and their dynamic interaction in temporal lobe epilepsy. Brain Connect. 2015;5(1):35–44.
  • Pitkänen A, Jr EJ. Past and present definitions of epileptogenesis and its biomarkers. Neurotherapeutics. 2014;11(2):231–241.
  • Pawley AD, Chowdhury FA, Tangwiriyasakul C, et al. Cortical excitability correlates with seizure control and epilepsy duration in chronic epilepsy. Ann Clin Transl Neurol. 2017;4(2):87–97.
  • Reutens DC, Berkovic SF, Macdonell RA, et al. Magnetic stimulation of the brain in generalized epilepsy: reversal of cortical hyperexcitability by anticonvulsants. Ann Neurol. 1993;34(3):351–355.
  • Nezu A, Kimura S, Ohtsuki N, et al. Transcranial magnetic stimulation in benign childhood epilepsy with centro-temporal spikes. Brain Dev. 1997;19(2):134–137.
  • Cantello R, Civardi C, Varrasi C, et al. Excitability of the human epileptic cortex after chronic valproate: a reappraisal. Brain Res. 2006;1099(1):160–166.
  • Tataroglu C, Ozkiziltan S, Baklan B. Motor cortical thresholds and cortical silent periods in epilepsy. Seizure. 2004;13(7):481–485.
  • Cooper YA, Pianka ST, Alotaibi NM, et al. Repetitive transcranial magnetic stimulation for the treatment of drug‐resistant epilepsy: A systematic review and individual participant data meta‐analysis of real‐world evidence. Epilepsia Open. 2018;3(1):55–65.
  • Kinoshita M, Ikeda A, Begum T, et al. Low-frequency repetitive transcranial magnetic stimulation for seizure suppression in patients with extratemporal lobe epilepsy-a pilot study. Seizure. 2005;14(6):387–392.
  • Misawa S, Kuwabara S, Shibuya K, et al. Low-frequency transcranial magnetic stimulation for epilepsia partialis continua due to cortical dysplasia. J Neurol Sci. 2005;234(1–2):37–39.
  • Rotenberg A, Bae EH, Takeoka M, et al. Repetitive transcranial magnetic stimulation in the treatment of epilepsia partialis continua. Epilepsy Behav. 2009;14(1):253–257.
  • Pascual-Leone A, Tormos JM, Keenan J, et al. Study and modulation of human cortical excitability with transcranial magnetic stimulation. J Clin Neurophysiol. 1998;15(4):333–343.
  • Huang YZ, Edwards MJ, Rounis E, et al. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201–206.
  • Di Lazzaro V, Ziemann U. The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex. Front Neural Circuits. 2013;7:18.
  • Devanne H, Lavoie BA, Capaday C. Input-output properties and gain changes in the human corticospinal pathway. Exp Brain Res. 1997;114(2):329–338.
  • Badawy RA, Vogrin SJ, Lai A, et al. Patterns of cortical hyperexcitability in adolescent/adult-onset generalized epilepsies. Epilepsia. 2013;54(5):871–878.
  • Zilles K, Qü MS, Köhling R, et al. Ionotropic glutamate and GABA receptors in human epileptic neocortical tissue: quantitative in vitro receptor autoradiography. Neuroscience. 1999;94(4):1051–1061.
  • Darmani G, Bergmann TO, Zipser C, et al. Effects of antiepileptic drugs on cortical excitability in humans: A TMS-EMG and TMS-EEG study. Hum Brain Mapp. 2019;40(4):1276–1289.
  • Kimiskidis VK, Kugiumtzis D, Papagiannopoulos S, et al. Transcranial Magnetic Stimulation (TMS) modulates epileptiform discharges in patients with frontal lobe epilepsy: a preliminary EEG-TMS study. Int J Neural Syst. 2013;23(1):1250035.
  • Kimiskidis VK, Tsimpiris A, Ryvlin P, et al. TMS combined with EEG in genetic generalized epilepsy: a phase II diagnostic accuracy study. Clin Neurophysiol. 2017;128(2):367–381.
  • Mullen SA, Bercovik SF on behalf of the ILAE genetics commission. Genetic generalized epilepsies. Epilepsia. 2018;59(6):1148–1153.
  • McCormick DA, Contreras D. On the cellular and network bases of epileptic seizures. Annu Rev Physiol. 2001;63:815–846.
  • Cope DW, Di Giovanni G, Fyson SJ, et al. Enhanced tonic GABAA inhibition in typical absence epilepsy. Nat Med. 2009;15(12):1392–1398.
  • Strigaro G, Falletta L, Cerino A, et al. Abnormal motor cortex plasticity in juvenile myoclonic epilepsy. Seizure. 2015;30:101–105.
  • Gianelli M, Cantello R, Civardi C, et al. Idiopathic generalized epilepsy: magnetic stimulation of motor cortex time-locked and unlocked to 3-Hz spike-and-wave discharges. Epilepsia. 1994;35(1):53–60.
  • Puri V, Sajan PM, Chowdhury V, et al. Cortical excitability in drug naive juvenile myoclonic epilepsy. Seizure. 2013;22(8):662–669.
  • Del Felice A, Fiaschi A, Bongiovanni GL, et al. The sleep-deprived brain in normals and patients with juvenile myoclonic epilepsy: a perturbational approach to measuring cortical reactivity. Epilepsy Res. 2011;96(1–2):123–131.
  • Silbert BI, Heaton AE, Cash RF, et al. Evidence for an excitatory GABAA response in human motor cortex in idiopathic generalised epilepsy. Seizure. 2015;26:36–42.
  • Delvaux V, Alagona G, Gérard P, et al. Reduced excitability of the motor cortex in untreated patients with de novo idiopathic “grand mal” seizures. J Neurol Neurosurg Psychiatry. 2001;71(6):772–776.
  • Cincotta M, Giovannelli F, Borgheresi A, et al. A meta-analysis of the cortical silent period in epilepsies. Brain Stimul. 2015;8(4):693–701.
  • Lee JH, Joo EY, Seo DW, et al. Lateralizing cortical excitability in drug naïve patients with generalized or focal epilepsy. J Epilepsy Res. 2015;5(2):75–83.
  • Brigo F, Storti M, Benedetti MD, et al. Resting motor threshold in idiopathic generalized epilepsies: a systematic review with meta-analysis. Epilepsy Res. 2012;101(1–2):3–13.
  • Caramia MD, Gigli G, Iani C, et al. Distinguishing forms of generalized epilepsy using magnetic brain stimulation. Electroencephalogr Clin Neurophysiol. 1996;98(1):14–19.
  • Nardone R, Versace V, Höller Y, et al. Transcranial magnetic stimulation in myoclonus of different aetiologies. Brain Res Bull. 2018;140:258–269.
  • Brigo F, Bongiovanni LG, Nardone R, et al. Visual cortex hyperexcitability in idiopathic generalized epilepsies with photosensitivity: a TMS pilot study. Epilepsy Behav. 2013;27(2):301–306.
  • Chiappa KH, Hill RA, Huang-Hellinger F, et al. Photosensitive epilepsy studied by functional magnetic resonance imaging and magnetic resonance spectroscopy. Epilepsia. 1999;40(Suppl 4):3–7.
  • Hamed SA. The effect of epilepsy and antiepileptic drugs on sexual, reproductive and gonadal health of adults with epilepsy. Expert Rev Clin Pharmacol. 2016;9(6):807–819.
  • Herzog AG, Friedman MN, Freund S, et al. Transcranial magnetic stimulation evidence of a potential role for progesterone in the modulation of premenstrual corticocortical inhibition in a woman with catamenial seizure exacerbation. Epilepsy Behav. 2001;2(4):367–369.
  • Hattemer K, Knake S, Reis J, et al. Cyclical excitability of the motor cortex in patients with catamenial epilepsy: a transcranial magnetic stimulation study. Seizure. 2006;15(8):653–657.
  • Cincotta M, Borgheresi A, Lori S, et al. Interictal inhibitory mechanisms in patients with cryptogenic motor cortex epilepsy: a study of the silent period following transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol. 1998;107(1):1–7.
  • Kotova OV, Vorob’eva OV. Evoked motor response thresholds during transcranial magnetic stimulation in patients with symptomatic partial epilepsy. Neurosci Behav Physiol. 2007;37(9):849–852.
  • Salih F, Khatami R, Steinheimer S, et al. A hypothesis for how non-REM sleep might promote seizures in partial epilepsies: a transcranial magnetic stimulation study. Epilepsia. 2007;48(8):1538–1542.
  • Cicinelli P, Mattia D, Spanedda F, et al. Transcranial magnetic stimulation reveals an interhemispheric asymmetry of cortical inhibition in focal epilepsy. Neuroreport. 2000;11(4):701–707.
  • Löscher WN, Dobesberger J, Szubski C, et al. rTMS reveals premotor cortex dysfunction in frontal lobe epilepsy. Epilepsia. 2007;48(2):359–365.
  • Werhahn KJ, Lieber J, Classen J, et al. Motor cortex excitability in patients with focal epilepsy. Epilepsy Res. 2000;41(2):179–189.
  • Labyt E, Houdayer E, Cassim F, et al. Motor representation areas in epileptic patients with focal motor seizures: a TMS study. Epilepsy Res. 2007;75(2–3):197–205.
  • Michelucci R, Passarelli D, Riguzzi P, et al. Transcranial magnetic stimulation in partial epilepsy: drug-induced changes of motor excitability. Acta Neurol Scand. 1996;94(1):24–30.
  • Ziemann U, Lönnecker S, Steinhoff BJ, et al. Effects of antiepileptic drugs on motor cortex excitability in humans: A transcranial magnetic stimulation study. Ann Neurol. 1996;40:367–378.
  • Chen R, Samii A, Caños M, et al. Effects of phenytoin on cortical excitability in humans. Neurology. 1997;49(3):881–883.
  • Goyal V, Bhatia M, Behari M. Increased depressant effect of phenytoin sodium as compared to carbamazepine on cortical excitability: a transcranial magnetic evaluation. Neurol India. 2004;52(2):224–227.
  • McLean MJ, MacDonald RL. Cellular mechanistic bases for classification of clinically useful anticonvulsant drugs. Ann Acad Med Singapore. 1985;14(1):128–136.
  • Lee HW, Seo HJ, Cohen LG, et al. Cortical excitability during prolonged antiepileptic drug treatment and drug withdrawal. Clin Neurophysiol. 2005;116(5):1105–1112.
  • Lang N, Rothkegel H, Peckolt H, et al. Effects of lacosamide and carbamazepine on human motor cortex excitability: a double-blind, placebo-controlled transcranial magnetic stimulation study. Seizure. 2013;22(9):726–730.
  • Turazzini M, Manganotti P, Del Colle R, et al. Serum levels of carbamazepine and cortical excitability by magnetic brain stimulation. Neurol Sci. 2004;25(2):83–90.
  • McLean MJ, Macdonald RL. Sodium valproate, but not ethosuximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther. 1986;237(3):1001–1011.
  • Ziemann U, Hallett M, Cohen LG. Mechanisms of deafferentation-induced plasticity in human motor cortex. J Neurosci. 1998;18(17):7000–7007.
  • Zunhammer M, Langguth B, Landgrebe M, et al. Modulation of human motor cortex excitability by valproate. Psychopharmacology (Berl). 2011;215(2):277–780.
  • Löscher W. Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs. 2002;16(10):669–694.
  • Kazis DA, Kimiskidis VK, Papagiannopoulos S, et al. The effect of valproate on silent period and corticomotor excitability. Epileptic Disord. 2006;8(2):136–142.
  • Kimiskidis VK, Papagiannopoulos S, Kazis DA, et al. Mills K R lorazepam-induced effects on silent period and corticomotor excitability. Exp Brain Res. 2006;173(4):603–611.
  • Werhahn KJ, Kunesch E, Noachtar S, et al. Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol. 1999;517(Pt 2):591–597.
  • Inghilleri M, Berardelli A, Marchetti P, et al. Effects of diazepam, baclofen and thiopental on the silent period evoked by transcranial magnetic stimulation in humans. Exp Brain Res. 1996;109(3):467–472.
  • Kimiskidis VK, Papagiannopoulos S, Sotirakoglou K, et al. Silent period to transcranial magnetic stimulation: construction and properties of stimulus-response curves in healthy volunteers. Exp Brain Res. 2005;163(1):21–31.
  • Tergau F, Wischer S, Somal HS, et al. Relationship between lamotrigine oral dose, serum level and its inhibitory effect on CNS: insights from transcranial magnetic stimulation. Epilepsy Res. 2003;56(1):67–77.
  • Manganotti P, Bongiovanni LG, Zanette G, et al. Cortical excitability in patients after loading doses of lamotrigine: a study with magnetic brain stimulation. Epilepsia. 1999;40(3):316–321.
  • Braga MF, Aroniadou-Anderjaska V, Post RM, et al. Lamotrigine reduces spontaneous and evoked GABAA receptor-mediated synaptic transmission in the basolateral amygdala: implications for its effects in seizure and affective disorders. Neuropharmacology. 2002;42(4):522–529.
  • Premoli I, Costantini A, Rivolta D, et al. The effect of Lamotrigine and Levetiracetam on TMS-evoked EEG responses depends on stimulation intensity. Front Neurosci. 2017;11:585.
  • Reis J, Wentrup A, Hamer HM, et al. Levetiracetam influences human motor cortex excitability mainly by modulation of ion channel function–a TMS study. Epilepsy Res. 2004;62(1):41–51.
  • Solinas C, Lee YC, Reutens DC. Effect of levetiracetam on cortical excitability: a transcranial magnetic stimulation study. Eur J Neurol. 2008;15(5):501–505.
  • Lynch BA, Lambeng N, Nocka K, et al. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci U S A. 2004;101(26):9861–9866.
  • Lukyanetz EA, Shkryl VM, Kostyuk PG. Selective blockade of N-type calcium channels by levetiracetam. Epilepsia. 2002;43(1):9–18.
  • Reis J, Tergau F, Hamer HM, et al. Topiramate selectively decreases intracortical excitability in human motor cortex. Epilepsia. 2002;43(10):1149–1156.
  • McLean MJ, Bukhari AA, Wamil AW. Effects of topiramate on sodium-dependent action-potential firing by mouse spinal cord neurons in cell culture. Epilepsia. 2000;41(Suppl 1):S21–4.
  • Connelly WM, Fyson SJ, Errington AC, et al. GABAB receptors regulate extrasynaptic GABAA receptors. J Neurosci. 2013;33(5):3780–3785.
  • Braga MF, Aroniadou-Anderjaska V, Li H, et al. Topiramate reduces excitability in the basolateral amygdala by selectively inhibiting GluK1 (GluR5) kainate receptors on interneurons and positively modulating GABAA receptors on principal neurons. Pharmacol Exp Ther. 2009;330(2):558–566.
  • Harris JA, Murphy JA. Lacosamide and epilepsy. CNS Neurosci Ther. 2011;17(6):678–682.
  • Reimers A, Ljung H. An evaluation of zonisamide, including its long-term efficacy, for the treatment of focal epilepsy. Expert Opin Pharmacother. 2019;20(8):909–915.
  • Joo EY, Kim HJ, Lim YH, et al. Zonisamide changes unilateral cortical excitability in focal epilepsy patients. J Clin Neurol. 2010;6(4):189–195.
  • Ossemann M, de Fays K, Bihin B, et al. Effect of a single dose of retigabine in cortical excitability parameters: A cross-over, double-blind placebo-controlled TMS study. Epilepsy Res. 2016;126:78–82.
  • Martin J, Gunthorpe MJ, Large CH, et al. The mechanism of action of retigabine (Ezogabine), a First-In-Class K+ channel opener for the treatment of epilepsy. Epilepsia. 2012;53(3):412–424.
  • Conca A, König P, Hausmann A. Transcranial magnetic stimulation induces ‘pseudoabsence seizure’. Acta Psychiatr Scand. 2000;101(3):246–248.
  • Fregni F, Thome-Souza S, Bermpohl F, et al. Antiepileptic effects of repetitive transcranial magnetic stimulation in patients with cortical malformations: an EEG and clinical study. Stereotact Funct Neurosurg. 2005;83(2–3):57–62.
  • Cincotta M, Borgheresi A, Gambetti C, et al. Suprathreshold 0.3 Hz repetitive TMS prolongs the cortical silent period: potential implications for therapeutic trials in epilepsy. Clin Neurophysiol. 2003;114(10):1827–1833.
  • Liu A, Pang T, Herman S, et al. Transcranial magnetic stimulation for refractory focal status epilepticus in the intensive care unit. Seizure. 2013;22(10):893–896.
  • Thordstein M, Constantinescu R. Possibly lifesaving, noninvasive, EEG-guided neuromodulation in anesthesia-refractory partial status epilepticus. Epilepsy Behav. 2012;25(3):468–472.
  • Bolden LB, Griffis JC, Nenert R, et al. Cortical excitability and seizure control influence attention performance in patients with idiopathic generalized epilepsies (IGEs). Epilepsy Behav. 2018;89:135–142.
  • Bolden LB, Griffis JC, Nenert R, et al. Cortical excitability affects mood state in patients with idiopathic generalized epilepsies (IGEs). Epilepsy Behav. 2019;90:84–89.
  • Rotenberg A, Muller P, Birnbaum D, et al. Seizure suppression by EEG-guided repetitive transcranial magnetic stimulation in the rat. Clin Neurophysiol. 2008;119(12):2697–2702.
  • Steele PM, Mauk MD. Inhibitory control of LTP and LTD: stability of synapse strength. J Neurophysiol. 1999;81(4):1559–1566.
  • Yadollahpour A, Firouzabadi SM, Shahpari M, et al. Repetitive transcranial magnetic stimulation decreases the kindling induced synaptic potentiation: effects of frequency and coil shape. Epilepsy Res. 2014;108(2):190–201.
  • Akamatsu N, Fueta Y, Endo Y, et al. Decreased susceptibility to pentylenetetrazol-induced seizures after low-frequency transcranial magnetic stimulation in rats. Neurosci Lett. 2001;310(2–3):153–156.
  • Wang YL, Zhai Y, Huo XL, et al. The effect of low frequency transcranial magnetic stimulation on neuropeptide-Y expression and apoptosis of hippocampus neurons in epilepsy rats induced by pilocarpine. Zhonghua Wai Ke Za Zhi. 2007;45(24):1685–1687.
  • Wang Y, Wang X, Ke S, et al. Low-frequency repetitive transcranial magnetic simulation prevents chronic epileptic seizure. Neural Regen Res. 2013;8(27):2566–7252.
  • Shojaei A, Semnanian S, Janahmadi M, et al. Repeated transcranial magnetic stimulation prevents kindling-induced changes in electrophysiological properties of rat hippocampal CA1 pyramidal neurons. Neuroscience. 2014;280:181–192.
  • Kistsen V, Evstigneev V, Dubovik B, et al. The effects of repetitive transcranial magnetic stimulation on picrotoxin-induced convulsions in mice. Adv Clin Exp Med. 2016;25(2):317–325.
  • Fleischmann A, Hirschmann S, Dolberg OT, et al. Chronic treatment with repetitive transcranial magnetic stimulation inhibits seizure induction by electroconvulsive shock in rats. Biol Psychiatry. 1999;45(6):759–763.
  • Godlevsky LS, Kobolev EV, van Luijtelaar EL, et al. Influence of transcranial magnetic stimulation on spike-wave discharges in a genetic model of absence epilepsy. Indian J Exp Biol. 2006;44(12):949–954.
  • Brasil-Neto JP, de Araújo DP, Teixeira WA, et al. Experimental therapy of epilepsy with transcranial magnetic stimulation: lack of additional benefit with prolonged treatment. Arq Neuropsiquiatr. 2004;62(1):21–25.
  • Santiago-Rodríguez E, Cárdenas-Morales L, Harmony T, et al. Repetitive transcranial magnetic stimulation decreases the number of seizures in patients with focal neocortical epilepsy. Seizure. 2008;17(8):677–683.
  • Sun W, Mao W, Meng X, et al. Low‐frequency repetitive transcranial magnetic stimulation for the treatment of refractory partial epilepsy: a controlled clinical study. Epilepsia. 2012;53(10):1782–1789.
  • Hsu WY, Cheng CH, Lin MW, et al. Antiepileptic effects of low frequency repetitive transcranial magnetic stimulation: A meta-analysis. Epilepsy Res. 2011;96(3):231–240.
  • Conte A, Gilio F, Iacovelli E, et al. Effects of repetitive transcranial magnetic stimulation on spike-and-wave discharges. Neurosci Res. 2007;57(1):140–142.
  • Zeiler FA, Matuszczak M, Teitelbaum J, et al. Transcranial magnetic stimulation for status epilepticus. Epilepsy Res Treat. 2015;2015:678074.
  • Pereira LS, Müller VT, da Mota Gomes M, et al. Safety of repetitive transcranial magnetic stimulation in patients with epilepsy: A systematic review. Epilepsy Behav. 2016;57(Pt A):167–176.
  • Chervyakov AV, Chernyavsky AY, Sinitsyn DO, et al. Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation. Front Hum Neurosci. 2015;9:303.
  • Theodore WH, Hunter K, Chen R, et al. Transcranial magnetic stimulation for the treatment of seizures: a controlled study. Neurology. 2002;59(4):560–562.
  • Chen R, Spencer DC, Weston J, et al. Transcranial magnetic stimulation for the treatment of epilepsy. Cochrane Database Syst Rev. 2016;8:CD011025.
  • Cantello R, Rossi S, Varrasi C, et al. Slow repetitive TMS for drug-resistant epilepsy: clinical and EEG findings of a placebo-controlled trial. Epilepsia. 2007;48(2):366–374.
  • Steinhoff BJ, Stodieck SR, Zivcec Z, et al. Transcranial magnetic stimulation (TMS) of the brain in patients with mesiotemporal epileptic foci. Clin Electroencephalography. 1993;24(1):1–5.
  • Seynaeve L, Devroye A, Dupont P, et al. Randomized crossover sham-controlled clinical trial of targeted low-frequency transcranial magnetic stimulation comparing a figure-8 and a round coil to treat refractory neocortical epilepsy. Epilepsia. 2016;57(1):141–150.
  • Joo EY, Han SJ, Chung SH, et al. Antiepileptic effects of low-frequency repetitive transcranial magnetic stimulation by different stimulation durations and locations. Clin Neurophysiol. 2007;118(3):702–708.
  • Zangen A, Roth Y, Voller B, et al. Transcranial magnetic stimulation of deep brain regions: evidence for efficacy of the H-coil. Clin Neurophysiol. 2005;116(4):775–779.
  • Gersner R, Oberman L, Sanchez MJ, et al. H-coil repetitive transcranial magnetic stimulation for treatment of temporal lobe epilepsy: a case report. Epilepsy Behav Case Rep. 2016;5:52–56. eCollection 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.