1,221
Views
30
CrossRef citations to date
0
Altmetric
Review

Clinical diagnosis and management of small fiber neuropathy: an update on best practice

, &
Pages 967-980 | Received 26 May 2020, Accepted 09 Jul 2020, Published online: 23 Jul 2020

References

  • Devigili G, Rinaldo S, Lombardi R, et al. Diagnostic criteria for small fibre neuropathy in clinical practice and research. Brain. 2019;142:3728–3736.
  • Lauria G, Lombardi R. Skin biopsy: A new tool for diagnosing peripheral neuropathy. Br Med J. 2007;334:1159–1162.
  • Peters MJ, Bakkers M, Merkies IS, et al. Incidence and prevalence of small-fiber neuropathy. Neurology. 2013;81:1356–1360.
  • Branco JC, Bannwarth B, Failde I, et al. Prevalence of fibromyalgia: a survey in five European countries. Semin Arthritis Rheum. 2010;39:448–453.
  • Grayston R, Czanner G, Elhadd K, et al. A systematic review and meta-analysis of the prevalence of small fiber pathology in fibromyalgia: implications for a new paradigm in fibromyalgia etiopathogenesis. Semin Arthritis Rheum. 2019;48:933–940.
  • Ahmed A, Bril V, Orszag A, et al. Detection of diabetic sensorimotor polyneuropathy by corneal confocal microscopy in type 1 diabetes: A concurrent validity study. Diabetes Care. 2012;35:821–828.
  • Di Stefano G, La Cesa S, Leone C, et al. Diagnostic accuracy of laser-evoked potentials in diabetic neuropathy. Pain. 2017;158:1100–1107.
  • Kennedy WR, Wendelschafer-Crabb G. The innervation of human epidermis. J Neurol Sci. 1993;115:184–190.
  • McCarthy BG, Hsieh ST, Stocks A, et al. Cutaneous innervation in sensory neuropathies: evaluation by skin biopsy. Neurology. 1995;45:1848–1855.
  • Dalla Bella E, Lombardi R, Porretta-Serapiglia C, et al. Amyotrophic lateral sclerosis causes small fiber pathology. Eur J Neurol. 2016;23:416–420.
  • Weis J, Katona I, Müller-Newen G, et al. Small-fiber neuropathy in patients with ALS. Neurology. 2011;76:2024–2029.
  • Ferrari G, Grisan E, Scarpa F, et al. Corneal confocal microscopy reveals trigeminal small sensory fiber neuropathy in amyotrophic lateral sclerosis. Front Aging Neurosci. 2014;6:1–4.
  • Sassone J, Taiana M, Lombardi R, et al. ALS mouse model SOD1 G93A displays early pathology of sensory small fibers associated to accumulation of a neurotoxic splice variant of peripherin. Hum Mol Genet. 2016;25:1588–1599.
  • Kass-Iliyya L, Javed S, Gosal D, et al. Small fiber neuropathy in Parkinson’s disease: A clinical, pathological and corneal confocal microscopy study. Park Relat Disord. 2015;21:1454–1460.
  • Jeziorska M, Atkinson A, Kass-Iliyya L, et al. Increased intraepidermal nerve fiber degeneration and impaired regeneration relate to symptoms and deficits in Parkinson’s disease. Front Neurol. 2019;10:1–8.
  • Popescu C. Small fiber neuropathy in Parkinson’s disease explored by the sudoscan. Parkinsonism Relat Disord. 2019;66:261–263.
  • de Araújo DF, de Melo Neto AP, Oliveira ÍSC, et al. Small (autonomic) and large fiber neuropathy in Parkinson disease and parkinsonism. BMC Neurol. 2016;16:1–7.
  • Podgorny PJ, Suchowersky O, Romanchuk KG, et al. Evidence for small fiber neuropathy in early Parkinson’s disease. Parkinsonism Relat Disord. 2016;28:94–99.
  • Calzetti S, Bellanova MF, Negrotti A, et al. Non-length-dependent somatosensory small fiber pathology presenting with restless legs syndrome in pre-motor Parkinson’s disease. Evidence from skin biopsy in four patients. J Clin Neurosci. 2019;69:139–142.
  • Giannoccaro MP, Donadio V, Incensi A, et al. Skin biopsy and I-123 MIBG scintigraphy findings in idiopathic Parkinson’s disease and parkinsonism: A comparative study. Mov Disord. 2015;30:986–989.
  • Nolano M, Provitera V, Estraneo A, et al. Sensory deficit in Parkinson’s disease: evidence of a cutaneous denervation. Brain. 2008;131:1903–1911.
  • Mantyh WG, Dyck PJB, Dyck PJ, et al. Epidermal nerve fiber quantification in patients with erythromelalgia. JAMA Dermatol. 2016;55905:10–15.
  • Terkelsen AJ, Karlsson P, Lauria G, et al. The diagnostic challenge of small fibre neuropathy: clinical presentations, evaluations, and causes. Lancet Neurol. Lancet Publishing Group. 2017;16:934–944.
  • Callaghan BC, Price RS, Feldman EL. Distal symmetric polyneuropathy a review. J Am Med Assoc. 2015;314:2172–2181.
  • Khoshnoodi MA, Truelove S, Burakgazi A, et al. Longitudinal assessment of small fiber neuropathy: evidence of a non-length-dependent distal axonopathy. JAMA Neurol. 2016;73:684–690.
  • Birnbaum J, Bingham CO. Non-length-dependent and length-dependent small-fiber neuropathies associated with tumor necrosis factor (TNF)-inhibitor therapy in patients with rheumatoid arthritis: expanding the spectrum of neurological disease associated with TNF-inhibitors. Semin Arthritis Rheum. 2014;43:638–647.
  • Themistocleous AC, Ramirez JD, Shillo PR, et al. The Pain in Neuropathy Study (PiNS): a cross-sectional observational study determining the somatosensory phenotype of painful and painless diabetic neuropathy. Pain. 2016;157:1132–1145.
  • Gorson KC, Herrmann DN, Thiagarajan R, et al. Non-length dependent small fibre neuropathy/ganglionopathy. J Neurol Neurosurg Psychiatry. 2008;79:163–169.
  • Khan S, Lan Z. Characterization of non-length-dependent small-fiber sensory neuropathy. Muscle Nerve. 2012;45:86–91.
  • Puhakka A, Forssell H, Soinila S, et al. Peripheral nervous system involvement in primary burning mouth syndrome-results of a pilot study. Oral Dis. 2016;22:338–344.
  • Bohm-starke N, Rylander E. Increased intraepithelial innervation in women with vulvar vestibulitis syndrome. Gynecol Obstet Invest. 1998;46:256–260.
  • Tympanidis P, Terenghi G, Dowd P. Increased innervation of the vulval vestibule in patients with vulvodynia. Br J Dermatol. 2003;148:1021–1027.
  • Bergeron S, Reed BD, Wesselmann U, et al. Vulvodynia. Nat Rev Dis Prim. 2020;6. DOI:10.1038/s41572-020-0164-2
  • Collins MP, Hadden RD. The nonsystemic vasculitic neuropathies. Nat Rev Neurol Nature Publishing Group. 2017;13:302–316.
  • Zhao M, Isami K, Nakamura S, et al. Acute cold hypersensitivity characteristically induced by oxaliplatin is caused by the enhanced responsiveness of TRPA1 in mice. Mol Pain. 2012;8:1–11.
  • Brouwer BA, Merkies ISJ, Gerrits MM, et al. Painful neuropathies: the emerging role of sodium channelopathies. J Peripher Nerv Syst. 2014;19:53–65.
  • Haensch C-A, Tosch M, Katona I, et al. Small-fiber neuropathy with cardiac denervation in postural tachycardia syndrome. Muscle Nerve. 2014;50:956–961.
  • Thaisetthawatkul P, Fernandes Filho JA, Herrmann DN. Autonomic evaluation is independent of somatic evaluation for small fiber neuropathy. J Neurol Sci. 2014;344:51–54.
  • Novak V, Freimer ML, Kissel JT, et al. Autonomic impairment in painful neuropathy. Neurology. 2001;56:861–868.
  • Jensen TS, Finnerup NB. Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol. 2014;13:924–935.
  • Martina ISJ, Van Koningsveld R, Schmitz PIM, et al. Measuring vibration threshold with a graduated tuning fork in normal aging and in patients with polyneuropathy. J Neurol Neurosurg Psychiatry. 1998;65:743–747.
  • Boulton AJM, Vinik AI, Arezzo JC, et al. Diabetic neuropathies: a statement by the American diabetes association. Diabetes Care. 2005;28:956–962.
  • Devigili G, Tugnoli V, Penza P, et al. The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain. 2008;131:1912–1925.
  • Tesfaye S, Boulton AJM, Dyck PJ, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;33:2285–2293.
  • de Greef BTA, Hoeijmakers JGJ, Gorissen-Brouwers CML, et al. Associated conditions in small fiber neuropathy – A large cohort study and review of the literature. Eur J Neurol. 2018;38:42–49.
  • Sumner CJ, Sheth S, Griffin JW, et al. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology. 2003;60:108–111.
  • Farhad K, Traub R, Ruzhansky KM, et al. Causes of neuropathy in patients referred as “idiopathic neuropathy. Muscle Nerve. 2016 Jun;53(6):856–861.
  • Tesfaye S, Chaturvedi N, Eaton SEM, et al. Vascular risk factors and diabetic neuropathy. N Engl J Med. 2005;352:341–350.
  • Callaghan BC, Little AA, Feldman EL, et al. Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database Syst Rev. 2012;13;6(6). DOI:10.1016/0006-2952(75)90009-x
  • O’Brien PD, Hinder LM, Callaghan BC, et al. Neurological consequences of obesity. Lancet Neurol. 2017;16:465–477.
  • Callaghan BC, Xia R, Reynolds E, et al. Association between metabolic syndrome components and polyneuropathy in an obese population. JAMA Neurol. 2016;73:1468–1476.
  • Zhou L, Li J, Ontaneda D, et al. Metabolic syndrome in small fiber sensory neuropathy. J Clin Neuromuscul Dis. 2011;12:235–243.
  • Callaghan BC, Xia R, Banerjee M, et al. Metabolic syndrome components are associated with symptomatic polyneuropathy independent of glycemic status. Diabetes Care. 2016;39:801–807.
  • Shikuma CM, Bennett K, Ananworanich J, et al. Distal leg epidermal nerve fiber density as a surrogate marker of HIV-associated sensory neuropathy risk: risk factors and change following initial antiretroviral therapy. J Neurovirol. 2015;21:525–534.
  • Faber CG, Hoeijmakers JGJ, Ahn HS, et al. Gain of function Na V1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol. 2012;71:26–39.
  • Faber CG, Lauria G, Merkies ISJ, et al. Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci U S A. 2012;109:19444–19449.
  • Huang J, Han C, Estacion M, et al. Gain-of-function mutations in sodium channel NaV1.9 in painful neuropathy. Brain. 2014;137:1627–1642.
  • Alsaloum M, Estacion M, Almomani R, et al. A gain-of-function sodium channel β2-subunit mutation in painful diabetic neuropathy. Mol Pain. 2019;15:1–14.
  • Estacion M, Han C, Choi JS, et al. Intra- and interfamily phenotypic diversity in pain syndromes associated with a gain-of-function variant of Na V1.7. Mol Pain. 2011;7:92.
  • Hoeijmakers JGJ, Han C, Merkies ISJ, et al. Small nerve fibres, small hands and small feet: A new syndrome of pain, dysautonomia and acromesomelia in a kindred with a novel Na V1.7 mutation. Brain. 2012;135:345–358.
  • Martinelli-Boneschi F, Colombi M, Castori M, et al. COL6A5 variants in familial neuropathic chronic itch. Brain. 2017;140:555–567.
  • Dütsch M, Marthol H, Stemper B, et al. Small fiber dysfunction predominates in Fabry neuropathy. J Clin Neurophysiol. 2002;19:575–586.
  • De Greef BTA, Hoeijmakers JGJ, Wolters EE, et al. No fabry disease in patients presenting with isolated small fiber neuropathy. PLoS One. 2016;11:e0148316.
  • Toyooka K. Fabry disease; 2013. p. 629–642.
  • Devigili G, De Filippo M, Ciana G, et al. Chronic pain in Gaucher disease: skeletal or neuropathic origin? Orphanet J Rare Dis. 2017;12:1–10.
  • Cazzato D, Castori M, Lombardi R, et al. Small fiber neuropathy is a common feature of Ehlers-Danlos syndromes. Neurology. 2016;87:155–159.
  • Lauria G, Hsieh ST, Johansson O, et al. European federation of neurological societies/peripheral nerve society guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. report of a joint task force of the european fe-deration of neurological societies and the peripheral ne. Eur J Neurol. 2010;17:903-e49.
  • Lauria G, Bakkers M, Schmitz C, et al. Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. J Peripher Nerv Syst. 2010;15:202–207.
  • Provitera V, Gibbons CH, Wendelschafer-Crabb G, et al. A multi-center, multinational age- and gender-adjusted normative dataset for immunofluorescent intraepidermal nerve fiber density at the distal leg. Eur J Neurol. 2016;23:333–338.
  • Nolano M, Biasiotta A, Lombardi R, et al. Epidermal innervation morphometry by immunofluorescence and bright-field microscopy. J Peripher Nerv Syst. 2015;391:387–391.
  • Lauria G, Dacci P, Lombardi R, et al. Side and time variability of intraepidermal nerve fiber density. Neurology. 2015;84:2368–2371.
  • Lauria G, Morbin M, Lombardi R, et al. Axonal swellings predict the degeneration of epidermal nerve fibers in painful neuropathies. Neurology. 2003;61:631–636.
  • Cheng HT, Dauch JR, Porzio MT, et al. Increased axonal regeneration and swellings in intraepidermal nerve fibers characterize painful phenotypes of diabetic neuropathy. J Pain. 2013;14:941–947.
  • Gibbons CH, Griffin JW, Polydefkis M, et al. The utility of skin biopsy for prediction of progression in suspected small fiber neuropathy. Neurology. 2006;66:256–258.
  • Ebenezer GJ, McArthur JC, Thomas D, et al. Denervation of skin in neuropathies: the sequence of axonal and Schwann cell changes in skin biopsies. Brain [Internet]. 2007;130:2703–2714.
  • Cheung A, Podgorny P, Martinez JA, et al. Epidermal axonal swellings in painful and painless diabetic peripheral neuropathy. Muscle Nerve. 2015;51:505–513.
  • Lauria G, Cazzato D, Porretta-Serapiglia C, et al. Morphometry of dermal nerve fibers in human skin. Neurology. 2011;77:242–249.
  • Nolano M, Provitera V, Caporaso G, et al. Quantification of pilomotor nerves: A new tool to evaluate autonomic involvement in diabetes. Neurology. 2010;75:1089–1097.
  • Gibbons CH, Illigens BMW, Wang N, et al. Quantification of sweat gland innervation: a clinical-pathologic correlation. Neurology. 2009;72:1479–1486.
  • Backonja MM, Attal N, Baron R, et al. Value of quantitative sensory testing in neurological and pain disorders: neuPSIG consensus. Pain. 2013;154:1807–1819.
  • Bakkers M, Faber CG, Reulen JPH, et al. Optimizing temperature threshold testing in small-fiber neuropathy. Muscle Nerve. 2015;51:870–876.
  • Rolke R, Baron R, Maier C, et al. Quantitative sensory testing in the German research network on neuropathic pain (DFNS): standardized protocol and reference values. Pain. 2006;123:231–243.
  • Magerl W, Krumova EK, Baron R, et al. Reference data for quantitative sensory testing (QST): refined stratification for age and a novel method for statistical comparison of group data. Pain. 2010;151:598–605.
  • Papanas N, Ziegler D. Corneal confocal microscopy: recent progress in the evaluation of diabetic neuropathy. J Diabetes Investig. 2015;6:381–389.
  • Haanpää M, Attal N, Backonja M, et al. NeuPSIG guidelines on neuropathic pain assessment. Pain. 2011;152:14–27.
  • Ziegler D, Papanas N, Zhivov A, et al. Early detection of nerve fiber loss by corneal confocal microscopy and skin biopsy in recently diagnosed type 2 diabetes. Diabetes. 2014;63:2454–2463.
  • Azmi S, Ferdousi M, Petropoulos IN, et al. Corneal confocal microscopy shows an improvement in small-fiber neuropathy in subjects with type 1 diabetes on continuous subcutaneous insulin infusion compared with multiple daily injection. Diabetes Care. 2015;38:e3–4.
  • Tavakoli M, Marshall A, Pitceathly R, et al. Corneal confocal microscopy: a novel means to detect nerve fibre damage in idiopathic small fibre neuropathy. Exp Neurol. 2010;223:245–250.
  • Bucher F, Schneider C, Blau T, et al. Small-fiber neuropathy is associated with corneal nerve and dendritic cell alterations: an in vivo confocal microscopy study. Cornea. 2015;34:1114–1119.
  • Gemignani F, Ferrari G, Vitetta F, et al. Non-length-dependent small fibre neuropathy. Confocal microscopy study of the corneal innervation. J Neurol Neurosurg Psychiatry. 2010;81:731–733.
  • Chan ACY, Wilder-Smith EP. Small fiber neuropathy: getting bigger! Muscle Nerve. John Wiley and Sons Inc. 2016:671–682. DOI:10.1002/mus.25082
  • Im S, Kim SR, Park JH, et al. Assessment of the medial dorsal cutaneous, dorsal sural, and medial plantar nerves in impaired glucose tolerance and diabetic patients with normal sural and superficial peroneal nerve responses. Diabetes Care. 2012;35:834–839.
  • Tankisi H, Pugdahl K, Beniczky S, et al. Evidence-based recommendations for examination and diagnostic strategies of polyneuropathy electrodiagnosis [Internet]. Clin Neurophysiol Pract. Elsevier B.V. 2019. 214–222. DOI:10.1016/j.cnp.2019.10.005
  • Serra J, Solà R, Quiles C, et al. C-nociceptors sensitized to cold in a patient with small-fiber neuropathy and cold allodynia. Pain. 2009;147:46–53.
  • Namer B, Schmidt D, Eberhardt E, et al. Pain relief in a neuropathy patient by lacosamide: proof of principle of clinical translation from patient-specific iPS cell-derived nociceptors. EBioMedicine. 2019;39:401–408.
  • La Cesa S, Di Stefano G, Leone C, et al. Skin denervation does not alter cortical potentials to surface concentric electrode stimulation: A comparison with laser evoked potentials and contact heat evoked potentials. Eur J Pain. 2018;22:161–169.
  • Ragé M, Van Acker N, Facer P, et al. The time course of CO2 laser-evoked responses and of skin nerve fibre markers after topical capsaicin in human volunteers. Clin Neurophysiol. 2010;121:1256–1266.
  • Mouraux A, Iannetti GD. Nociceptive laser-evoked brain potentials do not reflect nociceptive-specific neural activity. J Neurophysiol. 2009;101:3258–3269.
  • Iannetti GD, Hughes NP, Lee MC, et al. Determinants of laser-evoked EEG responses: pain perception or stimulus saliency? J Neurophysiol. 2008;100:815–828.
  • Truini A, Galeotti F, Romaniello A, et al. Laser-evoked potentials: normative values. Clin Neurophysiol. 2005;116:821–826.
  • Lagerburg V, Bakkers M, Bouwhuis A, et al. Contact heat evoked potentials: normal values and use in small-fiber neuropathy. Muscle Nerve. 2015;51:743–749.
  • Wu S, Wang Y, Hsieh P, et al. Biomarkers of neuropathic pain in skin nerve degeneration neuropathy: contact heat-evoked potentials as a physiological signature. Pain. 2017;158:516–525.
  • De Keyser R, Van Den Broeke EN, Courtin A, et al. Event-related brain potentials elicited by high-speed cooling of the skin: a robust and non-painful method to assess the spinothalamic system in humans Europe PMC funders group. Clin Neurophysiol. 2018;129:1011–1019.
  • Donadio V, Nolano M, Provitera V, et al. Skin sympathetic adrenergic innervation: an immunofluorescence confocal study. Ann Neurol. 2006;59:376–381.
  • Donadio V, Incensi A, Vacchiano V, et al. The autonomic innervation of hairy skin in humans: an in vivo confocal study. Sci Rep. 2019;9:6982.
  • Lewis JE, Atlas SE, Rasul A, et al. New method of sudomotor function measurement to detect microvascular disease and sweat gland nerve or unmyelinated C fiber dysfunction in adults with retinopathy. J Diabetes Metab Disord. 2017;16. DOI:10.1186/s40200-017-0307-5
  • Provitera V, Nolano M, Caporaso G, et al. Evaluation of sudomotor function in diabetes using the dynamic sweat test. Neurology. 2010;74:50–56.
  • Illigens BMW, Gibbons CH. Sweat testing to evaluate autonomic function. Clin Auton Res. 2009;19:79–87.
  • Peltier A, Gordon AS, Russell JW, et al. Reliability of quantitative sudomotor axon reflex testing and quantitative sensory testing in neuropathy of impaired glucose regulation. Muscle Nerve. 2009;39:529–535.
  • Thaisetthawatkul P, Fernandes Filho JAM, Herrmann DN. Contribution of QSART to the diagnosis of small fiber neuropathy. Muscle Nerve. 2013;48:883–888.
  • Blackmore D, Siddiqi ZA. Diagnostic criteria for small fiber neuropathy. J Clin Neuromuscul Dis. 2017;18:125–131.
  • Novak P. Electrochemical skin conductance: a systematic review. Clin Auton Res Dr. Dietrich Steinkopff Verlag GmbH and Co. KG. 2019;29:17–29.
  • Casellini CM, Parson HK, Richardson MS, et al. Sudoscan, a noninvasive tool for detecting diabetic small fiber neuropathy and autonomic dysfunction. Diabetes Technol Ther. 2013;15:948–953.
  • Ziemssen T, Siepmann T. The investigation of the cardiovascular and sudomotor autonomic nervous system - A review. Front Neurol. 2019;10. DOI:10.3389/fneur.2019.00053
  • Hijazi MM, Buchmann SJ, Sedghi A, et al. Assessment of cutaneous axon-reflex responses to evaluate functional integrity of autonomic small nerve fibers. Neurol Sci. 2020. DOI:10.1007/s10072-020-04293-w
  • Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152:S2-S15.
  • Hsieh PC, Tseng MT, Chao CC, et al. Imaging signatures of altered brain responses in small-fiber neuropathy: reduced functional connectivity of the limbic system after peripheral nerve degeneration. Pain. 2015;156:904–916.
  • Tseng M-T, Kong Y, Chiang M-C, et al. Brain imaging signatures of the relationship between epidermal nerve fibers and heat pain perception. Neuroimage. 2015;122:288–297.
  • Namer B, Pfeffer S, Handwerker HO, et al. Axon reflex flare and quantitative sudomotor axon reflex contribute in the diagnosis of small fiber neuropathy. Muscle Nerve. 2013;47:357–363.
  • Dosenovic S, Jelicic Kadic A, Miljanovic M, et al. Interventions for neuropathic pain: an overview of systematic reviews. Anesth Analg. 2017;125:643–652.
  • Gibbons CH, Freeman R. Treatment-induced neuropathy of diabetes: an acute, iatrogenic complication of diabetes. Brain. 2015;138:43–52.
  • Liu X, Treister R, Lang M, et al. IVIg for apparently autoimmune small-fiber polyneuropathy: first analysis of efficacy and safety. Ther Adv Neurol Disord. 2018;11:175628561774448.
  • Wakasugi D, Kato T, Gono T, et al. Extreme efficacy of intravenous immunoglobulin therapy for severe burning pain in a patient with small fiber neuropathy associated with primary Sjögren’s syndrome. Mod Rheumatol. 2009;19:437–440.
  • Cregg R, Laguda B, Werdehausen R, et al. Novel mutations mapping to the fourth sodium channel domain of nav1.7 result in variable clinical manifestations of primary erythromelalgia. NeuroMolecular Med. 2013;15:265–278.
  • De Greef BTA, Hoeijmakers JGJ, Geerts M, et al. Lacosamide in patients with Na v 1.7 mutations-related small fibre neuropathy: a randomized controlled trial. Brain. 2019;142(2):263–275.
  • Labau JIR, Estacion M, Tanaka BS, et al. Differential effect of lacosamide on Nav1.7 variants from responsive and non-responsive patients with small fibre neuropathy. Brain. 2020;143:771–782.
  • Dworkin RH, O’Connor AB, Backonja M, et al. Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain. 2007;132:237–251.
  • Finnerup NB, Attal N, Haroutounian S, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015;14:162–173.
  • Demant DT, Lund K, Vollert J, et al. The effect of oxcarbazepine in peripheral neuropathic pain depends on pain phenotype: a randomised, double-blind, placebo-controlled phenotype-stratified study. Pain. 2014;155:2263–2273.
  • Gilron I, Bailey JM, Tu D, et al. Articles Nortriptyline and gabapentin, alone and in combination for neuropathic pain: a double-blind, randomised controlled crossover trial. Lancet [ Internet]. 2009;374:1252–1261.
  • Gilron I, Jensen TS, Dickenson AH. Review Combination pharmacotherapy for management of chronic pain: from bench to bedside. Lancet Neurol. 2013;12(11):1084–1095.
  • Tesfaye S, Wilhelm S, Lledo A, et al. Duloxetine and pregabalin: high-dose monotherapy or their combination? the “cOMBO-DN study” - A multinational, randomized, double-blind, parallel-group study in patients with diabetic peripheral neuropathic pain. Pain. 2013;154:2616–2625.
  • Häuser W, Schug S, Furlan AD. The opioid epidemic and national guidelines for opioid therapy for chronic noncancer pain: a perspective from different continents. Pain Rep. 2017;2:e599.
  • Attal N. Pharmacological treatments of neuropathic pain: the latest recommendations. Rev Neurol (Paris) Elsevier Masson SAS. 2019;175:46–50.
  • Brouwer BA, de Greef BTA, Hoeijmakers JGJ, et al. Neuropathic pain due to small fiber neuropathy in aging: current management and future prospects. Drugs Aging. Springer International Publishing. 2015;32:611–621.
  • Eschlböck S, Wenning G, Fanciulli A. Evidence-based treatment of neurogenic orthostatic hypotension and related symptoms. J Neural Transm. 2017;124:1567–1605.
  • Farrar JT. Advances in clinical research methodology for pain clinical trials. Nat Med. 2010;16:1284–1293.
  • Han C, Hoeijmakers JGJ, Liu S, et al. Functional profiles of Nav1.7 variants in DRG and SCG neurons correlate with autonomic symptoms in small fiber neuropathy. Brain. 2012;135(Pt9):2613–2628.
  • Hoeijmakers JGJ, Han C, Merkies ISJ, et al. Small nerve fibres, small hands and small feet: a new syndrome of pain, dysautonomia and acromesomelia in a kindred with a novel NaV1.7 mutation. Brain. 2012;135:345–358.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.