410
Views
5
CrossRef citations to date
0
Altmetric
Review

Gene therapy and immunotherapy as promising strategies to combat Huntington’s disease-associated neurodegeneration: emphasis on recent updates and future perspectives

, , &
Pages 1123-1141 | Received 03 Jun 2020, Accepted 23 Jul 2020, Published online: 05 Aug 2020

References

  • Kumar A, Kumar V, Singh K, et al. Therapeutic advances for huntington’s disease. Brain Sci. 2020;10(1): 43.
  • Smith AV, Tabrizi SJ. Therapeutic antisense targeting of huntingtin. DNA Cell Biol. 2020;39(2):154–158.
  • Shannon KM. Recent advances in the treatment of huntington’s disease: targeting DNA and RNA. CNS Drugs. 2020;34(3):219–228.
  • Bashir H. Emerging therapies in Huntington’s disease. Expert Rev Neurother. 2019;19(10):983–995.
  • Cattaneo E, Zuccato C, Tartari M. Normal huntingtin function: an alternative approach to Huntington’s disease. Nat Rev Neurosci. 2005;6(12):919–930.
  • Mestre TA. Recent advances in the therapeutic development for Huntington disease. Parkinsonism Relat Disord. 2019;59:125–130.
  • Dickey AS, La Spada AR. Therapy development in Huntington disease: from current strategies to emerging opportunities. Am J Med Genet A. 2018;176(4):842–861.
  • Caron NS, Dorsey ER, Hayden MR. Therapeutic approaches to Huntington disease: from the bench to the clinic. Nat Rev Drug Discov. 2018;17(10):729–750.
  • Fatoba O, Ohtake Y, Itokazu T, et al. Immunotherapies in Huntington’s disease and α-Synucleinopathies. Front Immunol. 2020;11:337.
  • Denis HL, David LS, Cicchetti F. Antibody-based therapies for Huntington’s disease: current status and future directions. Neurobiol Dis. 2019;132:104569.
  • Singh K, Roy I. Nucleic acid therapeutics in huntington’s disease. Recent Pat Biotechnol. 2019;13(3):187–206.
  • Frank S. Treatment of Huntington’s disease. Neurotherapeutics. 2014;11(1):153–160.
  • Frank S. Tetrabenazine: the first approved drug for the treatment of chorea in US patients with Huntington disease. Neuropsychiatr Dis Treat. 2010;6:657–665.
  • Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res. 2012;1(1):27.
  • Gray SJ, Woodard KT, Samulski RJ. Viral vectors and delivery strategies for CNS gene therapy. Ther Deliv. 2010;1(4):517–534.
  • Saraiva J, Nobre RJ, de Almeida LP. Gene therapy for the CNS using AAVs: the impact of systemic delivery by AAV9. J Control Release. 2016;241:94–109.
  • Jayant RD, Sosa D, Kaushik A, et al. Current status of non-viral gene therapy for CNS disorders. Expert Opin Drug Deliv. 2016;13(10):1433–1434.
  • Colella P, Ronzitti G, Mingozzi F. Emerging issues in AAV-mediated in vivo gene therapy. Mol Ther Methods Clin Dev. 2018;8:87–104.
  • Wang D, Tai PW, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019;18:358–378.
  • Lee CS, Bishop ES, Zhang R, et al. Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis. 2017;4(2):43–63.
  • Badin RA, Binley K, Van Camp N, et al. Gene therapy for Parkinson’s disease: preclinical evaluation of optimally configured TH: CH1 fusion for maximal dopamine synthesis. Mol Ther Methods Clin Dev. 2019;14:206–216.
  • Ramamoorth M, Narvekar A. Non viral vectors in gene therapy-an overview. J clin diagn res: JCDR. 2015;9(4):GE01.
  • Hardee CL, Arévalo-Soliz LM, Hornstein BD, et al. Advances in non-viral DNA vectors for gene therapy. Genes (Basel). 2017;8(2):65.
  • Lim M, Badruddoza AZ, Firdous J, et al. Engineered nanodelivery systems to Improve DNA vaccine technologies. Pharmaceutics. 2020;12(1):30.
  • Patil S, Gao YG, Lin X, et al. The development of functional non-viral vectors for gene delivery. Int J Mol Sci. 2019;20(21):5491.
  • Zhu L, Mahato RI. Lipid and polymeric carrier-mediated nucleic acid delivery. Expert Opin Drug Deliv. 2010;7(10):1209–1226.
  • Chen W, Hu Y, Ju D. Gene therapy for neurodegenerative disorders: advances, insights and prospects. Acta Pharm Sin B. 2020. DOI:https://doi.org/10.1016/j.apsb.2020.01.015.
  • Chery J. RNA therapeutics: rNAi and antisense mechanisms and clinical applications. Postdoc J. 2016;4(7):35–50.
  • Paterson BM, Roberts BE, Kuff EL. Structural gene identification and mapping by DNA-mRNA hybrid-arrested cell-free translation. Proc Natl Acad Sci U S A. 1977;74(10):4370–4374.
  • Bajan S, Hutvagner G. RNA-based therapeutics: from antisense oligonucleotides to miRNAs. Cells. 2020;9(1):137.
  • Stein CA, Castanotto D. FDA-approved oligonucleotide therapies in 2017. Mol Ther. 2017;25(5):1069–1075.
  • Tabrizi SJ, Ghosh R, Leavitt BR. Huntingtin lowering strategies for disease modification in Huntington’s disease. Neuron. 2019;101(5):801–819.
  • Marxreiter F, Stemick J, Kohl Z. Huntingtin lowering strategies. Int J Mol Sci. 2020;21(6):2146.
  • Kaemmerer WF, Grondin RC. The effects of huntingtin-lowering: what do we know so far? Degener Neurol Neuromuscul Dis. 2019;9:3–17.
  • Wild EJ, Tabrizi SJ. Therapies targeting DNA and RNA in Huntington’s disease. Lancet Neurol. 2017;16(10):837–847.
  • Carroll JB, Warby SC, Southwell AL, et al. Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene/allele-specific silencing of mutant huntingtin. Mol Ther. 2011;19(12):2178–2185.
  • Kordasiewicz HB, Stanek LM, Wancewicz EV, et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron. 2012;74(6):1031–1044.
  • Stanek LM, Yang W, Angus S, et al. Antisense oligonucleotide-mediated correction of transcriptional dysregulation is correlated with behavioral benefits in the YAC128 mouse model of Huntington’s disease. J Huntingtons Dis. 2013;2(2):217–228.
  • Østergaard ME, Southwell AL, Kordasiewicz H, et al. Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS. Nucleic Acids Res. 2013;41(21):9634–9650.
  • Southwell AL, Skotte NH, Kordasiewicz HB, et al. In vivo evaluation of candidate allele-specific mutant huntingtin gene silencing antisense oligonucleotides. Mol Ther. 2014;22(12):2093–2106.
  • Evers MM, Tran HD, Zalachoras I, et al. Preventing formation of toxic N-terminal huntingtin fragments through antisense oligonucleotide-mediated protein modification. Nucleic Acid Ther. 2014;24(1):4–12.
  • Wang YL, Liu W, Wada E, et al. Clinico-pathological rescue of a model mouse of Huntington’s disease by siRNA. Neurosci Res. 2005;53(3):241–249.
  • Rodriguez-Lebron E, Denovan-Wright EM, Nash K, et al. Intrastriatal rAAV-mediated delivery of anti-huntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington’s disease transgenic mice. Mol Ther. 2005;12(4):618–633.
  • Machida Y, Okada T, Kurosawa M, et al. rAAV-mediated shRNA ameliorated neuropathology in Huntington disease model mouse. Biochem Biophys Res Commun. 2006;343(1):190–197.
  • Huang B, Schiefer J, Sass C, et al. High-capacity adenoviral vector-mediated reduction of huntingtin aggregate load in vitro and in vivo. Hum Gene Ther. 2007;18(4):303–311.
  • Franich NR, Fitzsimons HL, Fong DM, et al. AAV vector–mediated RNAi of mutant huntingtin expression is neuroprotective in a novel genetic rat model of Huntington’s disease. Mol Ther. 2008;16(5):947–956.
  • Boudreau RL, McBride JL, Martins I, et al. Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington’s disease mice. Mol Ther. 2009;17(6):1053–1063.
  • McBride JL, Pitzer MR, Boudreau RL, et al. Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington’s disease. Mol Ther. 2011;19(12):2152–2162.
  • Grondin R, Kaytor MD, Ai Y, et al. Six-month partial suppression of Huntingtin is well tolerated in the adult rhesus striatum. Brain. 2012;135(4):1197–1209.
  • Stanek LM, Sardi SP, Mastis B, et al. Silencing mutant huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington’s disease. Hum Gene Ther. 2014;25(5):461–474.
  • Johnson E, Chase K, McGowan S, et al. Safety of striatal infusion of siRNA in a transgenic Huntington’s disease mouse model. J Huntingtons Dis. 2015;4(3):219–229.
  • Keeler AM, Sapp E, Chase K, et al. Cellular analysis of silencing the Huntington’s disease gene using AAV9 mediated delivery of artificial micro RNA into the striatum of Q140/Q140 mice. J Huntingtons Dis. 2016;5(3):239–248.
  • Miniarikova J, Zimmer V, Martier R, et al. AAV5-miHTT gene therapy demonstrates suppression of mutant huntingtin aggregation and neuronal dysfunction in a rat model of Huntington’s disease. Gene Ther. 2017;24(10):630–639.
  • Evers MM, Miniarikova J, Juhas S, et al. AAV5-miHTT gene therapy demonstrates broad distribution and strong human mutant huntingtin lowering in a Huntington’s disease minipig model. Mol Ther. 2018;26(9):2163–2177.
  • Pfister EL, DiNardo N, Mondo E, et al. Artificial miRNAs reduce human mutant huntingtin throughout the striatum in a transgenic sheep model of Huntington’s disease. Hum Gene Ther. 2018;29(6):663–673.
  • Spronck EA, Brouwers CC, Vallès A, et al. AAV5-miHTT gene therapy demonstrates sustained huntingtin lowering and functional improvement in huntington disease mouse models. Mol Ther Methods Clin Dev. 2019;13:334–343.
  • Caron NS, Southwell AL, Brouwers CC, et al. Potent and sustained huntingtin lowering via AAV5 encoding miRNA preserves striatal volume and cognitive function in a humanized mouse model of Huntington disease. Nucleic Acids Res. 2020;48(1):36–54.
  • Casaca-Carreira J, Toonen LJ, Evers MM, et al. In vivo proof-of-concept of removal of the huntingtin caspase cleavage motif-encoding exon 12 approach in the YAC128 mouse model of Huntington’s disease. Biomed Pharmacother. 2016;84:93–96.
  • Ambesajir A, Kaushik A, Kaushik JJ, et al. RNA interference: A futuristic tool and its therapeutic applications. Saudi J Biol Sci. 2012;19(4):395–403.
  • Montgomery MK, Xu S, Fire A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1998;95(26):15502–15507.
  • Chen X, Mangala LS, Rodriguez-Aguayo C, et al. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev. 2018;37(1):107–124.
  • Awasthi R, Madan JR, Malipeddi H, et al. Therapeutic strategies for targeting non-coding RNAs with special emphasis on novel delivery systems. NCRI. 2019;3:1–7.
  • Lam JK, Chow MY, Zhang Y, et al. siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids. 2015;4:e252.
  • Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Annu Rev Biophys. 2013;42(1):217–239.
  • Wolfe MS. The molecular and cellular basis of neurodegenerative diseases: underlying mechanisms. Amsterdam (The Netherlands): Academic Press, Elsevier Science & Technology Books; 2018.
  • Setten RL, Rossi JJ, Han SP. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18:421–446.
  • Chernikov IV, Vlassov VV, Chernolovskaya EL. Current development of siRNA bioconjugates: from research to the clinic. Front Pharmacol. 2019;10:444.
  • Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci. 2016;17(10):1712.
  • O’Brien J, Hayder H, Zayed Y, et al. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402.
  • Walayat A, Yang M, Xiao D. Therapeutic implication of miRNA in human disease. In: Sharad S, Kapur S, editors. Antisense therapy. London (UK): Intech Open; 2019.
  • Ghosh R, Tabrizi SJ. Gene suppression approaches to neurodegeneration. Alzheimers Res Ther. 2017;9(1):82.
  • Tabrizi SJ, Leavitt BR, Landwehrmeyer GB, et al. Targeting huntingtin expression in patients with Huntington’s disease. NEJM. 2019;380(24):2307–2316.
  • Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16(3):181.
  • Nimjee SM, White RR, Becker RC, et al. Aptamers as therapeutics. Annu Rev Pharmacol Toxicol. 2017;57(1):61–79.
  • Chaudhary RK, Patel KA, Patel MK, et al. Inhibition of aggregation of mutant Huntingtin by nucleic acid aptamers in vitro and in a yeast model of Huntington’s disease. Mol Ther. 2015;23(12):1912–1926.
  • Patel KA, Chaudhary RK, Roy I. RNA aptamers rescue mitochondrial dysfunction in a yeast model of huntington’s disease. Mol Ther Nucleic Acids. 2018;12:45–56.
  • Patel KA, Kolluri T, Jain S, et al. Designing aptamers which respond to intracellular oxidative stress and inhibit aggregation of mutant huntingtin. Free Radic Biol Med. 2018;120:311–316.
  • Shin B, Jung R, Oh H, et al. Novel DNA aptamers that bind to mutant huntingtin and modify its activity. Mol Ther Nucleic Acids. 2018;11:416–428.
  • Khan E, Biswas S, Mishra SK, et al. Rationally designed small molecules targeting toxic CAG repeat RNA that causes Huntington’s disease (HD) and spinocerebellar ataxia (SCAs). Biochimie. 2019;163:21–32.
  • Khan E, Tawani A, Mishra SK, et al. Myricetin reduces toxic level of CAG repeats RNA in Huntington’s disease (HD) and spino cerebellar ataxia (SCAs). ACS Chem Biol. 2018;13(1):180–188.
  • Bowie LE, Maiuri T, Alpaugh M, et al. N6-furfuryladenine is protective in huntington’s disease models by signaling huntingtin phosphorylation. Proc Natl Acad Sci U S A. 2018;115(30):E7081–90.
  • Rath D, Amlinger L, Rath A, et al. The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie. 2015;117:119–128.
  • Yang S, Chang R, Yang H, et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J Clin Invest. 2017;127(7):2719–2724.
  • Monteys AM, Ebanks SA, Keiser MS, et al. CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo. Mol Ther. 2017;25(1):12–23.
  • Merienne N, Vachey G, de Longprez L, et al. The self-inactivating KamiCas9 system for the editing of CNS disease genes. Cell Rep. 2017;20(12):2980–2991.
  • Ekman FK, Ojala DS, Adil MM, et al. CRISPR-cas9-mediated genome editing increases lifespan and improves motor deficits in a Huntington’s disease mouse model. Mol Ther Nucleic Acids. 2019;17:829–839.
  • Lino CA, Harper JC, Carney JP, et al. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv. 2018;25(1):1234–1257.
  • Hossain MA, Barrow JJ, Shen Y, et al. Artificial zinc finger DNA binding domains: versatile tools for genome engineering and modulation of gene expression. J Cell Biochem. 2015;116(11):2435–2444.
  • Garriga-Canut M, Agustín-Pavón C, Herrmann F, et al. Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proc Natl Acad Sci U S A. 2012;109(45):E3136–145.
  • Agustín-Pavón C, Mielcarek M, Garriga-Canut M, et al. Deimmunization for gene therapy: host matching of synthetic zinc finger constructs enables long-term mutant Huntingtin repression in mice. Mol Neurodegener. 2016;11(1):64.
  • Zeitler B, Froelich S, Marlen K, et al. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington’s disease. Nat Med. 2019;25(7):1131–1142.
  • Nakamori M, Panigrahi GB, Lanni S, et al. A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo. Nat Gen. 2020;52(2):146–159.
  • Crotti A, Benner C, Kerman BE, et al. Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat Neurosci. 2014;17(4):513.
  • Cicchetti F, Lacroix S, Cisbani G, et al. Mutant huntingtin is present in neuronal grafts in Huntington disease patients. Ann Neurol. 2014;76(1):31–42.
  • Tang BL. Unconventional secretion and intercellular transfer of mutant huntingtin. Cells. 2018;7(6):59.
  • Southwell AL, Khoshnan A, Dunn DE, et al. Intrabodies binding the proline-rich domains of mutant huntingtin increase its turnover and reduce neurotoxicity. J Neurosci. 2008;28(36):9013–9020.
  • Southwell AL, Ko J, Patterson PH. Intrabody gene therapy ameliorates motor, cognitive, and neuropathological symptoms in multiple mouse models of Huntington’s disease. J Neurosci. 2009;29(43):13589–13602.
  • Amaro IA, Henderson LA. An intrabody drug (rAAV6-INT41) reduces the binding of N-terminal Huntingtin fragment (s) to DNA to basal levels in PC12 cells and delays cognitive loss in the R6/2 animal model. J Neurodegener Dis. 2016;2016:7120753.
  • Snyder-Keller A, McLear JA, Hathorn T, et al. Early or late-stage anti-N-terminal Huntingtin intrabody gene therapy reduces pathological features in B6. HDR6/1 mice. J Neuropathol Exp Neurol. 2010;69(10):1078–1085.
  • Wolfgang WJ, Miller TW, Webster JM, et al. Suppression of Huntington’s disease pathology in Drosophila by human single-chain Fv antibodies. Proc Natl Acad Sci U S A. 2005;102(32):11563–11568.
  • Zha J, Liu XM, Zhu J, et al. A scFv antibody targeting common oligomeric epitope has potential for treating several amyloidoses. Sci Rep. 2016;6(1):36631.
  • Ramsingh AI, Manley K, Rong Y, et al. Transcriptional dysregulation of inflammatory/immune pathways after active vaccination against Huntington′ s disease. Hum Mol Genet. 2015;24(21):6186–6197.
  • Masnata M, Sciacca G, Maxan A, et al. Demonstration of prion-like properties of mutant huntingtin fibrils in both in vitro and in vivo paradigms. Acta Neuropathol. 2019;137(6):981–1001.
  • Garcia-Miralles M, Hong X, Tan LJ, et al. Laquinimod rescues striatal, cortical and white matter pathology and results in modest behavioural improvements in the YAC128 model of Huntington disease. Sci Rep. 2016;6(1):31652.
  • Garcia-Miralles M, Yusof NA, Tan JY, et al. Laquinimod treatment improves myelination deficits at the transcriptional and ultrastructural levels in the YAC128 mouse model of Huntington disease. Mol. Neurobiol. 2019;56(6):4464–4478.
  • Ellrichmann G, Blusch A, Fatoba O, et al. Laquinimod treatment in the R6/2 mouse model. Sci Rep. 2017;7(1):4947.
  • Southwell AL, Franciosi S, Villanueva EB, et al. Anti-semaphorin 4D immunotherapy ameliorates neuropathology and some cognitive impairment in the YAC128 mouse model of Huntington disease. Neurobiol Dis. 2015;76:46–56.
  • Hsiao HY, Chiu FL, Chen CM, et al. Inhibition of soluble tumor necrosis factor is therapeutic in Huntington’s disease. Hum Mol Genet. 2014;23(16):4328–4344.
  • Pido-Lopez J, Tanudjojo B, Farag S, et al. Inhibition of tumour necrosis factor alpha in the R6/2 mouse model of Huntington’s disease by etanercept treatment. Sci Rep. 2019;9(1):7202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.