403
Views
30
CrossRef citations to date
0
Altmetric
Review

Manganese-induced neurodegenerative diseases and possible therapeutic approaches

, , , , , , , & ORCID Icon show all
Pages 1109-1121 | Received 29 Apr 2020, Accepted 05 Aug 2020, Published online: 02 Sep 2020

References

  • Kovacs GG. Molecular pathological classification of neurodegenerative diseases: turning towards precision medicine. Int J Mol Sci. 2016 Feb 2;17(2):189.
  • Bosma H, van Boxtel MP, Ponds RW, et al. Pesticide exposure and risk of mild cognitive dysfunction. Lancet. 2000 Sept 9;356(9233):912–913.
  • Richardson JR, Roy A, Shalat SL, et al. Elevated serum pesticide levels and risk for Alzheimer disease. JAMA Neurol. 2014 Mar;71(3):284–290.
  • Kioumourtzoglou MA, Schwartz JD, Weisskopf MG, et al. Long-term PM2.5 exposure and neurological hospital admissions in the Northeastern United States. Environ Health Perspect. 2016 Jan;124(1):23–29.
  • Palacios N. Air pollution and Parkinson’s disease - evidence and future directions. Rev Environ Health. 2017 Dec 20;32(4):303–313.
  • Reuben A. Childhood lead exposure and adult neurodegenerative disease. J Alzheimers Dis. 2018;64(1):17–42.
  • Li SJ, Ren YD, Li J, et al. The role of iron in Parkinson’s disease monkeys assessed by susceptibility weighted imaging and inductively coupled plasma mass spectrometry. Life Sci. 2020 1; Jan(240):117091.
  • Wu S, Liu H, Zhao H, et al. Environmental lead exposure aggravates the progression of Alzheimer’s disease in mice by targeting on blood brain barrier. Toxicol Lett. 2020 Feb;1(319):138–147.
  • Sun YH, Nfor ON, Huang JY, et al. Association between dental amalgam fillings and Alzheimer’s disease: a population-based cross-sectional study in Taiwan. Alzheimers Res Ther. 2015 Nov 12;7(1):65.
  • Gerhardsson L, Lundh T, Minthon L, et al. Metal concentrations in plasma and cerebrospinal fluid in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord. 2008;25(6):508–515.
  • Peng Q, Bakulski KM, Nan B, et al. Cadmium and Alzheimer’s disease mortality in U.S. adults: updated evidence with a urinary biomarker and extended follow-up time. Environ Res. 2017 Aug;157:44–51.
  • Komatsu F, Kagawa Y, Kawabata T, et al. A high accumulation of hair minerals in Mongolian people: 2(nd) report; influence of manganese, iron, lead, cadmium and aluminum to oxidative stress, Parkinsonism and arthritis. Curr Aging Sci. 2011 Feb;4(1):42–56.
  • Martins AC Jr., Morcillo P, Ijomone OM, et al. New insights on the role of manganese in Alzheimer’s Disease and Parkinson’s Disease. Int J Environ Res Public Health. 2019 Sept 22;16:19.
  • Balachandran RC, Mukhopadhyay S, McBride D, et al. Brain manganese and the balance between essential roles and neurotoxicity. J Biol Chem. 2020 Mar 18;295:6312–6329.
  • Aschner JL, Aschner M. Nutritional aspects of manganese homeostasis. Mol Aspects Med. 2005 Aug-Oct;26(4–5):353–362.
  • Andreini C, Bertini I, Cavallaro G, et al. Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem. 2008 Nov;13(8):1205–1218.
  • Fitsanakis VA, Au C, Erikson KM, et al. The effects of manganese on glutamate, dopamine and gamma-aminobutyric acid regulation. Neurochem Int. 2006 May–June;48(6–7):426–433.
  • Kawahara M, Kato-Negishi M, Tanaka K. Cross talk between neurometals and amyloidogenic proteins at the synapse and the pathogenesis of neurodegenerative diseases. Metallomics. 2017 June 21;9(6):619–633.
  • Fitsanakis VA, Zhang N, Garcia S, et al. Manganese (Mn) and iron (Fe): interdependency of transport and regulation. Neurotox Res. 2010 Aug;18(2):124–131.
  • Ijomone OM, Aluko OM, Okoh COA, et al. Role for calcium signaling in manganese neurotoxicity. J Trace Elem Med Biol. 2019 Dec;56:146–155.
  • Da Silva ALC, Urbano MR, Almeida Lopes ACB, et al. Blood manganese levels and associated factors in a population-based study in Southern Brazil. J Toxicol Environ Health A. 2017;80(19–21):1064–1077.
  • Oulhote Y, Mergler D, Barbeau B, et al. Neurobehavioral function in school-age children exposed to manganese in drinking water. Environ Health Perspect. 2014 Dec;122(12):1343–1350.
  • Khan K, Wasserman GA, Liu X, et al. Manganese exposure from drinking water and children’s academic achievement. Neurotoxicology. 2012 Jan;33(1):91–97.
  • Martins AC, Krum BN, Queiros L, et al. Manganese in the diet: bioaccessibility, adequate intake, and neurotoxicological effects. J Agric Food Chem. 2020 Apr 29. DOI:https://doi.org/10.1021/acs.jafc.0c00641
  • Aschner JL, Anderson A, Slaughter JC, et al. Neuroimaging identifies increased manganese deposition in infants receiving parenteral nutrition. Am J Clin Nutr. 2015 Dec;102(6):1482–1489.
  • Amin H, Shawkat A. Manganese toxicity complicating parenteral nutrition. Am J Ther. 2020 May/Jun;27(3):e303–e304.
  • Livingstone C. Manganese provision in parenteral nutrition: an update. Nutr Clin Pract. 2018 June;33(3):404–418.
  • Gulson B, Mizon K, Taylor A, et al. Changes in manganese and lead in the environment and young children associated with the introduction of methylcyclopentadienyl manganese tricarbonyl in gasoline--preliminary results. Environ Res. 2006 Jan;100(1):100–114.
  • Miah MR, Ijomone OM, Okoh COA, et al. The effects of manganese overexposure on brain health. Neurochem Int. 2020 Jan;20(135):104688.
  • Sriram K, Lin GX, Jefferson AM, et al. Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes. Toxicology. 2015 Feb;3(328):168–178.
  • Racette BA, Criswell SR, Lundin JI, et al. Increased risk of parkinsonism associated with welding exposure. Neurotoxicology. 2012 Oct;33(5):1356–1361.
  • Racette BA, Searles Nielsen S, Criswell SR, et al. Dose-dependent progression of parkinsonism in manganese-exposed welders. Neurology. 2017 Jan 24;88(4):344–351.
  • Criswell SR, Warden MN, Searles Nielsen S, et al. Selective D2 receptor PET in manganese-exposed workers. Neurology. 2018 Sept 11;91(11):e1022–e1030.
  • Erikson KM, Aschner M. Manganese: its role in disease and health. Met Ions Life Sci. 2019 Jan 14;19:253–266.
  • Lee EY, Flynn MR, Lewis MM, et al. Welding-related brain and functional changes in welders with chronic and low-level exposure. Neurotoxicology. 2018 Jan;64:50–59.
  • Cersosimo MG, Koller WC. The diagnosis of manganese-induced parkinsonism. Neurotoxicology. 2006 May;27(3):340–346.
  • Perl DP, Olanow CW. The neuropathology of manganese-induced Parkinsonism. J Neuropathol Exp Neurol. 2007 Aug;66(8):675–682.
  • Tong Y, Yang H, Tian X, et al. High manganese, a risk for Alzheimer’s disease: high manganese induces amyloid-beta related cognitive impairment. J Alzheimers Dis. 2014;42(3):865–878.
  • Ajsuvakova OP, Tinkov AA, Willkommen D, et al. Assessment of copper, iron, zinc and manganese status and speciation in patients with Parkinson’s disease: a pilot study. J Trace Elem Med Biol. 2020 May;59:126423.
  • Joshi P, Bodnya C, Ilieva I, et al. Huntington’s disease associated resistance to Mn neurotoxicity is neurodevelopmental stage and neuronal lineage dependent. Neurotoxicology. 2019 Dec;75:148–157.
  • Roos PM, Vesterberg O, Syversen T, et al. Metal concentrations in cerebrospinal fluid and blood plasma from patients with amyotrophic lateral sclerosis. Biol Trace Elem Res. 2013 Feb;151(2):159–170.
  • Guilarte TR, Burton NC, Verina T, et al. Increased APLP1 expression and neurodegeneration in the frontal cortex of manganese-exposed non-human primates. J Neurochem. 2008 June;105(5):1948–1959.
  • Verina T, Schneider JS, Guilarte TR. Manganese exposure induces alpha-synuclein aggregation in the frontal cortex of non-human primates. Toxicol Lett. 2013 Mar 13;217(3):177–183.
  • Bryan MR, Bowman AB. Manganese and the insulin-IGF signaling network in huntington’s disease and other neurodegenerative disorders. Adv Neurobiol. 2017;18:113–142.
  • Bryan MR, Uhouse MA, Nordham KD, et al. Phosphatidylinositol 3 kinase (PI3K) modulates manganese homeostasis and manganese-induced cell signaling in a murine striatal cell line. Neurotoxicology. 2018 Jan;64:185–194.
  • Cheng H, Xia B, Su C, et al. PI3K/Akt signaling pathway and Hsp70 activate in hippocampus of rats with chronic manganese sulfate exposure. J Trace Elem Med Biol. 2018 Dec;50:332–338.
  • Ma X, Han J, Wu Q, et al. Involvement of dysregulated Wip1 in manganese-induced p53 signaling and neuronal apoptosis. Toxicol Lett. 2015 May 19;235(1):17–27.
  • Wang T, Li X, Yang D, et al. ER stress and ER stress-mediated apoptosis are involved in manganese-induced neurotoxicity in the rat striatum in vivo. Neurotoxicology. 2015 May;48:109–119.
  • Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol. 2018 Jan;25(1):59–70.
  • Huat TJ, Camats-Perna J, Newcombe EA, et al. Metal toxicity links to Alzheimer’s disease and neuroinflammation. J Mol Biol. 2019 Apr 19;431(9):1843–1868.
  • Pearson HA, Peers C. Physiological roles for amyloid beta peptides. J Physiol. 2006 Aug 15;575(Pt 1):5–10.
  • Kane MD, Lipinski WJ, Callahan MJ, et al. Evidence for seeding of beta -amyloid by intracerebral infusion of Alzheimer brain extracts in beta -amyloid precursor protein-transgenic mice. J Neurosci. 2000 May 15;20(10):3606–3611.
  • Kaur G, Prakash A. Involvement of the nitric oxide signaling in modulation of naringin against intranasal manganese and intracerbroventricular beta-amyloid induced neurotoxicity in rats. J Nutr Biochem. 2020 Feb;76:108255.
  • Venkataramani V, Doeppner TR, Willkommen D, et al. Manganese causes neurotoxic iron accumulation via translational repression of amyloid precursor protein and H-Ferritin. J Neurochem. 2018 Dec;147(6):831–848.
  • Guilarte TR. APLP1, Alzheimer’s-like pathology and neurodegeneration in the frontal cortex of manganese-exposed non-human primates. Neurotoxicology. 2010 Sept;31(5):572–574.
  • Wallin C, Kulkarni YS, Abelein A, et al. Characterization of Mn(II) ion binding to the amyloid-beta peptide in Alzheimer’s disease. J Trace Elem Med Biol. 2016 Dec;38:183–193.
  • Lotharius J, Brundin P. Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci. 2002 Dec;3(12):932–942.
  • de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006 June;5(6):525–535.
  • Olanow CW. Manganese-induced parkinsonism and Parkinson’s disease. Ann N Y Acad Sci. 2004 Mar;1012:209–223.
  • Caudle WM. Occupational metal exposure and parkinsonism. Adv Neurobiol. 2017;18:143–158.
  • Dlamini WW, Nelson G, Nielsen SS, et al. Manganese exposure, parkinsonian signs, and quality of life in South African mine workers. Am J Ind Med. 2020 Jan;63(1):36–43.
  • Sikk K, Taba P. Methcathinone “kitchen chemistry” and permanent neurological damage. Int Rev Neurobiol. 2015;120:257–271.
  • Chong TT, Bonnelle V, Veromann KR, et al. Dissociation of reward and effort sensitivity in methcathinone-induced Parkinsonism. J Neuropsychol. 2018 June;12(2):291–297.
  • Ennok M, Sikk K, Haldre S, et al. Cognitive profile of patients with manganese-methcathinone encephalopathy. Neurotoxicology. 2020 Jan;76:138–143.
  • Benskey MJ, Perez RG, Manfredsson FP. The contribution of alpha synuclein to neuronal survival and function - Implications for Parkinson’s disease. J Neurochem. 2016 May;137(3):331–359.
  • Harischandra DS, Ghaisas S, Zenitsky G, et al. Manganese-induced neurotoxicity: new insights into the triad of protein misfolding, mitochondrial impairment, and neuroinflammation. Front Neurosci. 2019;13:654.
  • Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997 June 27;276(5321):2045–2047.
  • Harischandra DS, Jin H, Anantharam V, etal. alpha Synucleinprotects against manganese neurotoxic insult during the early stages of exposure in a dopaminergic cell model of Parkinson’s disease. Toxicol Sci. 2015 Feb;143(2):454–468.
  • Cai T, Yao T, Zheng G, et al. Manganese induces the overexpression of alpha-synuclein in PC12 cells via ERK activation. Brain Res. 2010 Nov 4;1359:201–207.
  • Bornhorst J, Chakraborty S, Meyer S, et al. The effects of pdr1, djr1.1 and pink1 loss in manganese-induced toxicity and the role of alpha-synuclein in C. elegans. Metallomics. 2014 Mar 6;6(3):476–490.
  • Yan DY, Liu C, Tan X, et al. Mn-induced neurocytes injury and autophagy dysfunction in alpha-synuclein wild-type and knock-out mice: highlighting the role of alpha-synuclein. Neurotox Res. 2019 July;36(1):66–80.
  • Harischandra DS, Ghaisas S, Rokad D, et al. Environmental neurotoxicant manganese regulates exosome-mediated extracellular miRNAs in cell culture model of Parkinson’s disease: relevance to alpha-synuclein misfolding in metal neurotoxicity. Neurotoxicology. 2018 Jan;64:267–277.
  • Harischandra DS, Rokad D, Neal ML, et al. Manganese promotes the aggregation and prion-like cell-to-cell exosomal transmission of alpha-synuclein. Sci Signal. 2019 Mar 12;12(572). DOI:https://doi.org/10.1126/scisignal.aau4543
  • Zhang Z, Miah M, Culbreth M, et al. Autophagy in neurodegenerative diseases and metal neurotoxicity. Neurochem Res. 2016 Feb;41(1–2):409–422.
  • Ross CA, Tabrizi SJ. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011 Jan;10(1):83–98.
  • Madison JL, Wegrzynowicz M, Aschner M, et al. Disease-toxicant interactions in manganese exposed Huntington disease mice: early changes in striatal neuron morphology and dopamine metabolism. PLoS One. 2012;7(2):e31024.
  • Williams BB, Li D, Wegrzynowicz M, et al. Disease-toxicant screen reveals a neuroprotective interaction between Huntington’s disease and manganese exposure. J Neurochem. 2010 Jan;112(1):227–237.
  • Horning KJ, Caito SW, Tipps KG, et al. Manganese is essential for neuronal health. Annu Rev Nutr. 2015;35:71–108.
  • Bryan MR, Nordham KD, Rose DIR, et al. Manganese acts upon insulin/IGF receptors to phosphorylate AKT and increase glucose uptake in huntington’s disease cells. Mol Neurobiol. 2020 Mar;57(3):1570–1593.
  • Bichell TJV, Wegrzynowicz M, Tipps KG, et al. Reduced bioavailable manganese causes striatal urea cycle pathology in Huntington’s disease mouse model. Biochim Biophys Acta Mol Basis Dis. 2017 June;1863(6):1596–1604.
  • Bryan MR, O’Brien MT, Nordham KD, et al. Acute manganese treatment restores defective autophagic cargo loading in Huntington’s disease cell lines. Hum Mol Genet. 2019 Nov 15;28(22):3825–3841.
  • Tidball AM, Bryan MR, Uhouse MA, et al. A novel manganese-dependent ATM-p53 signaling pathway is selectively impaired in patient-based neuroprogenitor and murine striatal models of Huntington’s disease. Hum Mol Genet. 2015 Apr 1;24(7):1929–1944.
  • Daube JR. Electrodiagnostic studies in amyotrophic lateral sclerosis and other motor neuron disorders. Muscle Nerve. 2000 Oct;23(10):1488–1502.
  • Gonzalez-Fernandez C, Gonzalez P, Rodriguez FJ. New insights into Wnt signaling alterations in amyotrophic lateral sclerosis: a potential therapeutic target? Neural Regen Res. 2020 Sept;15(9):1580–1589.
  • Wang MD, Little J, Gomes J, et al. Identification of risk factors associated with onset and progression of amyotrophic lateral sclerosis using systematic review and meta-analysis. Neurotoxicology. 2017 July;61:101–130.
  • Olesen MN, Wuolikainen A, Nilsson AC, et al. Inflammatory profiles relate to survival in subtypes of amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflamm. 2020 May;7(3):e697.
  • Sutedja NA, Veldink JH, Fischer K, et al. Exposure to chemicals and metals and risk of amyotrophic lateral sclerosis: a systematic review. Amyotroph Lateral Scler. 2009 Oct-Dec;10(5–6):302–309.
  • Roos PM, Lierhagen S, Flaten TP, et al. Manganese in cerebrospinal fluid and blood plasma of patients with amyotrophic lateral sclerosis. Exp Biol Med (Maywood). 2012 July;237(7):803–810.
  • Kapaki E, Zournas C, Kanias G, et al. Essential trace element alterations in amyotrophic lateral sclerosis. J Neurol Sci. 1997 Apr 15;147(2):171–175.
  • Garzillo EM, Lamberti M, Genovese G, et al. Blood lead, manganese, and aluminum levels in a regional Italian cohort of ALS patients: does aluminum have an influence? J Occup Environ Med. 2014 Oct;56(10):1062–1066.
  • Peters TL, Beard JD, Umbach DM, et al. Blood levels of trace metals and amyotrophic lateral sclerosis. Neurotoxicology. 2016 May;54:119–126.
  • Prusiner SB. Biology and genetics of prions causing neurodegeneration. Annu Rev Genet. 2013;47:601–623.
  • Kawahara M, Kato-Negishi M, Tanaka KI. Amyloids: regulators of Metal Homeostasis in the Synapse. Molecules. 2020 Mar 23;25:6.
  • Mizuno D, Koyama H, Ohkawara S, et al. Involvement of trace elements in the pathogenesis of prion diseases. Curr Pharm Biotechnol. 2014;15(11):1049–1057.
  • Choi CJ, Anantharam V, Martin DP, et al. Manganese upregulates cellular prion protein and contributes to altered stabilization and proteolysis: relevance to role of metals in pathogenesis of prion disease. Toxicol Sci. 2010 June;115(2):535–546.
  • Pass R, Frudd K, Barnett JP, et al. Prion infection in cells is abolished by a mutated manganese transporter but shows no relation to zinc. Mol Cell Neurosci. 2015 Sept;68:186–193.
  • Brown DR, Hafiz F, Glasssmith LL, et al. Consequences of manganese replacement of copper for prion protein function and proteinase resistance. Embo J. 2000 Mar 15;19(6):1180–1186.
  • Hesketh S, Sassoon J, Knight R, et al. Elevated manganese levels in blood and CNS in human prion disease. Mol Cell Neurosci. 2008 Mar;37(3):590–598.
  • Kim JJ, Kim YS, Kumar V. Heavy metal toxicity: an update of chelating therapeutic strategies. J Trace Elem Med Biol. 2019 July;54:226–231.
  • Khandelwal S, Kachru DN, Tandon SK. Chelation in metal intoxication. IX. Influence of amino and thiol chelators on excretion of manganese in poisoned rabbits. Toxicol Lett. 1980 Aug;6(3):131–135.
  • O’Neal SL, Zheng W. Manganese toxicity upon overexposure: a decade in review. Curr Environ Health Rep. 2015 Sept;2(3):315–328.
  • Nachtman JP, Delor S, Brennan CE. Manganese neurotoxicity: effects of varying oxygen tension and EDTA on dopamine auto-oxidation. Neurotoxicology. 1987 Summer;8(2):249–253.
  • Kosal MF, Boyle AJ. Ethylenediaminetetraacetic acid in manganese poisoning of rats; a preliminary study. Ind Med Surg. 1956 Jan;25(1):1–3.
  • Penalver R. Manganese poisoning. Ind Med Surg. 1956 Apr;25(4):190.
  • Herrero Hernandez E, Discalzi G, Valentini C, et al. Follow-up of patients affected by manganese-induced Parkinsonism after treatment with CaNa2EDTA. Neurotoxicology. 2006 May;27(3):333–339.
  • Tuschl K, Clayton PT, Gospe SM Jr., et al. Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man. Am J Hum Genet. 2012 Mar 9;90(3):457–466.
  • Quadri M, Federico A, Zhao T, et al. Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. Am J Hum Genet. 2012 Mar 9;90(3):467–477.
  • Stamelou M, Tuschl K, Chong WK, et al. Dystonia with brain manganese accumulation resulting from SLC30A10 mutations: a new treatable disorder. Mov Disord. 2012 Sept 1;27(10):1317–1322.
  • Di Toro Mammarella L, Mignarri A, Battisti C, et al. Two-year follow-up after chelating therapy in a patient with adult-onset parkinsonism and hypermanganesaemia due to SLC30A10 mutations. J Neurol. 2014 Jan;261(1):227–228.
  • Zeglam A, Abugrara A, Kabuka M. Autosomal-recessive iron deficiency anemia, dystonia and hypermanganesemia caused by new variant mutation of the manganese transporter gene SLC39A14. Acta Neurol Belg. 2019 Sept;119(3):379–384.
  • Discalzi G, Pira E, Herrero Hernandez E, et al. Occupational Mn parkinsonism: magnetic resonance imaging and clinical patterns following CaNa2-EDTA chelation. Neurotoxicology. 2000 Oct;21(5):863–866.
  • Ono K, Komai K, Yamada M. Myoclonic involuntary movement associated with chronic manganese poisoning. J Neurol Sci. 2002 July 15;199(1–2):93–96.
  • Walter E, Alsaffar S, Livingstone C, et al. Manganese toxicity in critical care: case report, literature review and recommendations for practice. J Intensive Care Soc. 2016 Aug;17(3):252–257.
  • Jiang YM, Mo XA, Du FQ, et al. Effective treatment of manganese-induced occupational Parkinsonism with p-aminosalicylic acid: a case of 17-year follow-up study. J Occup Environ Med. 2006 June;48(6):644–649.
  • Zheng J, Rubin EJ, Bifani P, et al. para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis. J Biol Chem. 2013 Aug 9;288(32):23447–23456.
  • Ky SQ, Deng HS, Xie PY, et al. A report of two cases of chronic serious manganese poisoning treated with sodium para-aminosalicylic acid. Br J Ind Med. 1992 Jan;49(1):66–69.
  • Yuan ZX, Chen HB, Li SJ, et al. The influence of manganese treatment on the distribution of metal elements in rats and the protection by sodium para-amino salicylic acid. J Trace Elem Med Biol. 2016 July;36:84–89.
  • Li SJ, Ou CY, He SN, et al. Sodium p-Aminosalicylic Acid Reverses Sub-Chronic Manganese-Induced Impairments of Spatial Learning and Memory Abilities in Rats, but Fails to Restore gamma-Aminobutyric Acid Levels. Int J Environ Res Public Health. 2017 Apr 10;14(4):400.
  • Li SJ, Qin WX, Peng DJ, et al. Sodium P-aminosalicylic acid inhibits sub-chronic manganese-induced neuroinflammation in rats by modulating MAPK and COX-2. Neurotoxicology. 2018 Jan;64:219–229.
  • Li SJ, Li Y, Chen JW, et al. Sodium para-aminosalicylic acid protected primary cultured basal ganglia neurons of rat from manganese-induced oxidative impairment and changes of amino acid neurotransmitters. Biol Trace Elem Res. 2016 Apr;170(2):357–365.
  • Peng DJ, Zhang YW, Li ZC, et al. Preventive impacts of PAS-Na on the slow growth and activated inflammatory responses in Mn-exposed rats. J Trace Elem Med Biol. 2019 July;54:134–141.
  • Li ZC, Wang F, Li SJ, et al. Sodium para-aminosalicylic acid reverses changes of glutamate turnover in manganese-exposed rats. Biol Trace Elem Res. 2019 Dec 14. DOI:https://doi.org/10.1007/s12011-019-02001-0
  • Horiguchi T. Mechanism of manganese toxicity and tolerance of plants.2. Deposition of oxidized manganese in plant-tissues. Soil Sci Plant Nutr. 1987 Dec;33(4):595–606.
  • Dos Santos GCG, Rodella AA, de Abreu CA, et al. Vegetable species for phytoextraction of boron, copper, lead, manganese and zinc from contaminated soil. Sci Agric. 2010;67(6):713–719.
  • Kasote DM, Katyare SS, Hegde MV, et al. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci. 2015;11(8):982–991.
  • Djenidi H, Khennouf S, Bouaziz A. Antioxidant activity and phenolic content of commonly consumed fruits and vegetables in Algeria. Prog Nutr. 2020;22(1):224–235.
  • Ranjbar A, Khorami S, Safarabadi M, et al. Antioxidant activity of iranian echium amoenum fisch & C.A. mey flower decoction in humans: a cross-sectional before/after clinical trial. Evid Based Complement Alternat Med. 2006 Dec;3(4):469–473.
  • Belyaeva EA, Sokolova TV, Emelyanova LV, et al. Mitochondrial electron transport chain in heavy metal-induced neurotoxicity: effects of cadmium, mercury, and copper. ScientificWorldJournal. 2012;2012:136063.
  • Liu K, Luo M, Wei S. The bioprotective effects of polyphenols on metabolic syndrome against oxidative stress: evidences and perspectives. Oxid Med Cell Longev. 2019;2019:6713194.
  • Agati G, Azzarello E, Pollastri S, et al. Flavonoids as antioxidants in plants: location and functional significance. Plant Sci. 2012 Nov;196:67–76.
  • Sadeghi L, Tanwir F, Yousefi Babadi V. Physiological and biochemical effects of echium amoenum extract on Mn(2+)-imposed parkinson like disorder in rats. Adv Pharm Bull. 2018 Nov;8(4):705–713.
  • Sayyah M, Boostani H, Pakseresht S, et al. Efficacy of aqueous extract of Echium amoenum in treatment of obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2009 Nov 13;33(8):1513–1516.
  • Suzuki T, Tsukamoto I. Manganese-induced apoptosis in hepatocytes after partial hepatectomy. Eur J Pharmacol. 2005 Nov 21;525(1–3):48–53.
  • Du Y, Zhu Y, Teng X, et al. Toxicological effect of manganese on NF-kappaB/iNOS-COX-2 signaling pathway in chicken testes. Biol Trace Elem Res. 2015 Nov;168(1):227–234.
  • Bianchini MC, Gularte CO, Escoto DF, et al. Peumus boldus (Boldo) aqueous extract present better protective effect than boldine against manganese-induced toxicity in D. melanogaster. Neurochem Res. 2016 Oct;41(10):2699–2707.
  • Gubert P, Puntel B, Lehmen T, et al. Metabolic effects of manganese in the nematode Caenorhabditis elegans through DAergic pathway and transcription factors activation. Neurotoxicology. 2018 July;67:65–72.
  • Sistrunk SC, Ross MK, Filipov NM. Direct effects of manganese compounds on dopamine and its metabolite Dopac: an in vitro study. Environ Toxicol Pharmacol. 2007 May;23(3):286–296.
  • Santos VD, Bisen-Hersh E, Yu YC, et al. Anthocyanin-rich acai (Euterpe oleracea Mart.) extract attenuates manganese-induced oxidative stress in rat primary astrocyte cultures. J Toxicol Env Heal A. 2014 Apr 3;77(7):390–404.
  • Alessandra-Perini J, Rodrigues-Baptista KC, Machado DE, et al. Anticancer potential, molecular mechanisms and toxicity of Euterpe oleracea extract (acai): a systematic review. Plos One. 2018;13(7):e0200101.
  • da Silva Santos V, de Almeida Teixeira GH, Barbosa F Jr. Acai (Euterpe oleracea Mart.): a tropical fruit with high levels of essential minerals-especially manganese-and its contribution as a source of natural mineral supplementation. J Toxicol Environ Health A. 2014;77(1–3):80–89.
  • Bahar E, Lee GH, Bhattarai KR, et al. Polyphenolic extract of euphorbia supina attenuates manganese-induced neurotoxicity by enhancing antioxidant activity through regulation of ER stress and ER stress-mediated apoptosis. Int J Mol Sci. 2017 Jan 30;18(2):300.
  • Huyut Z, Beydemir S, Gulcin I. Antioxidant and antiradical properties of selected flavonoids and phenolic compounds. Biochem Res Int. 2017;2017:7616791.
  • Freyssin A, Page G, Fauconneau B, et al. Natural polyphenols effects on protein aggregates in Alzheimer’s and Parkinson’s prion-like diseases. Neural Regen Res. 2018 June;13(6):955–961.
  • Song Y, Jeong SW, Lee WS, et al. Determination of polyphenol components of korean prostrate spurge (Euphorbia supina) by using liquid chromatography-tandem mass spectrometry: overall contribution to antioxidant activity. J Anal Methods Chem. 2014;2014:418690.
  • Bayat M, Azami Tameh A, Hossein Ghahremani M, et al. Neuroprotective properties of Melissa officinalis after hypoxic-ischemic injury both in vitro and in vivo. Daru. 2012 Oct 3;20(1):42.
  • Dos Santos-Neto LL, de Vilhena Toledo MA, Medeiros-Souza P, et al. The use of herbal medicine in Alzheimer’s disease-a systematic review. Evid Based Complement Alternat Med. 2006 Dec;3(4):441–445.
  • Sentkowska A, Biesaga M, Pyrzynska K. Polyphenolic composition and antioxidative properties of lemon balm (Melissa officinalis L.) extract affected by different brewing processes. Int J Food Prop. 2015;18(9):2009–2014.
  • Martins EN, Pessano NT, Leal L, et al. Protective effect of Melissa officinalis aqueous extract against Mn-induced oxidative stress in chronically exposed mice. Brain Res Bull. 2012 Jan 4;87(1):74–79.
  • Oboh G, Ogunsuyi OB, Awonyemi OI, et al. Effect of Alkaloid Extract from African Jointfir (Gnetum africanum) Leaves on Manganese-Induced Toxicity in Drosophila melanogaster. Oxid Med Cell Longev. 2018;2018:1–10.
  • Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47.
  • Singh A, Kumar A, Verma RK, et al. Silymarin encapsulated nanoliquid crystals for improved activity against beta amyloid induced cytotoxicity. Int J Biol Macromol. 2020 Feb;7(149):1198–1206.
  • Chtourou Y, Garoui El M, Boudawara T, et al. Protective role of silymarin against manganese-induced nephrotoxicity and oxidative stress in rat. Environ Toxicol. 2014 Oct;29(10):1147–1154.
  • Manfo FP, Nantia EA, Dechaud H, et al. Protective effect of Basella alba and Carpolobia alba extracts against maneb-induced male infertility. Pharm Biol. 2014 Jan;52(1):97–104.
  • Nantia EA, Manfo FPT, Beboy NSE, et al. In vitro antioxidant activity of the methanol extract of Basella alba L (Basellaceae) in rat testicular homogenate. Oxid Antioxid Med Sci. 2013;2(2):131–136.
  • Marreilha Dos Santos AP, Andrade V, Aschner M. Neuroprotective and Therapeutic Strategies for Manganese-Induced Neurotoxicity. Clin Pharmacol Transl Med. 2017;1(2):54–62.
  • Ling J, Yang S, Huang Y, et al. Identifying key genes, pathways and screening therapeutic agents for manganese-induced Alzheimer disease using bioinformatics analysis. Medicine (Baltimore). 2018 June;97(22):e10775.
  • Wegrzynowicz M, Holt HK, Friedman DB, et al. Changes in the striatal proteome of YAC128Q mice exhibit gene-environment interactions between mutant huntingtin and manganese. J Proteome Res. 2012 Feb 3;11(2):1118–1132.
  • Kumar KK, Goodwin CR, Uhouse MA, et al. Untargeted metabolic profiling identifies interactions between Huntington’s disease and neuronal manganese status. Metallomics. 2015 Feb;7(2):363–370.
  • Fernandes J, Chandler JD, Liu KH, et al. Metabolomic responses to manganese dose in SH-SY5Y human neuroblastoma cells. Toxicol Sci. 2019 May 1;169(1):84–94.
  • Kumar KK, Lowe EW Jr., Aboud AA, et al. Cellular manganese content is developmentally regulated in human dopaminergic neurons. Sci Rep. 2014 Oct;28(4):6801.
  • Peres TV, Horning KJ, Bornhorst J, et al. Small molecule modifiers of in vitro manganese transport alter toxicity in vivo. Biol Trace Elem Res. 2019 Mar;188(1):127–134.
  • Horning KJ, Joshi P, Nitin R, et al. Identification of a selective manganese ionophore that enables nonlethal quantification of cellular manganese. J Biol Chem. 2020 Mar 20;295(12):3875–3890.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.