968
Views
16
CrossRef citations to date
0
Altmetric
Review

Emerging therapies in Friedreich’s Ataxia

, , , , &
Pages 1215-1228 | Received 22 Apr 2020, Accepted 07 Sep 2020, Published online: 21 Sep 2020

References

  • Campuzano V, Montermini L, Moltò MD, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271:1423–1427.
  • Bidichandani SI, Delatycki MB, Ataxia F, et al. eds. GeneReviews®. University of Washington, Seattle; 1993. [cited 2020 Apr 21]. http://www.ncbi.nlm.nih.gov/books/NBK1281/
  • Filla A, De Michele G, Cavalcanti F, et al. The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia. Am J Hum Genet. 1996;59:554–560.
  • Klockgether T. Parkinsonism related disorders. 2007;13:S391–4. Ataxias Parkinsonism Relat Disord.
  • Labuda M, Labuda D, Miranda C, et al. Unique origin and specific ethnic distribution of the Friedreich ataxia GAA expansion. Neurology. 2000;54:2322–2324.
  • Manto M, Marmolino D. Cerebellar ataxias. Curr Opin Neurol. 2009;22:419–429.
  • Dürr A, Cossee M, Agid Y, et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med. 1996;335:1169–1175.
  • Bürk K, Schulz SR, Schulz JB. Monitoring progression in Friedreich ataxia (FRDA): the use of clinical scales. J Neurochem. 2013;126:118–124.
  • Raman SV, Phatak K, Hoyle JC, et al. Impaired myocardial perfusion reserve and fibrosis in Friedreich ataxia: a mitochondrial cardiomyopathy with metabolic syndrome. Eur Heart J. 2011;32:561–567.
  • Weidemann F, Störk S, Liu D, et al. Cardiomyopathy of Friedreich ataxia. J Neurochem. 2013;126:88–93.
  • Koeppen AH, Ramirez RL, Becker AB, et al. The pathogenesis of cardiomyopathy in Friedreich ataxia. PLoS One. 2015;10(3):e0116396.
  • Payne RM, Wagner GR. Cardiomyopathy in Friedreich ataxia: clinical findings and research. J Child Neurol. 2012;27:1179–1186.
  • Clark E, Johnson J, Dong YN, et al. Role of frataxin protein deficiency and metabolic dysfunction in Friedreich ataxia, an autosomal recessive mitochondrial disease. Neuronal Signal. 2018;2. DOI: 10.1042/NS20180060.
  • Schulz JB, Dehmer T, Schöls L, et al. Oxidative stress in patients with Friedreich ataxia. Neurology. 2000;55:1719–1721.
  • Velasco-Sánchez D, Aracil A, Montero R, et al. Combined therapy with idebenone and deferiprone in patients with Friedreich’s ataxia. Cerebellum Lond Engl. 2011;10:1–8.
  • Campuzano V, Montermini L, Lutz Y, et al. Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet. 1997;6:1771–1780.
  • Lagedrost SJ, Sutton MSJ, Cohen MS, et al. Idebenone in Friedreich ataxia cardiomyopathy-results from a 6-month phase III study (IONIA). Am Heart J. 2011;161(639–45):e1.
  • Hausse AO, Aggoun Y, Bonnet D, et al. Idebenone and reduced cardiac hypertrophy in Friedreich’s ataxia.Heart 2002;87:346–349. [cited 2020 Apr 20].
  • Mariotti C, Solari A, Torta D, et al. Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology. 2003;60:1676–1679.
  • Di Prospero NA, Baker A, Jeffries N, et al. Neurological effects of high-dose idebenone in patients with Friedreich’s ataxia: a randomised, placebo-controlled trial. Lancet Neurol. 2007;6:878–886.
  • Lynch DR, Perlman SL, Meier T. A phase 3, double-blind, placebo-controlled trial of idebenone in friedreich ataxia. Arch Neurol. 2010;67:941–947.
  • Cook A, Boesch S, Heck S, et al. Patient‐reported outcomes in Friedreich’s ataxia after withdrawal from idebenone. Acta Neurol Scand. 2019:13088. [cited 2020 Apr 17]. Published June 1: http://onlinelibrary.wiley.com/doi/abs/10.1111/ane
  • Quinzii CM, Hirano M. Coenzyme Q and mitochondrial disease. Dev Disabil Res Rev. 2010;16:183–188.
  • Clay A, Hearle P, Schadt K, et al. New developments in pharmacotherapy for Friedreich ataxia. Expert Opin Pharmacother. 2019;20:1855–1867.
  • Lodi R, Hart PE, Rajagopalan B, et al. Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich’s ataxia. Ann Neurol. 2001;49:590–596.
  • Hart PE, Lodi R, Rajagopalan B, et al. Antioxidant treatment of patients with Friedreich ataxia: four-year follow-up. Arch Neurol. 2005;62:621–626.
  • Cooper JM, Korlipara LVP, Hart PE, et al. Coenzyme Q10 and vitamin E deficiency in Friedreich’s ataxia: predictor of efficacy of vitamin E and coenzyme Q10 therapy. Eur J Neurol. 2008;15:1371–1379.
  • Martinelli D, Catteruccia M, Piemonte F, et al. EPI-743 reverses the progression of the pediatric mitochondrial disease—Genetically defined Leigh Syndrome. Mol Genet Metab. 2012;107:383–388.
  • Lynch DR, Willi SM, Wilson RB, et al. A0001 in Friedreich ataxia: biochemical characterization and effects in a clinical trial. Mov Disord. 2012;27:1026–1033.
  • Safety and efficacy of EPI-743 in patients with Friedreich’s ataxia - full text view - clinicalTrials.gov. 2012 [cited 2020 Apr 20]. https://clinicaltrials.gov/ct2/show/NCT01728064
  • Harding AE. Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain J Neurol. 1981;104:589–620.
  • Zesiewicz T, Salemi JL, Perlman S, et al. Double-blind, randomized and controlled trial of EPI-743 in Friedreich’s ataxia. Neurodegener Dis Manag. 2018;8:233–242.
  • Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 2013;53:401–426.
  • Vomund S, Schäfer A, Parnham MJ, et al. Nrf2, the master regulator of anti-oxidative responses. Int J Mol Sci. 2017;18. DOI: 10.3390/ijms18122772.
  • Cullinan SB, Diehl JA. Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol. 2006;38:317–332.
  • Kaspar JW, Niture SK, Jaiswal AK. Nrf2:INrf2(Keap1) signaling in oxidative stress. Free Radic Biol Med. 2009;47:1304–1309.
  • Smith RE, Tran K, Smith CC, et al. The Role of the Nrf2/ARE antioxidant system in preventing cardiovascular diseases. Diseases. 2016;4. DOI:10.3390/diseases4040034.
  • Shan Y, Schoenfeld RA, Hayashi G, et al. Frataxin deficiency leads to defects in expression of antioxidants and Nrf2 expression in dorsal root ganglia of the Friedreich’s ataxia YG8R mouse model. Antioxid Redox Signal. 2013;19:1481–1493.
  • Petrillo S, D’Amico J, La Rosa P, et al. Targeting NRF2 for the treatment of friedreich’s ataxia: A comparison among drugs. Int J Mol Sci. 2019;20(5211). DOI: 10.3390/ijms20205211
  • RTA 408 Capsules in patients with friedreich’s ataxia - MOXIe - full text view - ClinicalTrials.gov. 2015 [cited 2020 Apr 20]. https://clinicaltrials.gov/ct2/show/NCT02255435
  • Lynch DR, Farmer J, Hauser L, et al. Safety, pharmacodynamics, and potential benefit of omaveloxolone in Friedreich ataxia. Ann Clin Transl Neurol. 2019;6:15–26.
  • Indelicato E, Bösch S. Emerging therapeutics for the treatment of Friedreich’s ataxia. Expert Opin Orphan Drugs. 2018;6:57–67.
  • Derosa G, Maffioli P. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists on glycemic control, lipid profile and cardiovascular risk. Curr Mol Pharmacol. 2012;5:272–281.
  • Marmolino D, Acquaviva F, Pinelli M, et al. PPAR-gamma agonist Azelaoyl PAF increases frataxin protein and mRNA expression: new implications for the Friedreich’s ataxia therapy. Cerebellum Lond Engl. 2009;8:98–103.
  • Clinical A Study to evaluate the effect of MIN-102 on the progression of friedreich’s ataxia in male and female patients - no study results posted - ClinicalTrials.gov. 2019 [cited 2020 Jul 30]. https://clinicaltrials.gov/ct2/show/results/NCT03917225
  • Dullens SPJ, Plat J, Mensink RP. Increasing apoA-I production as a target for CHD risk reduction. Nutr Metab Cardiovasc Dis NMCD. 2007;17:616–628.
  • Wang Q, Guo L, Strawser CJ, et al. Low apolipoprotein A-I levels in Friedreich’s ataxia and in frataxin-deficient cells: implications for therapy. PLoS One. 2018;13. DOI:10.1371/journal.pone.0192779.
  • Walker JL, Chamberlain S, Robinson N. Lipids and lipoproteins in Friedreich’s ataxia. J Neurol Neurosurg Psychiatry. 1980;43:111–117.
  • Baldo-Enzi G, Bernardo M, Vitale E, et al. Serum lipids, lipoprotein analysis and apoprotein A-I, A-II and B levels in Friedreich’s ataxia. Eur Neurol. 1990;30:132–137.
  • Wei T, Chen C, Hou J, et al. Nitric oxide induces oxidative stress and apoptosis in neuronal cells. Biochim Biophys Acta BBA - Mol Cell Res. 2000;1498:72–79.
  • Barter PJ, Brandrup-Wognsen G, Palmer MK, et al. Effect of statins on HDL-C: a complex process unrelated to changes in LDL-C: analysis of the VOYAGER database. J Lipid Res. 2010;51:1546–1553.
  • Zesiewicz T, Heerinckx F, Jager RD, et al. Randomized, clinical trial of RT001: early signals of efficacy in Friedreich’s ataxia. Mov Disord. 2018;33:1000–1005.
  • A study to assess efficacy, long term safety and tolerability of RT001 in subjects with friedreich’s ataxia - full text view - ClinicalTrials.gov. 2019 [cited 2020 Apr 20]. https://clinicaltrials.gov/ct2/show/NCT04102501
  • Gomes CM, Santos R. Neurodegeneration in Friedreich’s ataxia: from defective frataxin to oxidative stress. Oxid Med Cell Longev. 2013;487534. DOI:10.1155/2013/487534
  • Schmucker S, Martelli A, Colin F, et al. Mammalian frataxin: an essential function for cellular viability through an interaction with a preformed ISCU/NFS1/ISD11 iron-sulfur assembly complex. PLoS One. 2011;6. DOI:10.1371/journal.pone.0016199.
  • Xu W, Barrientos T, Andrews NC. Iron and copper in mitochondrial diseases. Cell Metab. 2013;17:319–328.
  • Pandolfo M, Hausmann L. Deferiprone for the treatment of Friedreich’s ataxia. J Neurochem. 2013;126:142–146.
  • Kretschmer BD, Kratzer U, Schmidt WJ. Riluzole, a glutamate release inhibitor, and motor behavior. Naunyn Schmiedebergs Arch Pharmacol. 1998;358:181–190.
  • Ristori G, Romano S, Visconti A, et al. Riluzole in cerebellar ataxia: A randomized, double-blind, placebo-controlled pilot trial. Neurology. 2010;74:839–845.
  • Romano S, Coarelli G, Marcotulli C, et al. Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2015;14:985–991.
  • Punga T, Bühler M. Long intronic GAA repeats causing Friedreich ataxia impede transcription elongation. EMBO Mol Med. 2010;2:120–129.
  • Herman D, Jenssen K, Burnett R, et al. Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat Chem Biol. 2006;2:551–558.
  • Codazzi F, Hu A, Rai M, et al. Friedreich ataxia-induced pluripotent stem cell-derived neurons show a cellular phenotype that is corrected by a benzamide HDAC inhibitor. Hum Mol Genet. 2016;25:4847–4855.
  • Rai M, Soragni E, Jenssen K, et al. HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS One. 2008;3. DOI:10.1371/journal.pone.0001958.
  • Soragni E, Miao W, Iudicello M, et al. Epigenetic therapy for Friedreich ataxia. Ann Neurol. 2014;76:489–508.
  • Effect of nicotinamide in friedreich’s ataxia - no study results posted - clinicalTrials.gov. 2012 [cited 2020 Apr 20]. https://clinicaltrials.gov/ct2/show/results/NCT01589809
  • Libri V, Yandim C, Athanasopoulos S, et al. Epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich’s ataxia: an exploratory, open-label, dose-escalation study. Lancet Lond Engl. 2014;384:504–513.
  • Vyas PM, Tomamichel WJ, Pride PM, et al. A TAT–Frataxin fusion protein increases lifespan and cardiac function in a conditional Friedreich’s ataxia mouse model. Hum Mol Genet. 2012;21:1230–1247.
  • Puccio H, Anheim M, Tranchant C. Pathophysiogical and therapeutic progress in Friedreich ataxia. Rev Neurol (Paris). 2014;170:355–365.
  • Britti E, Delaspre F, Feldman A, et al. Frataxin-deficient neurons and mice models of Friedreich ataxia are improved by TAT-MTScs-FXN treatment. J Cell Mol Med. 2018;22:834–848.
  • Larimar Therapeutics, Inc. A phase 1 single ascending dose study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of subcutaneous CTI-1601 versus placebo in subjects with Friedreich’s Ataxia. clinicaltrials.gov; 2019 [cited 2020 Jul 30]. https://clinicaltrials.gov/ct2/show/NCT04176991
  • Tomassini B, Arcuri G, Fortuni S, et al. Interferon gamma upregulates frataxin and corrects the functional deficits in a Friedreich ataxia model. Hum Mol Genet. 2012;21:2855–2861.
  • Seyer L, Greeley N, Foerster D, et al. Open-label pilot study of interferon gamma-1b in Friedreich ataxia. Acta Neurol Scand. 2015;132:7–15.
  • Lynch DR, Hauser L, McCormick A, et al. Randomized, double-blind, placebo-controlled study of interferon-γ 1b in Friedreich Ataxia. Ann Clin Transl Neurol. 2019;6:546–553.
  • Boesch S, Indelicato E. Erythropoietin and Friedreich ataxia: time for a reappraisal? Front Neurosci. 2019;13. DOI:10.3389/fnins.2019.00386
  • Sturm B, Stupphann D, Kaun C, et al. Recombinant human erythropoietin: effects on frataxin expression in vitro. Eur J Clin Invest. 2005;35:711–717.
  • Boesch S, Sturm B, Hering S, et al. Neurological effects of recombinant human erythropoietin in Friedreich’s ataxia: a clinical pilot trial. Mov Disord Off J Mov Disord Soc. 2008;23:1940–1944.
  • Saccà F, Piro R, De Michele G, et al. Epoetin alfa increases frataxin production in Friedreich’s ataxia without affecting hematocrit. Mov Disord Off J Mov Disord Soc. 2011;26:739–742.
  • Nachbauer W, Wanschitz J, Steinkellner H, et al. Correlation of frataxin content in blood and skeletal muscle endorses frataxin as a biomarker in Friedreich ataxia. Mov Disord. 2011;26:1935–1938.
  • Mariotti C, Nachbauer W, Panzeri M, et al. Erythropoietin in Friedreich ataxia. J Neurochem. 2013;126(Suppl 1):80–87.
  • Mariotti C, Fancellu R, Caldarazzo S, et al. Erythropoietin in Friedreich ataxia: no effect on frataxin in a randomized controlled trial. Mov Disord Off J Mov Disord Soc. 2012;27:446–449.
  • Venturelli S, Berger A, Böcker A, et al. Resveratrol as a Pan-HDAC inhibitor alters the acetylation status of jistone proteins in human-derived hepatoblastoma cells. Gaetano C, ed. PLoS ONE. 2013;8. DOI:10.1371/journal.pone.0073097.
  • Yiu EM, Tai G, Peverill RE, et al. An open-label trial in Friedreich ataxia suggests clinical benefit with high-dose resveratrol, without effect on frataxin levels. J Neurol. 2015;262:1344–1353.
  • Micronised Resveratrol as a Treatment for Friedreich Ataxia - Full Text View - ClinicalTrials.gov. 2019 [cited 2020 Apr 20]. https://clinicaltrials.gov/ct2/show/NCT03933163
  • Alfedi G, Luffarelli R, Condò I, et al. Drug repositioning screening identifies etravirine as a potential therapeutic for friedreich’s ataxia. Mov Disord. 2019;34:323–334.
  • Palandri A, L’hôte D, Cohen-Tannoudji J, et al. Frataxin inactivation leads to steroid deficiency in flies and human ovarian cells. Hum Mol Genet. 2015;24:2615–2626.
  • Patel M, Schadt K, McCormick A, et al. Open-label pilot study of oral methylprednisolone for the treatment of patients with friedreich ataxia. Muscle Nerve. 2019;60:571–575.
  • Perdomini M, Belbellaa B, Monassier L, et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich’s ataxia. Nat Med. 2014;20:542–547.
  • Piguet F, de Montigny C, Vaucamps N, et al. Rapid and complete reversal of sensory ataxia by gene therapy in a novel model of friedreich ataxia. Mol Ther J Am Soc Gene Ther. 2018;26:1940–1952.
  • Li Y, Polak U, Bhalla AD, et al. Excision of expanded GAA repeats alleviates the molecular phenotype of friedreich’s ataxia. Mol Ther. 2015;23:1055–1065.
  • Zhang S, Napierala M, Napierala JS. Therapeutic prospects for friedreich’s ataxia. Trends Pharmacol Sci. 2019;40:229–233.
  • Li L, Matsui M, Corey DR. Activating frataxin expression by repeat-targeted nucleic acids. Nat Commun. 2016;7. DOI:10.1038/ncomms10606
  • Erwin GS, Grieshop MP, Ali A, et al. Synthetic transcription elongation factors license transcription across repressive chromatin. Science. 2017;358:1617–1622.
  • Pineda M, Arpa J, Montero R, et al. Idebenone treatment in paediatric and adult patients with Friedreich ataxia: long-term follow-up. Eur J Paediatr Neurol. 2008;12:470–475.
  • Buyse G, Mertens L, Di Salvo G, et al. Idebenone treatment in Friedreich’s ataxia: neurological, cardiac, and biochemical monitoring. Neurology. 2003;60:1679–1681.
  • Drinkard BE, Keyser RE, Paul SM, et al. Exercise capacity and idebenone intervention in children and adolescents with friedreich’s ataxia. Arch Phys Med Rehabil. 2010;91:1044–1050.
  • Rustin P, von Kleist-retzow JC, Chantrel-Groussard K, et al. Effect of idebenone on cardiomyopathy in Friedreich’s ataxia: a preliminary study. Lancet. 1999;354:477–479.
  • Sullivan KL, Freeman M, Shaw JD, et al. EPI-743 for friedreichs ataxia patients with point mutations (P5.388). [cited 2020 Apr 20]. Published 2016. .https://www.semanticscholar.org/paper/EPI-743-for-Friedreichs-Ataxia-Patients-with-Point-Sullivan-Freeman/88eb9ff8fb1f9907ba3c9b222de2543ea810626d.
  • Boddaert N, Le Quan Sang KH, Rötig A, et al. Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood. 2007;110:401–408.
  • Boesch S, Sturm B, Hering S, et al. Friedreich’s ataxia: clinical pilot trial with recombinant human erythropoietin. Ann Neurol. 2007;62:521–524.
  • Boesch S, Nachbauer W, Mariotti C, et al. Safety and tolerability of carbamylated erythropoietin in Friedreich’s ataxia. Mov Disord. 2014;29:935–939.
  • Saccà F, Puorro G, Marsili A, et al. Long-term effect of epoetin alfa on clinical and biochemical markers in friedreich ataxia. Mov Disord. 2016;31:734–741.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.