354
Views
10
CrossRef citations to date
0
Altmetric
Review

Current challenges in the pathophysiology, diagnosis, and treatment of paroxysmal movement disorders

, , ORCID Icon, , &
Pages 81-97 | Received 19 Aug 2020, Accepted 20 Oct 2020, Published online: 08 Nov 2020

References

  • Erro R, Bhatia KP. Unravelling of the paroxysmal dyskinesias. J Neurol Neurosurg Psychiatry. 2019;90(2):227–234.
  • Garone G, Capuano A, Travaglini L, et al. Clinical and genetic overview of paroxysmal movement disorders and episodic ataxias. Int J Mol Sci. 2020;21:3603.
  • Kaji R, Bhatia K, Graybiel AM. Pathogenesis of dystonia: is it of cerebellar or basal ganglia origin? J Neurol Neurosurg Psychiatry. 2018;89:488–492.
  • Tewari A, Fremont R, Khodakhah K. It’s not just the basal ganglia: Cerebellum as a target for dystonia therapeutics: cerebellum as Target for Dystonia Therapeutic s. Mov Disord. 2017;32:1537–1545. DOI:10.1002/mds.27123.
  • Sorgun MH, Akbostancı MC, Yücesan C, et al. Striatal infarct with paroxysmal nonkinesigenic dyskinesia. Acta Neurol Belg. 2013;113(2):197–198. DOI:10.1007/s13760-012-0129-7.
  • Dale RC, Melchers A, Fung VS, et al. Familial paroxysmal exercise-induced dystonia: atypical presentation of autosomal dominant GTP-cyclohydrolase 1 deficiency. Dev Med Child Neurol. 2010;52(6):583–586. DOI:10.1111/j.1469-8749.2010.03619.x.
  • Yoshimura K, Kanki R. Child-onset paroxysmal exercise-induced dystonia as the initial manifestation of hereditary parkinson’s disease. Parkinsonism Relat Disord. 2018;49:108–109.
  • Friedman J, Feigenbaum A, Chuang N, et al. Pyruvate dehydrogenase complex-E2 deficiency causes paroxysmal exercise-induced dyskinesia. Neurology. 2017;89(22):2297–2298. DOI:10.1212/WNL.0000000000004689.
  • Olgiati S, Skorvanek M, Quadri M, et al. Paroxysmal exercise-induced dystonia within the phenotypic spectrum of ECHS1 deficiency: ECHS1 mutations, dystonia, and PED. Mov Disord. 2016;31:1041–1048.
  • Yilmaz S, Turhan T, Ceylaner S, et al. Excellent response to deep brain stimulation in a young girl with GNAO1-related progressive choreoathetosis. Child’s Nervous System [Internet]. 2016 [cited 2016 Jun 10]; Available from: http://link.springer.com/10.1007/s00381-016-3139-6.
  • Dy ME, Chang FCF, Jesus SD, et al. Treatment of adcy5-associated dystonia, chorea, and hyperkinetic disorders with deep brain stimulation: a multicenter case series. J Child Neurol. 2016;31:1027–1035.
  • de Almeida Marcelino AL, Mainka T, Krause P, et al. Deep brain stimulation reduces (nocturnal) dyskinetic exacerbations in patients with ADCY5 mutation: a case series. J Neurol. 2020. DOI:10.1007/s00415-020-09871-8.
  • van Coller R, Slabbert P, Vaidyanathan J, et al. Successful treatment of disabling paroxysmal nonkinesigenic dyskinesia with deep brain stimulation of the globus pallidus internus. Stereotact Funct Neurosurg. 2014;92:388–392.
  • Del Carmen Garcı́a M, Intruvini S, Vazquez S, et al. Ictal SPECT in paroxysmal non-kinesigenic dyskinesia. case report and review of the literature. Parkinsonism Relat Disord. 2000;6(2):119–121. DOI:10.1016/S1353-8020(99)00057-7.
  • Suls A, Dedeken P, Goffin K, et al. Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain. 2008;131:1831–1844.
  • Joo EY, Hong SB, Tae WS, et al. Perfusion abnormality of the caudate nucleus in patients with paroxysmal kinesigenic choreoathetosis. Eur J Nucl Med Mol Imaging. 2005;32(10):1205–1209. DOI:10.1007/s00259-005-1814-z.
  • Zhou B, Chen Q, Zhang Q, et al. Hyperactive putamen in patients with paroxysmal kinesigenic choreoathetosis: a resting-state functional magnetic resonance imaging study. Mov Disord. 2010;25(9):1226–1231. DOI:10.1002/mds.22967.
  • Niccolini F, Mencacci NE, Yousaf T, et al. PDE10A and ADCY5 mutations linked to molecular and microstructural basal ganglia pathology: PDE10A and ADCY5 Mutations Pathology. Mov Disord. 2018;33(12):1961–1965. DOI:10.1002/mds.27523.
  • Lee H, Nakayama J, Xu Y, et al., Dopamine dysregulation in a mouse model of paroxysmal nonkinesigenic dyskinesia. J Clin Invest. 122(2): 507–518. 2012. . 10.1172/JCI58470.
  • Ciampi E, Uribe-San-Martín R, Godoy-Santín J, et al. Secondary paroxysmal dyskinesia in multiple sclerosis: clinical–radiological features and treatment. case report of seven patients. Mult Scler. 2017;23(13):1791–1795. DOI:10.1177/1352458517702968.
  • Kluge A, Kettner B, Zschenderlein R, et al. Changes in perfusion pattern using ECD-SPECT indicate frontal lobe and cerebellar involvement in exercise-induced paroxysmal dystonia. Mov Disord. 1998;13(1):125–134. DOI:10.1002/mds.870130124.
  • Delcourt M, Riant F, Mancini J, et al. Severe phenotypic spectrum of biallelic mutations in PRRT2 gene. J Neurol Neurosurg Psychiatry. 2015;86(7):782–785. DOI:10.1136/jnnp-2014-309025.
  • Michetti C, Castroflorio E, Marchionni I, et al. The PRRT2 knockout mouse recapitulates the neurological diseases associated with PRRT2 mutations. Neurobiol Dis. 2017;99:66–83.
  • Tan G-H, Liu -Y-Y, Wang L, et al., PRRT2 deficiency induces paroxysmal kinesigenic dyskinesia by regulating synaptic transmission in cerebellum. Cell Res. 28(1): 90–110. 2018. . 10.1038/cr.2017.128.
  • Calame DJ, Xiao J, Khan MM, et al. Presynaptic PRRT2 deficiency causes cerebellar dysfunction and paroxysmal kinesigenic dyskinesia. Neuroscience [Internet]. 2020 [cited 2020 Oct 9]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S0306452220305595.
  • Jaffer F, Fawcett K, Sims D, et al. Familial childhood-onset progressive cerebellar syndrome associated with the ATP1A3 mutation. Neurol Genet. 2017;3(2):e145. DOI:10.1212/NXG.0000000000000145.
  • Balint B, Stephen CD, Udani V, et al. Paroxysmal asymmetric dystonic arm posturing—a less recognized but characteristic manifestation of ATP1A3‐related disease. Mov Disord Clin Pract. 2019;6:312–315.
  • Steel D, Heim J, Kruer MC, et al. Biallelic mutations of TBC1D24 in exercise‐induced paroxysmal dystonia. Mov Disord. 2020;35:372–373.
  • Zimmern V, Riant F, Roze E, et al. Infantile-onset paroxysmal movement disorder and episodic ataxia associated with a TBC1D24 mutation. Neuropediatrics. 2019;50(5):308–312. DOI:10.1055/s-0039-1688410.
  • Shimojima K, Okumura A, Natsume J, et al. Spinocerebellar ataxias type 27 derived from a disruption of the fibroblast growth factor 14 gene with mimicking phenotype of paroxysmal non-kinesigenic dyskinesia. Brain Dev. 2012;34(3):230–233. DOI:10.1016/j.braindev.2011.04.014.
  • Calderon DP, Fremont R, Kraenzlin F, et al. The neural substrates of rapid-onset dystonia-parkinsonism. Nat Neurosci. 2011;14:357–365.
  • Fremont R, Calderon DP, Maleki S, et al. Abnormal high-frequency burst firing of cerebellar neurons in rapid-onset dystonia-parkinsonism. J Neurosci. 2014;34(35):11723–11732. DOI:10.1523/JNEUROSCI.1409-14.2014.
  • Fremont R, Tewari A, Khodakhah K. Aberrant purkinje cell activity is the cause of dystonia in a shRNA-based mouse model of rapid onset dystonia–parkinsonism. Neurobiol Dis. 2015;82:200–212.
  • Roubertie A, Echenne B, Leydet J, et al. Benign paroxysmal tonic upgaze, benign paroxysmal torticollis, episodic ataxia and CACNA1A mutation in a family. J Neurol. 2008;255(10):1600–1602. DOI:10.1007/s00415-008-0982-8.
  • Yin X-M, Lin J-H, Cao L, et al. Familial paroxysmal kinesigenic dyskinesia is associated with mutations in the KCNA1 gene. Hum Mol Genet. 2018;27:625–637.
  • Wakamori M, Yamazaki K, Matsunodaira H, et al. Single tottering mutations responsible for the neuropathic phenotype of the P-type calcium channel. J Biol Chem. 1998;273(52):34857–34867. DOI:10.1074/jbc.273.52.34857.
  • Campbell DB, Hess EJ. L-type calcium channels contribute to the tottering mouse dystonic episodes. Mol Pharmacol. 1999;55(1):23–31.
  • Campbell DB, North JB, Hess EJ. Tottering mouse motor dysfunction is abolished on the purkinje cell degeneration (pcd) mutant background. Exp Neurol. 1999;160(1):268–278.
  • Khan Z, Jinnah HA. Paroxysmal dyskinesias in the lethargic mouse mutant. J Neurosci. 2002;22:8193–8200.
  • Devanagondi R, Egami K, LeDoux MS, et al. Neuroanatomical substrates for paroxysmal dyskinesia in lethargic mice. Neurobiol Dis. 2007;27(3):249–257. DOI:10.1016/j.nbd.2007.05.001.
  • Bostan AC, Strick PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci. 2018;19:338–350. .
  • Chen CH, Fremont R, Arteaga-Bracho EE, et al. Short latency cerebellar modulation of the basal ganglia. Nat Neurosci. 2014;122014 Dec;17(12):1767–1775.
  • Hoshi E, Tremblay L, Féger J, et al. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491–1493. DOI:10.1038/nn1544.
  • Schirinzi T, Sciamanna G, Mercuri NB, et al. Dystonia as a network disorder: a concept in evolution. Curr Opin Neurol. 2018 Aug;31(4):498–503.
  • Mink JW. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol. 1996;50(4):381–425.
  • You H, Mariani -L-L, Mangone G, et al. Molecular basis of dopamine replacement therapy and its side effects in parkinson’s disease. Cell Tissue Res. 2018;373:111–135.
  • Hervé D Identification of a specific assembly of the g protein golf as a critical and regulated module of dopamine and adenosine-activated cAMP pathways in the striatum. Frontiers in Neuroanatomy [Internet]. 2011 [cited 2019 Aug 10];5. Available from: http://journal.frontiersin.org/article/10.3389/fnana.2011.00048/abstract.
  • Iwamoto T, Iwatsubo K, Okumura S, et al. Disruption of type 5 adenylyl cyclase negates the developmental increase in galphaolf expression in the striatum. FEBS Lett. 2004;564:153–156.
  • Lee K-W, Hong J-H, Choi IY, et al. Impaired D2 dopamine receptor function in mice lacking type 5 adenylyl cyclase. J Neurosci. 2002;22(18):7931–7940. DOI:10.1523/JNEUROSCI.22-18-07931.2002.
  • Visel A, Alvarez‐Bolado G, Thaller C, et al. Comprehensive analysis of the expression patterns of the adenylate cyclase gene family in the developing and adult mouse brain. J Comp Neurol. 2006;496:684–697.
  • Kheirbek MA, Britt JP, Beeler JA, et al. Adenylyl cyclase type 5 contributes to corticostriatal plasticity and striatum-dependent learning. J Neurosci. 2009;29(39):12115–12124. DOI:10.1523/JNEUROSCI.3343-09.2009.
  • Corvol JC, Studler JM, Schonn JS, et al. Gαolf is necessary for coupling D1 and A2a receptors to adenylyl cyclase in the striatum: gαolf-coupled striatal adenylyl cyclase. J Neurochem. 2001;76(5):1585–1588. DOI:10.1046/j.1471-4159.2001.00201.x.
  • Dessauer CW, Watts VJ, Ostrom RS, et al. International union of basic and clinical pharmacology. CI. structures and small molecule modulators of mammalian adenylyl cyclases. Pharmacol Rev. 2017;69:93–139, Ohlstein EH, editor
  • Nishi A, Kuroiwa M, Miller DB, et al. Distinct roles of PDE4 and PDE10A in the regulation of cAMP/PKA signaling in the striatum. J Neurosci. 2008;28(42):10460–10471. DOI:10.1523/JNEUROSCI.2518-08.2008.
  • Nishi A, Kuroiwa M, Shuto T Mechanisms for the modulation of dopamine D1 receptor signaling in striatal neurons. Front Neuroanat [Internet]. 2011 [cited 2020 May 8];5. Available from: http://journal.frontiersin.org/article/10.3389/fnana.2011.00043/abstract.
  • Polito M, Guiot E, Gangarossa G, et al. Selective effects of PDE10A inhibitors on striatopallidal neurons require phosphatase inhibition by DARPP-32. eNeuro [Internet]. 2015 [cited 2019 Aug 10];2. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596023/.
  • Friedman JR, Méneret A, Chen D-H, et al., ADCY5 mutation carriers display pleiotropic paroxysmal day and nighttime dyskinesias. Mov Disord. 31(1): 147–148. 2016. . 10.1002/mds.26494.
  • Carapito R, Paul N, Untrau M, et al. A de novo ADCY5 mutation causes early‐onset autosomal dominant chorea and dystonia. Mov Disord. 2015;30:423–427.
  • Chang FCF, Westenberger A, Dale RC, et al. Phenotypic insights into ADCY5‐associated disease. Mov Disord. 2016;31:1033–1040.
  • Chen D-H, Méneret A, Friedman JR, et al. ADCY5 -related dyskinesia: broader spectrum and genotype–phenotype correlations. Neurology. 2015;85:2026–2035.
  • Mencacci NE, Erro R, Wiethoff S, et al. ADCY5 mutations are another cause of benign hereditary chorea. Neurology. 2015;85(1):80–88. DOI:10.1212/WNL.0000000000001720.
  • Doyle TB, Hayes MP, Chen DH, et al. Functional characterization of AC5 gain-of-function variants: impact on the molecular basis of ADCY5-related dyskinesia. Biochem Pharmacol. 2019;163:169–177. DOI:10.1016/j.bcp.2019.02.005
  • Chen Y-Z, Friedman JR, Chen D-H, et al. Gain-of-function ADCY5 mutations in familial dyskinesia with facial myokymia: ADCY5 Mutations in FDFM. Ann Neurol. 2014;75:542–549.
  • Méneret A, Gras D, McGovern E, et al. Caffeine and the dyskinesia related to mutations in the ADCY5 Gene. Ann Intern Med [Internet]. 2019 [cited 2019 Aug 10]; Available from: http://annals.org/article.aspx?doi=10.7326/L19-0038.
  • Iwamoto T, Okumura S, Iwatsubo K, et al. Motor dysfunction in type 5 adenylyl cyclase-null Mice. J Biol Chem. 2003;278(19):16936–16940. DOI:10.1074/jbc.C300075200.
  • Saitsu H, Fukai R, Ben-Zeev B, et al. Phenotypic spectrum of GNAO1 variants: epileptic encephalopathy to involuntary movements with severe developmental delay. Eur J Hum Genet. 2016;24(1):129–134. DOI:10.1038/ejhg.2015.92.
  • Danti FR, Galosi S, Romani M, et al. GNAO1 encephalopathy: broadening the phenotype and evaluating treatment and outcome. Neurol Genet. 2017;3:e143.
  • Nakamura K, Kodera H, Akita T, et al. De Novo mutations in GNAO1, encoding a Gαo subunit of heterotrimeric G proteins, cause epileptic encephalopathy. Am J Hum Genet. 2013;93(3):496–505. DOI:10.1016/j.ajhg.2013.07.014.
  • Ananth AL, Robichaux-Viehoever A, Kim Y-M, et al. Clinical course of six children with GNAO1 mutations causing a severe and distinctive movement disorder. Pediatr Neurol. 2016;59:81–84.
  • Schorling DC, Dietel T, Evers C, et al. Expanding phenotype of de novo mutations in GNAO1: four new cases and review of literature. Neuropediatrics. 2017;48(5):371–377. DOI:10.1055/s-0037-1603977.
  • Menke LA, Engelen M, Alders M, et al. Recurrent GNAO1 mutations associated with developmental delay and a movement disorder. J Child Neurol. 2016;31(14):1598–1601. DOI:10.1177/0883073816666474.
  • Waak M, Mohammad SS, Coman D, et al. GNAO1-related movement disorder with life-threatening exacerbations: movement phenomenology and response to DBS. J Neurol Neurosurg Psychiatry. 2018;89(2):221–222. DOI:10.1136/jnnp-2017-315653.
  • Feng H, Khalil S, Neubig RR, et al. A mechanistic review on GNAO1-associated movement disorder. Neurobiol Dis. 2018;116:131–141. DOI:10.1016/j.nbd.2018.05.005
  • Feng H, Sjögren B, Karaj B, et al. Movement disorder in GNAO1 encephalopathy associated with gain-of-function mutations. Neurology. 2017;89(8):762–770. DOI:10.1212/WNL.0000000000004262.
  • Jiang M, Bajpayee NS. Molecular mechanisms of go signaling. NSG. 2009;17:23–41. .
  • Feng H, Larrivee CL, Demireva EY, et al. Mouse models of GNAO1-associated movement disorder: allele- and sex-specific differences in phenotypes. PLoS ONE. 2019;14(1):e0211066. DOI:10.1371/journal.pone.0211066.
  • Larrivee CL, Feng H, Quinn JA, et al. Mice with GNAO1 R209H movement disorder variant display hyperlocomotion alleviated by risperidone. J Pharmacol Exp Ther2020jpet.119.26273310.1124/jpet.119.262733
  • Ghil S, Choi J-M, Kim -S-S, et al. Compartmentalization of protein kinase A signaling by the heterotrimeric G protein Go. Proc Natl Acad Sci USA. 2006;103(50):19158–19163. DOI:10.1073/pnas.0609392103.
  • Solis GP, Katanaev VL. Gαo (GNAO1) encephalopathies: plasma membrane vs. Golgi functions. Oncotarget. 2018;9(35):23846–23847.
  • Diggle CP, Sukoff Rizzo SJ, Popiolek M, et al. Biallelic mutations in PDE10A lead to loss of striatal PDE10A and a hyperkinetic movement disorder with onset in Infancy. Am J Hum Genet. 2016;98(4):735–743. DOI:10.1016/j.ajhg.2016.03.015.
  • Mencacci NE, Kamsteeg E-J, Nakashima K, et al. De novo mutations in PDE10A cause childhood-onset chorea with bilateral striatal lesions. Am J Hum Genet. 2016;98(4):763–771. DOI:10.1016/j.ajhg.2016.02.015.
  • Miyatake S, Koshimizu E, Shirai I, et al. A familial case of PDE10A-associated childhood-onset chorea with bilateral striatal lesions. Mov Disord. 2018;33:177–179.
  • Narayanan DL, Deshpande D, Das Bhowmik A, et al. Familial choreoathetosis due to novel heterozygous mutation in PDE10A. Am J Med Genet A. 2018;176(1):146–150. DOI:10.1002/ajmg.a.38507.
  • Doummar D, Dentel C, Lyautey R, et al. Biallelic PDE2A variants: a new cause of syndromic paroxysmal dyskinesia. Eur J Hum Genet. 2020;28(10):1403–1413. DOI:10.1038/s41431-020-0641-9.
  • Salpietro V, Perez-Dueñas B, Nakashima K, et al. A homozygous loss-of-function mutation in PDE2A associated to early-onset hereditary chorea: a homozygous PDE2A mutation causing chorea. Mov Disord. 2018;33:482–488.
  • Esposito S, Carecchio M, Tonduti D, et al. A PDE10A de novo mutation causes childhood-onset chorea with diurnal fluctuations. Mov Disord. 2017;32(11):1646–1647. DOI:10.1002/mds.27175.
  • Tejeda GS, Whiteley EL, Deeb TZ, et al. Chorea-related mutations in PDE10A result in aberrant compartmentalization and functionality of the enzyme. Proc Natl Acad Sci USA. 2020;117(1):677–688. DOI:10.1073/pnas.1916398117.
  • Fuchs T, Saunders-Pullman R, Masuho I, et al. Mutations in GNAL cause primary torsion dystonia. Nat Genet. 2013;45(1):88–92. DOI:10.1038/ng.2496.
  • Fuchs T, Ozelius LJ Genetics in dystonia: an Update. Current Neurology and Neuroscience Reports [Internet]. 2013 [cited 2019 Aug 10];13. Available from: http://link.springer.com/10.1007/s11910-013-0410-z.
  • Kumar KR, Lohmann K, Masuho I, et al. Mutations in GNAL: a novel cause of craniocervical dystonia. JAMA Neurol. 2014;71:490–494.
  • Vemula SR, Puschmann A, Xiao J, et al. Role of Gα(olf) in familial and sporadic adult-onset primary dystonia. Hum Mol Genet. 2013;22(12):2510–2519. DOI:10.1093/hmg/ddt102.
  • Corvol J-C, Muriel M-P, Valjent E, et al. Persistent increase in olfactory type G-protein alpha subunit levels may underlie D1 receptor functional hypersensitivity in parkinson disease. J Neurosci. 2004;24:7007–7014.
  • Mariani -L-L, Longueville S, Girault J-A, et al. Differential enhancement of ERK, PKA and Ca2+ signaling in direct and indirect striatal neurons of parkinsonian mice. Neurobiol Dis. 2019;130:104506.
  • Alcacer C, Santini E, Valjent E, et al. Gα(olf) mutation allows parsing the role of cAMP-dependent and extracellular signal-regulated kinase-dependent signaling in L-3,4-dihydroxyphenylalanine-induced dyskinesia. J Neurosci. 2012;32:5900–5910.
  • Aubert I, Guigoni C, Håkansson K, et al. Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol. 2005;57:17–26.
  • Berthet A, Porras G, Doudnikoff E, et al. Pharmacological analysis demonstrates dramatic alteration of D1 dopamine receptor neuronal distribution in the rat analog of L-DOPA-induced dyskinesia. J Neurosci. 2009;29(15):4829–4835. DOI:10.1523/JNEUROSCI.5884-08.2009.
  • Rangel-Barajas C, Silva I, Lopéz-Santiago LM, et al. L-DOPA-induced dyskinesia in hemiparkinsonian rats is associated with up-regulation of adenylyl cyclase type V/VI and increased GABA release in the substantia nigra reticulata. Neurobiol Dis. 2011;41(1):51–61. DOI:10.1016/j.nbd.2010.08.018.
  • Lebel M, Chagniel L, Bureau G, Lebel M, Chagniel L, Bureau G, et al. Striatal inhibition of PKA prevents levodopa-induced behavioural and molecular changes in the hemiparkinsonian rat. Neurobiol Dis. 2010;38(1):59–67. DOI:10.1016/j.nbd.2009.12.027.
  • Niccolini F, Haider S, Reis Marques T, et al. Altered PDE10A expression detectable early before symptomatic onset in huntington’s disease. Brain. 2015;138(10):3016–3029. DOI:10.1093/brain/awv214.
  • Niccolini F, Pagano G, Fusar-Poli P, et al. Striatal molecular alterations in HD gene carriers: a systematic review and meta-analysis of PET studies. J Neurol Neurosurg Psychiatry. 2018;89(2):185–196. DOI:10.1136/jnnp-2017-316633.
  • Fazio P, Fitzer-Attas CJ, Mrzljak L, et al. PET molecular imaging of phosphodiesterase 10A: an early biomarker of huntington’s disease progression. Mov Disord. 2020;35:606–615.
  • Ahmad R, Bourgeois S, Postnov A, et al. PET imaging shows loss of striatal PDE10A in patients with Huntington disease. Neurology. 2014;82(3):279–281. DOI:10.1212/WNL.0000000000000037.
  • Hebb ALO, Robertson HA, Denovan-Wright EM. Striatal phosphodiesterase mRNA and protein levels are reduced in Huntington’s disease transgenic mice prior to the onset of motor symptoms. Neuroscience. 2004;123:967–981.
  • Calon F, Dridi M, Hornykiewicz O, et al. Increased adenosine A2A receptors in the brain of parkinson’s disease patients with dyskinesias. Brain. 2004;127:1075–1084.
  • Mishina M, Ishiwata K, Naganawa M, et al. Adenosine A(2A) receptors measured with [C]TMSX PET in the striata of parkinson’s disease patients. PLoS ONE. 2011;6:e17338.
  • Ramlackhansingh AF, Bose SK, Ahmed I, et al. Adenosine 2A receptor availability in dyskinetic and nondyskinetic patients with parkinson disease. Neurology. 2011;76(21):1811–1816. DOI:10.1212/WNL.0b013e31821ccce4.
  • Zhu C, Wang G, Li J, et al. Adenosine A2A receptor antagonist istradefylline 20 versus 40 mg/day as augmentation for parkinson’s disease: a meta-analysis. Neurol Res. 2014;36(11):1028–1034. DOI:10.1179/1743132814Y.0000000375.
  • Hua T, Li X, Wu L, et al. Activation and signaling mechanism revealed by cannabinoid receptor-gi complex structures. Cell. 2020;180(4):655–665.e18. DOI:10.1016/j.cell.2020.01.008.
  • Ye L, Cao Z, Wang W, et al. New insights in cannabinoid receptor structure and signaling. Curr Mol Pharmacol. 2019;12:239–248.
  • Morgese MG, Cassano T, Gaetani S, et al. Neurochemical changes in the striatum of dyskinetic rats after administration of the cannabinoid agonist WIN55,212-2. Neurochem Int. 2009;54(1):56–64. DOI:10.1016/j.neuint.2008.10.007.
  • Laprairie RB, Bagher AM, Rourke JL, et al. Positive allosteric modulation of the type 1 cannabinoid receptor reduces the signs and symptoms of huntington’s disease in the R6/2 mouse model. Neuropharmacology. 2019;151:1–12.
  • Mehta A, Bot G, Reisine T, et al. Endomorphin-1: induction of motor behavior and lack of receptor desensitization. J Neurosci. 2001;21:4436–4442.
  • Méneret A, Roze E. Paroxysmal movement disorders: an update. Rev Neurol (Paris). 2016;172(8–9):433–445. DOI:10.1016/j.neurol.2016.07.005.
  • Tranchant C, Bhatia KP, Marsden CD. Movement disorders in multiple sclerosis. Mov Disord. 1995;10(4):418–423.
  • Candeias da Silva C, Bichuetti DB, Azevedo Silva SMCD, et al. Movement disorders in multiple sclerosis and neuromyelitis optica: a clinical marker of neurological disability. Parkinsonism Relat Disord. 2018;51:73–78.
  • Kim S-M, Go MJ, Sung -J-J, et al. Painful tonic spasm in neuromyelitis optica: incidence, diagnostic utility, and clinical characteristics. Arch Neurol. 2012;69(8):1026–1031. DOI:10.1001/archneurol.2012.112.
  • Fröhlich K, Winder K, Linker RA, et al. Lesion correlates of secondary paroxysmal dyskinesia in multiple sclerosis. J Neurol. 2018;265(10):2277–2283. DOI:10.1007/s00415-018-8989-2.
  • Marcel C, Anheim M, Flamand-Rouvière C, et al. Symptomatic paroxysmal dysarthria-ataxia in demyelinating diseases. J Neurol. 2010;257(8):1369–1372. DOI:10.1007/s00415-010-5534-3.
  • de Seze J, Stojkovic T, Destée M, et al. Paroxysmal kinesigenic choreoathetosis as a presenting symptom of multiple sclerosis. J Neurol. 2000;247(6):478–480. DOI:10.1007/s004150070184.
  • Balint B, Vincent A, Meinck H-M, et al., Movement disorders with neuronal antibodies: syndromic approach, genetic parallels and pathophysiology. Brain. 2018; 141(1): 13–36. DOI:10.1093/brain/awx189. .
  • Irani SR, Michell AW, Lang B, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol. 2011;69(5):892–900. DOI:10.1002/ana.22307.
  • Irani SR, Stagg CJ, Schott JM, et al. Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. Brain. 2013;136(10):3151–3162. DOI:10.1093/brain/awt212.
  • Damato V, Balint B, Kienzler A-K, et al. The clinical features, underlying immunology, and treatment of autoantibody-mediated movement disorders. Mov Disord. 2018;33(9):1376–1389. DOI:10.1002/mds.27446.
  • Binks SNM, Klein CJ, Waters P, et al. LGI1, CASPR2 and related antibodies: a molecular evolution of the phenotypes. J Neurol Neurosurg Psychiatry. 2018;89:526–534.
  • Thompson J, Bi M, Murchison AG, et al. The importance of early immunotherapy in patients with faciobrachial dystonic seizures. Brain. 2018;141(2):348–356. DOI:10.1093/brain/awx323.
  • Persoon S, Kappelle LJ, Klijn CJM. Limb-shaking transient ischaemic attacks in patients with internal carotid artery occlusion: a case-control study. Brain. 2010;133:915–922. DOI:10.1093/brain/awq009.
  • Kumral E, Bayam FE, Erdoğan CE. Limb shaking transient ischemic attacks: a follow-up of 28 patients. Rev Neurol (Paris). 2020;176(7–8):587–591.
  • Rosenbaum S, Ovesen C, Futrell N, et al. Inducible limb-shaking transitory ischemic attacks: a video-documented case report and review of the literature. BMC Neurol. 2016;16(1):78. DOI:10.1186/s12883-016-0601-8.
  • Miremadi BB, Tran A, Wadi LC, et al. Bilateral limb-shaking transient ischemic attacks. J Stroke Cerebrovasc Dis. 2020;29:104577.
  • Dizon AM, Kowalyk S, Hoogwerf BJ. Neuroglycopenic and other symptoms in patients with insulinomas. Am J Med. 1999;106(3):307–310. DOI:10.1016/S0002-9343(99)00021-2.
  • Ding Y, Wang S, Liu J, et al. Neuropsychiatric profiles of patients with insulinomas. Eur Neurol. 2010;63(1):48–51. DOI:10.1159/000268166.
  • Dion M-H, Cossette P, J-M S-H, et al. Insulinoma misdiagnosed as intractable epilepsy. Neurology. 2004;62:1443–1445.
  • Pozzi NG, De Marzi R, Zangaglia R, et al. Paroxysmal dystonia with axonal neuropathy resulting from benignant insulinoma: case report. Mov Disord Clin Pract. 2015;2(1):69–71. DOI:10.1002/mdc3.12123.
  • Debruyne F, Van Paesschen W, Van Eyken P, et al. Paroxysmal nonkinesigenic dyskinesias due to recurrent hypoglycemia caused by an insulinoma. Mov Disord. 2009;24(3):460–461. DOI:10.1002/mds.22386.
  • Barabas G, Tucker SM. Idiopathic hypoparathyroidism and paroxysmal dystonic choreoathetosis. Ann Neurol. 1988;24(4):585.
  • Dure LS, Mussell HG. Paroxysmal dyskinesia in a patient with pseudohypoparathyroidism. Mov Disord. 1998;13(4):746–748.
  • Mahmud FH. Molecular diagnosis of pseudohypoparathyroidism type ib in a family with presumed paroxysmal dyskinesia. PEDIATRICS. 2005;115(2):e242–e244.
  • Méneret A, Guey S, Degos B. Chvostek sign, frequently found in healthy subjects, is not a useful clinical sign. Neurology. 2013;80(11):1067.
  • Latorre A, Bhatia KP. Treatment of paroxysmal dyskinesia. Neurol Clin. 2020;38(2):433–447.
  • Méneret A, Gaudebout C, Riant F, et al. PRRT2 mutations and paroxysmal disorders. Eur J Neurol. 2013;20(6):872–878. DOI:10.1111/ene.12104.
  • Ebrahimi-Fakhari D, Saffari A, Westenberger A, et al. The evolving spectrum of PRRT2-associated paroxysmal diseases. Brain. 2015;138:3476–3495. DOI:10.1093/brain/awv317
  • Bovenzi R, Schirinzi T, Pierantozzi M, et al. Clinical course of paroxysmal dyskinesias throughout pregnancy. Parkinsonism Relat Disord. 2020;80:19–20.
  • Huang X-J, Wang T, Wang J-L, et al. Paroxysmal kinesigenic dyskinesia: clinical and genetic analyses of 110 patients. Neurology. 2015;85(18):1546–1553. DOI:10.1212/WNL.0000000000002079.
  • Hainque E, Vidailhet M, Cozic N, et al. A randomized, controlled, double-blind, crossover trial of zonisamide in myoclonus-dystonia. Neurology. 2016;86(18):1729–1735. DOI:10.1212/WNL.0000000000002631.
  • Matsuura R, Hamano S, Hiwatari E, et al. Zonisamide therapy for patients with paroxysmal kinesigenic dyskinesia. Pediatr Neurol. 2020;111:23–26.
  • Méneret A, Gras D, McGovern E, et al. Caffeine and the dyskinesia related to mutations in the ADCY5 Gene. Ann Intern Med. 2019;171(6):439. DOI:10.7326/L19-0038.
  • Shetty K, Sarma AS, Devan M, et al. Recurrent ADCY5 mutation in mosaic form with nocturnal paroxysmal dyskinesias and video electroencephalography documentation of dramatic response to caffeine treatment. J Mov Disord. 2020. DOI:10.14802/jmd.20014.
  • Guterman EL, Yurgionas B, Nelson AB. Pearls & oy-sters: episodic ataxia type 2: case report and review of the literature. Neurology. 2016;86:e239–241.
  • Strupp M, Kalla R, Claassen J, et al. A randomized trial of 4-aminopyridine in EA2 and related familial episodic ataxias. Neurology. 2011;77(3):269–275. DOI:10.1212/WNL.0b013e318225ab07.
  • Gras D, Roze E, Caillet S, et al. GLUT1 deficiency syndrome: an update. Rev Neurol (Paris). 2014;170(2):91–99. DOI:10.1016/j.neurol.2013.09.005.
  • Gras D, Cousin C, Kappeler C, et al. A simple blood test expedites the diagnosis of glucose transporter type 1 deficiency syndrome. Ann Neurol. 2017;82(1):133–138. DOI:10.1002/ana.24970.
  • Castellotti B, Ragona F, Freri E, et al. Screening of SLC2A1 in a large cohort of patients suspected for Glut1 deficiency syndrome: identification of novel variants and associated phenotypes. J Neurol. 2019;266(6):1439–1448. DOI:10.1007/s00415-019-09280-6.
  • McGovern EM, Roze E, Counihan TJ. The expanding spectrum of paroxysmal movement disorders: update from clinical features to therapeutics. Curr Opin Neurol. 2018;31(4):491–497.
  • Pons R, Collins A, Rotstein M, et al. The spectrum of movement disorders in Glut-1 deficiency. Mov Disord. 2010;25(3):275–281. DOI:10.1002/mds.22808.
  • Pearson TS, Pons R, Engelstad K, et al. Paroxysmal eye-head movements in Glut1 deficiency syndrome. Neurology. 2017;88:1666–1673.
  • Barros LF, Brown A, Swanson RA. Glia in brain energy metabolism: a perspective. Glia. 2018;66(6):1134–1137. DOI:10.1002/glia.23316.
  • Díaz-García CM, Yellen G. Neurons rely on glucose rather than astrocytic lactate during stimulation. J Neurosci Res. 2019;97:883–889. DOI:10.1002/jnr.24374.
  • Dienel GA. Lack of appropriate stoichiometry: strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain. J Neurosci Res. 2017;95(11):2103–2125.
  • Schwantje M, Verhagen LM, Hasselt PMV, et al. Glucose transporter type 1 deficiency syndrome and the ketogenic diet. J Inherit Metab Dis. 2020;43(2):216–222. DOI:10.1002/jimd.12175.
  • D’Andrea Meira I, Romão TT, Pires Do Prado HJ, et al. Ketogenic diet and epilepsy: what we know so far. Front Neurosci. 2019;13:5.
  • Klepper J, Scheffer H, Leiendecker B, et al. Seizure control and acceptance of the ketogenic diet in GLUT1 deficiency syndrome: a 2- to 5-year follow-up of 15 children enrolled prospectively. Neuropediatrics. 2005;36(5):302–308. DOI:10.1055/s-2005-872843.
  • Leen WG, Klepper J, Verbeek MM, et al., Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain. 133(3): 655–670. 2010. . 10.1093/brain/awp336.
  • Klepper J, Leiendecker B, Eltze C, et al. Paroxysmal nonepileptic events in Glut1 deficiency. Mov Disord Clin Pract. 2016;3(6):607–610. DOI:10.1002/mdc3.12387.
  • Bekker YAC, Lambrechts DA, Verhoeven JS, et al. Failure of ketogenic diet therapy in GLUT1 deficiency syndrome. Eur J Paediatr Neurol. 2019;23:404–409.
  • Kass HR, Winesett SP, Bessone SK, et al. Use of dietary therapies amongst patients with GLUT1 deficiency syndrome. Seizure. 2016;35:83–87.
  • Oguni H, Ito Y, Otani Y, et al. Questionnaire survey on the current status of ketogenic diet therapy in patients with glucose transporter 1 deficiency syndrome (GLUT1DS) in Japan. Eur J Paediatr Neurol. 2018;22(3):482–487. DOI:10.1016/j.ejpn.2017.12.013.
  • Leen WG, Mewasingh L, Verbeek MM, et al. Movement disorders in GLUT1 deficiency syndrome respond to the modified Atkins diet. Mov Disord. 2013;28(10):1439–1442. DOI:10.1002/mds.25515.
  • Amalou S, Gras D, Ilea A, et al. Use of modified atkins diet in glucose transporter type 1 deficiency syndrome. Dev Med Child Neurol. 2016;58(11):1193–1199. DOI:10.1111/dmcn.13167.
  • Mochel F. Triheptanoin for the treatment of brain energy deficit: a 14-year experience. J Neurosci Res. 2017;95:2236–2243.
  • Hainque E, Gras D, Meneret A, et al. Long-term follow-up in an open-label trial of triheptanoin in GLUT1 deficiency syndrome: a sustained dramatic effect. J Neurol Neurosurg Psychiatry. 2019;90(11):1291–1293. DOI:10.1136/jnnp-2018-320283.
  • Mochel F, Hainque E, Gras D, et al., Triheptanoin dramatically reduces paroxysmal motor disorder in patients with GLUT1 deficiency. J Neurol Neurosurg Psychiatry. 87(5): 550–553. 2016. . 10.1136/jnnp-2015-311475.
  • Hainque E, Meneret A, Gras D, et al. Transition from ketogenic diet to triheptanoin in patients with GLUT1 deficiency syndrome. J Neurol Neurosurg Psychiatry. 2020;91(4):444–445. DOI:10.1136/jnnp-2019-321694.
  • Anheim M, Maillart E, Vuillaumier-Barrot S, et al. Excellent response to acetazolamide in a case of paroxysmal dyskinesias due to GLUT1-deficiency. J Neurol. 2011;258(2):316–317. DOI:10.1007/s00415-010-5702-5.
  • Tchapyjnikov D, Mikati MA. Acetazolamide-responsive Episodic Ataxia without baseline deficits or seizures secondary to glut1 deficiency: a case report and review of the literature. The Neurologist. 2018;23(1):17–18.
  • Galli S, Béreau M, Magnin E, et al. Functional movement disorders. Rev Neurol (Paris). 2020;176(4):244–251. DOI:10.1016/j.neurol.2019.08.007.
  • Fahn S, Williams DT. Psychogenic dystonia. Adv Neurol. 1988;50:431–455.
  • Erro R, Edwards MJ, Bhatia KP, et al. Psychogenic axial myoclonus: clinical features and long-term outcome. Parkinsonism Relat Disord. 2014;20(6):596–599. DOI:10.1016/j.parkreldis.2014.02.026.
  • Stone J, Carson A, Hallett M. Explanation as treatment for functional neurologic disorders. Handb Clin Neurol. 2016;139:543–553.
  • Baik JS, Han SW, Park JH, et al. Psychogenic paroxysmal dyskinesia: the role of placebo in the diagnosis and management. Mov Disord. 2009;24(8):1244–1245. DOI:10.1002/mds.22509.
  • Ganos C, Aguirregomozcorta M, Batla A, et al., Psychogenic paroxysmal movement disorders – clinical features and diagnostic clues. Parkinsonism Relat Disord. 20(1): 41–46. 2014. . 10.1016/j.parkreldis.2013.09.012.
  • Erro R, Sheerin U-M, Bhatia KP. Paroxysmal dyskinesias revisited: a review of 500 genetically proven cases and a new classification: Paroxysmal Dyskinesias Revisited. Mov Disord. 2014;29(9):1108–1116.
  • Canavese C, Ciano C, Zibordi F, et al. Phenomenology of psychogenic movement disorders in children. Mov Disord. 2012;27(9):1153–1157. DOI:10.1002/mds.24947.
  • Espay AJ, Aybek S, Carson A, et al. Current concepts in diagnosis and treatment of functional neurological disorders. JAMA Neurol. 2018;75(9):1132. DOI:10.1001/jamaneurol.2018.1264.
  • Bruno MK, Hallett M, Gwinn-Hardy K, et al. Clinical evaluation of idiopathic paroxysmal kinesigenic dyskinesia: new diagnostic criteria. Neurology. 2004;63(12):2280–2287. DOI:10.1212/01.WNL.0000147298.05983.50.
  • Stone J, Hoeritzauer I, Tesolin L, et al. Functional movement disorders of the face: a historical review and case series. J Neurol Sci. 2018;395:35–40.
  • Baizabal-Carvallo JF, Jankovic J. Distinguishing features of psychogenic (functional) versus organic hemifacial spasm. J Neurol. 2017;264(2):359–363.
  • Park JE. Psychogenic paroxysmal hemifacial spasm. Ann Neurol. 2020;88(1):14–15.
  • Morgan JC, Hughes M, Figueroa RE, et al. Psychogenic paroxysmal dyskinesia following paroxysmal hemidystonia in multiple sclerosis. Neurology. 2005;65(6):E12–E12. DOI:10.1212/01.wnl.0000170367.33505.e9.
  • Erro R, Tinazzi M. Functional (psychogenic) paroxysms: the diagnosis is in the eye of the beholder. Parkinsonism Relat Disord. 2014;20(3):343–344.
  • Driver-Dunckley E, Stonnington CM, Locke DEC, et al. Comparison of psychogenic movement disorders and psychogenic nonepileptic seizures: is phenotype clinically important? Psychosomatics. 2011;52:337–345.
  • Hopp JL, Anderson KE, Krumholz A, et al. Psychogenic seizures and psychogenic movement disorders: are they the same patients? Epilepsy Behav. 2012;25(4):666–669. DOI:10.1016/j.yebeh.2012.10.007.
  • LaFrance WC, Benbadis SR. Differentiating frontal lobe epilepsy from psychogenic nonepileptic seizures. Neurol Clin. 2011;29(1):149–162.
  • Chen DK, Sharma E, LaFrance WC. Psychogenic non-epileptic seizures. Curr Neurol Neurosci Rep. 2017;17(9):71.
  • Jaramillo-Jimenez E, Vargas-Garcia C, Rodriguez-Marquez I, et al. Psychogenic non-epileptic and epileptic seizures: clues for a differential diagnosis. findings from a colombian study. Rev Neurol. 2019;69:145–151.
  • Kaczmarek I, Starczewska M, Wiktor AW, et al. Sensitivity and specificity of induction of psychogenic non-epileptic seizures in children and adolescents. Seizure. 2020;80:278–280.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.