483
Views
12
CrossRef citations to date
0
Altmetric
Review

Current perspectives on galvanic vestibular stimulation in the treatment of Parkinson’s disease

ORCID Icon, &
Pages 405-418 | Received 07 Oct 2020, Accepted 18 Feb 2021, Published online: 04 Mar 2021

References

  • Jankovic J, Tan EK. Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020;91(8):795–808.
  • Van Den Eeden SK, Tanner CM, Bernstein AL, et al. Incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity. Am J Epidemiol. 2003;157(11):1015–1022.
  • Poewe W, Seppi K, Cm T, et al. Parkinson disease. Nat Rev Dis Prim. 2017;3:17013.
  • Jankovic J. Motor fluctuations and dyskinesias in Parkinson’s disease: clinical manifestations. Mov Disord. 2005;20:S11–16.
  • Sethi K. Levodopa unresponsive symptoms in Parkinson disease. Mov Disord. 2008;23:S521–S533.
  • Levy R, Hutchison WD, Lozano AM, et al. Synchronized neuronal discharge in the basal ganglia of parkinsonian patients is limited to oscillatory activity. J Neurosci. 2002;22:2855–2861.
  • Priori A, Foffani G, Pesenti A, et al. Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Exp Neurol. 2004;189:369–379.
  • Brown P, Oliviero A, Mazzone P, et al. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci. 2001;21:1033–1038.
  • Weinberger M, Mahant N, Hutchison WD, et al. Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J Neurophysiol. 2006;96:3248–3256.
  • Hutchison WD, Dostrovsky JO, Walters JR, et al. Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings. J Neurosci. 2004;24:9240–9243.
  • Krack P, Batir A, Van Blercom N, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s Disease. N Engl J Med. 2003;349:1925–1934.
  • Little S, Brown P. The functional role of beta oscillations in Parkinson’s disease. Park Relat Disord. 2014;20:S44–S48.
  • McIntyre CC, Savasta M, Kerkerian-Le Goff L, et al. Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol. 2004;115:1239–1248.
  • Ashkan K, Rogers P, Bergman H, et al. Insights into the mechanisms of deep brain stimulation. Nat Rev Neurol. 2017;13:548–554.
  • Cyron D. Mental side effects of deep brain stimulation (DBS) for movement disorders: the futility of denial. Front Integr Neurosci. 2016;10:17.
  • Kestenbaum M, Ford B, Louis ED. Estimating the proportion of essential tremor and Parkinson’s disease patients undergoing deep brain stimulation surgery: five-year data from Columbia University Medical Center (2009–2014). Mov Disord Clin Pract. 2015;2:384–387.
  • Mc R-O, Ja O, Ae L, et al. Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain. 2005;128:2240–2249.
  • Geraedts VJ, Boon LI, Marinus J, et al. Clinical correlates of quantitative EEG in Parkinson disease: a systematic review. Neurology. 2018;91:871–883.
  • Neufeld MY, Inzelberg R, Korczyn AD. EEG in demented and non-demented parkinsonian patients. Acta Neurol Scand. 1988;78:1–5.
  • Jeong J. EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol. 2004;115:1490–1505.
  • Penttilä M, Partanen JV, Soininen H, et al. Quantitative analysis of occipital EEG in different stages of Alzheimer’s disease. Electroencephalogr Clin Neurophysiol. 1985;60:1–6.
  • Boon LI, Geraedts VJ, Hillebrand A, et al. A systematic review of MEG‐based studies in Parkinson’s disease: the motor system and beyond. Hum Brain Mapp. 2019;40:2827–2848.
  • Lopez C, Blanke O. The thalamocortical vestibular system in animals and humans. Brain Res Rev. 2011;67:119–146.
  • Rc F, Bl D. Probing the human vestibular system with galvanic stimulation. J Appl Physiol. 2004;96:2301–2316.
  • Yamamoto Y, Struzik ZR, Soma R, et al. Noisy vestibular stimulation improves autonomic and motor responsiveness in central neurodegenerative disorders. Ann Neurol. 2005;58:175–181.
  • As C, Bl D. Galvanic vestibular stimulation modulates voluntary movement of the human upper body. J Physiol. 1998;513(Pt 2):611–619.
  • Wardman DL, Taylor JL, Fitzpatrick RC. Effects of galvanic vestibular stimulation on human posture and perception while standing. J Physiol. 2003;551:1033–1042.
  • Bent LR, Bolton PS, Macefield VG. Modulation of muscle sympathetic bursts by sinusoidal galvanic vestibular stimulation in human subjects. Exp Brain Res. 2006;174:701–711.
  • Latt LD, Sparto PJ, Furman JM, et al. The steady-state postural response to continuous sinusoidal galvanic vestibular stimulation. Gait Posture. 2003;18:64–72.
  • Hammam E, James C, Dawood T, et al. Low-frequency sinusoidal galvanic stimulation of the left and right vestibular nerves reveals two peaks of modulation in muscle sympathetic nerve activity. Exp Brain Res. 2011;213:507–514.
  • Lester ME, Cavanaugh JT, Foreman KB, et al. Adaptation of postural recovery responses to a vestibular sensory illusion in individuals with Parkinson disease and healthy controls. Clin Biomech. 2017;48:73–79.
  • Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304:1926–1929.
  • Moss F, Ward LM, Sannita WG. Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol. 2004;115:267–281.
  • Ward LM, MacLean SE, Kirschner A. Stochastic resonance modulates neural synchronization within and between cortical sources. valdes-sosa PA, editor. PLoS One. 2010;5:e14371.
  • Pintelon R, Schoukens J. System identification: a frequency domain approach. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2012.
  • Bl D, Séverac CA, Bartolomei L, et al. Human body-segment tilts induced by galvanic stimulation: a vestibularly driven balance protection mechanism. J Physiol. 1997;500(Pt 3):661–672.
  • Simon G, Schoukens J. Robust broadband periodic excitation design. IEEE Trans Instrum Meas. 2000;49:270–274.
  • Lee S, Liu A, Wang ZJ, et al. Abnormal phase coupling in Parkinson’s disease and normalization effects of subthreshold vestibular stimulation. Front Hum Neurosci. 2019;13:118.
  • Rizzo-Sierra CV, Gonzalez-Castaño A, Leon-Sarmiento FE. Galvanic vestibular stimulation: a novel modulatory countermeasure for vestibular-associated movement disorders. Arq Neuropsiquiatr. 2014;72:72–77.
  • Séverac Cauquil A, Martinez P, Ouaknine M, et al. Orientation of the body response to galvanic stimulation as a function of the inter-vestibular imbalance. Exp Brain Res. 2000;133:501–505.
  • Aoyama K, Iizuka H, Ando H, et al. Four-pole galvanic vestibular stimulation causes body sway about three axes. Sci Rep. 2015;5:1–8.
  • Lenggenhager B, Lopez C, Blanke O. Influence of galvanic vestibular stimulation on egocentric and object-based mental transformations. Exp Brain Res. 2007;184:211–221.
  • Lopez C, Lenggenhager B, Blanke O. How vestibular stimulation interacts with illusory hand ownership. Conscious Cogn. 2010;19:33–47.
  • Utz KS, Korluss K, Schmidt L, et al. Minor adverse effects of galvanic vestibular stimulation in persons with stroke and healthy individuals. Brain Inj. 2011;25:1058–1069.
  • Goel R, Kofman I, Jeevarajan J, et al. Using low levels of stochastic vestibular stimulation to improve balance function. PLoS One. 2015;10(8):e0136335.
  • Matsumoto H, Ugawa Y. Adverse events of tDCS and tACS: a review. Clin Neurophysiol. 2017;2:19–25.
  • Kanai R, Chaieb L, Antal A, et al. Frequency-dependent electrical stimulation of the visual cortex. Curr Biol. 2008;18:1839–1843.
  • Angelaki DE, Cullen KE. Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci. 2008;31:125–150.
  • Khan S, Chang R. Anatomy of the vestibular system: a review. NeuroRehabilitation. 2013;32:437–443.
  • Wijesinghe R, Protti DA, Camp AJ. Vestibular Interactions in the Thalamus. Front Neural Circuits. 2015;9:79.
  • Jones SM, Jones TA, Mills KN, et al. Anatomical and physiological considerations in vestibular dysfunction and compensation. Semin Hear. 2009;30:231–241.
  • Stiles L, Smith PF. The vestibular–basal ganglia connection: balancing motor control. Brain Res. 2015;1597:180–188.
  • Brandt T, Strupp M, Dieterich M. Towards a concept of disorders of “higher vestibular function”. Front Integr Neurosci. 2014;8:47.
  • Gurvich C, Maller JJ, Lithgow B, et al. Vestibular insights into cognition and psychiatry. Brain Res. 2013;1537:244–259.
  • Cohen B, Yakushin SB, Holstein GR. What does galvanic vestibular stimulation actually activate? Front Neurol. 2012;3:148.
  • Curthoys IS, MacDougall HG. What galvanic vestibular stimulation actually activates. Front Neurol. 2012;3:117.
  • Percheron G, François C, Talbi B, et al. The primate motor thalamus. Brain Res Brain Res Rev. 1996;22:93–181.
  • Bosch-Bouju C, Hyland BI, Parr-Brownlie LC. Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions. Front Comput Neurosci. 2013;7:163.
  • Vitek JL, Ashe J, DeLong MR, et al. Physiologic properties and somatotopic organization of the primate motor thalamus. J Neurophysiol. 1994;71:1498–1513.
  • Inase M, Buford JA, Anderson ME. Changes in the control of arm position, movement, and thalamic discharge during local inactivation in the globus pallidus of the monkey. J Neurophysiol. 1996;75:1087–1104.
  • Activity Properties KK. Location of neurons in the motor thalamus that project to the cortical motor areas in monkeys. J Neurophysiol. 2005;94:550–566.
  • Hwang K, Bertolero MA, Liu WB, et al. The human thalamus is an integrative hub for functional brain networks. J Neurosci. 2017;37:5594–5607.
  • Lai H, Tsumori T, Shiroyama T, et al. Morphological evidence for a vestibulo-thalamo-striatal pathway via the parafascicular nucleus in the rat. Brain Res. 2000;872:208–214.
  • Reig R, Silberberg G. Multisensory integration in the mouse striatum. Neuron. 2014;83:1200–1212.
  • Redgrave P, Rodriguez M, Smith Y, et al. Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci. 2010;11(11):760–772.
  • Matsunami K, Cohen B. Afferent modulation of unit activity in globus pallidus and caudate nucleus: changes induced by vestibular nucleus and pyramidal tract stimulation. Brain Res. 1975;91:140–146.
  • Bottini G, Sterzi R, Paulesu E, et al. Identification of the central vestibular projections in man: a positron emission tomography activation study. Exp Brain Res. 1994;99:164–169.
  • Bense S, Stephan T, Yousry TA, et al. Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J Neurophysiol. 2001;85:886–899.
  • Stephan T, Deutschländer A, Nolte A, et al. Functional MRI of galvanic vestibular stimulation with alternating currents at different frequencies. Neuroimage. 2005;26:721–732.
  • Kim N, Barter JW, Sukharnikova T, et al. Striatal firing rate reflects head movement velocity. Eur J Neurosci. 2014;40:3481–3490.
  • Smith PF. Vestibular functions and Parkinson’s Disease. Front Neurol. 2018;9:1085.
  • Barmack NH. Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull. 2003;60:511–541.
  • Cronin T, Arshad Q, Seemungal BM. Vestibular deficits in neurodegenerative disorders: balance, dizziness, and spatial disorientation. Front Neurol. 2017;8:538.
  • French IT, Muthusamy KA. A review of the pedunculopontine nucleus in Parkinson’s disease. Front Aging Neurosci. 2018;10:99.
  • Muthusamy KA, Aravamuthan BR, Kringelbach ML, et al. Connectivity of the human pedunculopontine nucleus region and diffusion tensor imaging in surgical targeting. J Neurosurg. 2007;107:814–820.
  • Mori F, Okada KI, Nomura T, et al. The pedunculopontine tegmental nucleus as a motor and cognitive interface between the cerebellum and basal ganglia. Front Neuroanat. 2016;10:109.
  • Cai J, Lee S, Ba F, et al. Galvanic Vestibular Stimulation (GVS) Augments Deficient Pedunculopontine Nucleus (PPN) connectivity in mild parkinson’s disease: fMRI effects of different stimuli. Front Neurosci. 2018;12:101.
  • Shinder ME, Taube JS. Differentiating ascending vestibular pathways to the cortex involved in spatial cognition. J Vestib Res. 2010;20(10):3–23.
  • Frank SM, Greenlee MW. The parieto-insular vestibular cortex in humans: more than a single area? J Neurophysiol. 2018;120(3):1438–1450.
  • Thiruvady DR, Georgiou-Karistianis N, Egan GF, et al. Functional connectivity of the prefrontal cortex in Huntington’s disease. J Neurol Neurosurg Psychiatry. 2007;78:127–133.
  • Samoudi G, Nissbrandt H, Dutia MB, et al. Noisy galvanic vestibular stimulation promotes GABA release in the substantia nigra and improves locomotion in hemiparkinsonian rats. PLoS One. 2012;7:e29308.
  • Samoudi G, Nilsson A, Carlsson T, et al. c-Fos expression after stochastic vestibular stimulation and levodopa in 6-ohda hemilesioned rats. Neuroscience. 2020;424:146–154.
  • Lithgow BJ, Shoushtarian M. Parkinson’s disease: disturbed vestibular function and levodopa. J Neurol Sci. 2015;353:49–58.
  • Browne CA, Hammack R, Lucki I. Dysregulation of the lateral habenula in major depressive disorder. Front Synaptic Neurosci. 2018;10:46.
  • Hikosaka O, Sesack SR, Lecourtier L, et al. Habenula: crossroad between the basal ganglia and the limbic system. J Neurosci. J Neurosci. 2008;28(46):11825–11829.
  • Stiles L, Zheng Y, Smith PF. The effects of electrical stimulation of the peripheral vestibular system on neurochemical release in the rat striatum. PLoS One. 2018;13:e0205869.
  • Khoshnam M, Dmc H, Kuatsjah E, et al. Effects of galvanic vestibular stimulation on upper and lower extremities motor symptoms in Parkinson’s disease. Front Neurosci. 2018;12:633.
  • Lee S, Kim DJ, Svenkeson D, et al. Multifaceted effects of noisy galvanic vestibular stimulation on manual tracking behavior in Parkinson’s disease. Front Syst Neurosci. 2015;9:5.
  • Pal S, Rosengren SM, Colebatch JG. Stochastic galvanic vestibular stimulation produces a small reduction in sway in Parkinson’s disease. J Vestib Res. 2009;19:137–142.
  • Okada Y, Kita Y, Nakamura J, et al. Galvanic vestibular stimulation may improve anterior bending posture in Parkinson’s disease. Neuroreport. 2015;26:405–410.
  • Samoudi G, Jivegård M, Mulavara AP, et al. Effects of stochastic vestibular galvanic stimulation and LDOPA on balance and motor symptoms in patients with Parkinson’s Disease. Brain Stimul. 2015;8:474–480.
  • Tran S, Shafiee M, Jones CB, et al. Subthreshold stochastic vestibular stimulation induces complex multi-planar effects during standing in Parkinson’s disease. Brain Stimul. 2018;11:1180–1182.
  • Keywan A, Wuehr M, Pradhan C, et al. Noisy galvanic stimulation improves roll-tilt vestibular perception in healthy subjects. Front Neurol. 2018;9:83.
  • Pasquier F, Denise P, Gauthier A, et al. Impact of galvanic vestibular stimulation on anxiety level in young adults. Front Syst Neurosci. 2019;13:14.
  • Blini E, Tilikete C, Farnè A, et al. Probing the role of the vestibular system in motivation and reward-based attention. Cortex. 2018;103:82–99.
  • Schmidt L, Utz KS, Depper L, et al. Now you feel both: galvanic vestibular stimulation induces lasting improvements in the rehabilitation of chronic tactile extinction. Front Hum Neurosci. 2013;7:90.
  • Oppenländer K, Utz KS, Reinhart S, et al. Subliminal galvanic-vestibular stimulation recalibrates the distorted visual and tactile subjective vertical in right-sided stroke. Neuropsychologia. 2015;74:178–183.
  • Kehagia AA, Barker RA, Robbins TW. Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurol. 2010;9(12):1200–1213.
  • Jalili M, Barzegaran E, Knyazeva MG. Synchronization of EEG: bivariate and multivariate measures. IEEE Trans Neural Syst Rehabil Eng. 2014;22:212–221.
  • Lee S, Kim D, Mj M. Galvanic Vestibular Stimulation (GVS) effects on impaired interhemispheric connectivity in Parkinson’s Disease. 2017 39th Annu Int Conf IEEE Eng Med Biol Soc. Jeju Island, South Korea. 2017:2109–2113.
  • Dayan E, Censor N, Buch ER, et al. Noninvasive brain stimulation: from physiology to network dynamics and back. Nat Neurosci. 2013;16(7):838–844.
  • Pan W, Soma R, Kwak S, et al. Improvement of motor functions by noisy vestibular stimulation in central neurodegenerative disorders. J Neurol. 2008;255:1657–1661.
  • Kataoka H, Okada Y, Kiriyama T, et al. Can postural instability respond to galvanic vestibular stimulation in patients with Parkinson’s disease? J Mov Disord. 2016;9:40–43.
  • Fujimoto C, Yamamoto Y, Kamogashira T, et al. Noisy galvanic vestibular stimulation induces a sustained improvement in body balance in elderly adults. Sci Rep. 2016;6:37575.
  • Fujimoto C, Egami N, Kawahara T, et al. Noisy galvanic vestibular stimulation sustainably improves posture in bilateral vestibulopathy. Front Neurol. 2018;9:900.
  • Guerra A, López-Alonso V, Cheeran B, et al. Variability in non-invasive brain stimulation studies: reasons and results. Neurosci Lett. 2020;719:133330.
  • Terranova C, Rizzo V, Cacciola A, et al. Is there a future for non-invasive brain stimulation as a therapeutic tool? Front Neurol. 2018;9:1146.
  • Lewis SJG, Foltynie T, Blackwell AD, et al. Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach. J Neurol Neurosurg Psychiatry. 2005;76:343–348.
  • Mitra S, Mehta UM, Binukumar B, et al. Statistical power estimation in non-invasive brain stimulation studies and its clinical implications: an exploratory study of the meta-analyses. Asian J Psychiatr. 2019;44:29–34.
  • Minarik T, Berger B, Althaus L, et al. The Importance of Sample Size For Reproducibility of tDCS effects. Front Hum Neurosci. 2016;10:453.
  • MacDougall HG, Brizuela AE, Burgess AM, et al. Between-subject variability and within-subject reliability of the human eye-movement response to bilateral galvanic (DC) vestibular stimulation. Exp Brain Res. 2002;144:69–78.
  • Os M, Bl D. Determining the direction of vestibular-evoked balance responses using stochastic vestibular stimulation. J Physiol. 2009;587:2869–2873.
  • Bucher SF, Dieterich M, Wiesmann M, et al. Cerebral functional magnetic resonance imaging of vestibular, auditory, and nociceptive areas during galvanic stimulation. Ann Neurol. 1998;44:120–125.
  • Lobel E, Kleine JF, Le BD, et al. Functional MRI of galvanic vestibular stimulation. J Neurophysiol. 1998;80:2699–2709.
  • Eickhoff SB, Weiss PH, Amunts K, et al. Identifying human parieto-insular vestibular cortex using fMRI and cytoarchitectonic mapping. Hum Brain Mapp. 2006;27:611–621.
  • Smith AT, Wall MB, Thilo KV. Vestibular inputs to human motion-sensitive visual cortex. Cereb Cortex. 2012;22:1068–1077.
  • Becker-Bense S, Willoch F, Stephan T, et al. Direct comparison of activation maps during galvanic vestibular stimulation: a hybrid H2[15 O] PET—BOLD MRI activation study. PLoS One. 2020;15:e0233262.
  • Fink GR, Marshall JC, Weiss PH, et al. Performing allocentric visuospatial judgments with induced distortion of the egocentric reference frame: an fMRI study with clinical implications. Neuroimage. 2003;20:1505–1517.
  • Macauda G, Moisa M, Mast FW, et al. Shared neural mechanisms between imagined and perceived egocentric motion – a combined GVS and fMRI study. Cortex. 2019;119:20–32.
  • Kim DJ, Yogendrakumar V, Chiang J, et al. Noisy galvanic vestibular stimulation modulates the amplitude of EEG synchrony patterns. PLoS One. 2013;8:e69055.
  • Lee S, McKeown MJ, Wang ZJ, et al. Removal of high-voltage brain stimulation artifacts from simultaneous EEG recordings. IEEE Trans Biomed Eng. 2019;66:50–60.
  • Woo CW, Chang LJ, Lindquist MA, et al. Building better biomarkers: brain models in translational neuroimaging. Nat Neurosci. 2017;20(3):365–377.
  • Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Z Med Phys. 2019;29(2):102–127.
  • Su C, Xu Z, Pathak J, et al. Deep learning in mental health outcome research: a scoping review. Transl Psychiatry. 2020;10(1):116.
  • Taghia J, Cai W, Ryali S, et al. Uncovering hidden brain state dynamics that regulate performance and decision-making during cognition. Nat Commun. 2018;9:1–19.
  • Little S, Pogosyan A, Neal S, et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol. 2013;74:449–457.
  • Arlotti M, Marceglia S, Foffani G, et al. Eight-hours adaptive deep brain stimulation in patients with Parkinson disease. Neurology. 2018;90:e971–e976.
  • Rosa M, Arlotti M, Ardolino G, et al. Adaptive deep brain stimulation in a freely moving parkinsonian patient. Mov Disord. 2015;30(7):1003–1005.
  • To B, Karabanov A, Hartwigsen G, et al. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives. Neuroimage. 2016;140:4–19.
  • Chen X, Xu X, Liu A, et al. Removal of muscle artifacts from the EEG: a review and recommendations. IEEE Sens J. 2019;19:5353–5368.
  • Thut G, Bergmann TO, Fröhlich F, et al. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: a position paper. Clin Neurophysiol. 2017;128:843–857.
  • Hallgren E, Migeotte PF, Kornilova L, et al. Dysfunctional vestibular system causes a blood pressure drop in astronauts returning from space. Sci Rep. 2015;5:17627.
  • Sanna A, Follesa P, Puligheddu M, et al. Cerebellar continuous theta burst stimulation reduces levodopa-induced dyskinesias and decreases serum BDNF levels. Neurosci Lett. 2020;716:134653.
  • Besnard S, Tighilet B, Chabbert C, et al. The balance of sleep: role of the vestibular sensory system. Sleep Med Rev. 2018;42:220–228.
  • Graybiel A, Knepton J. Sopite syndrome: a sometimes sole manifestation of motion sickness. Aviat Sp Environ Med. 1976;47:873–882.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.