253
Views
2
CrossRef citations to date
0
Altmetric
Review

Neuroimaging and genetic characteristics of malformation of cortical development due to mTOR pathway dysregulation: clues for the epileptogenic lesions and indications for epilepsy surgery

, , , , &
Pages 1333-1345 | Received 01 Feb 2021, Accepted 18 Mar 2021, Published online: 31 Mar 2021

References

  • Aronica E, Becker AJ, Spreafico R. Malformations of cortical development. Brain Pathol. 2012;22(3):380–401.
  • Subramanian L, Calcagnotto ME, Paredes MF. Cortical malformations: lessons in human brain development. Front Cell Neurosci. 2019;13:576.
  • Kuzniecky R. Epilepsy and malformations of cortical development: new developments. Curr Opin Neurol. 2015;28(2):151–157.
  • Benova B, Jacques TS. Genotype-phenotype correlations in focal malformations of cortical development: a pathway to integrated pathological diagnosis in epilepsy surgery. Brain Pathol. 2019;29(4):473–484.
  • Barkovich AJ, Guerrini R, Kuzniecky RI, et al. A developmental and genetic classification for malformations of cortical development: update 2012. Brain. 2012;135:1348–1369.
  • Guerrini R, Dobyns WB. Malformations of cortical development: clinical features and genetic causes. Lancet Neurol. 2014;13(7):710–726.
  • Romero DM, Bahi-Buisson N, Francis F. Genetics and mechanisms leading to human cortical malformations. Semin Cell Dev Biol. 2018;76:33–75.
  • Koh HY, Lee JH. Brain somatic mutations in epileptic disorders. Mol Cells. 2018;41(10):881–888.
  • Aronica E, Crino PB. Epilepsy related to developmental tumors and malformations of cortical development. Neurotherapeutics. 2014;11(2):251–268.
  • Aronica E, Mühlebner A. Neuropathology of epilepsy. Handb Clin Neurol. 2017;145:193–216.
  • Rossini L, Villani F, Granata T, et al. FCD Type II and mTOR pathway: evidence for different mechanisms involved in the pathogenesis of dysmorphic neurons. Epilepsy Res. 2017;129:146–156.
  • Barkovich AJ, Dobyns WB, Guerrini R. Malformations of cortical development and epilepsy. Cold Spring Harb Perspect Med. 2015;5(5):a022392.
  • Becker AJ, Beck H. New developments in understanding focal cortical malformations. Curr Opin Neurol. 2018;31(2):151–155.
  • Mühlebner A, Bongaarts A, Sarnat HB, et al., New insights into a spectrum of developmental malformations related to mTOR dysregulations: challenges and perspectives. J Anat. 235(3): 521–542. 2019.
  • Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21:183–203.
  • Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;169(2):361–371.
  • Marsan E, Baulac S. Review: mechanistic target of rapamycin (mTOR) pathway, focal cortical dysplasia and epilepsy. Neuropathol Appl Neurobiol. 2018;44(1):6–17.
  • Rodin RE, Walsh CA. Somatic mutation in pediatric neurological diseases. Pediatr Neurol. 2018;87:20–22.
  • Iffland PH, Crino PB. The role of somatic mutational events in the pathogenesis of epilepsy. Curr Opin Neurol. 2019;32(2):191–197.
  • Juhász C, John F. Utility of MRI, PET, and ictal SPECT in presurgical evaluation of non-lesional pediatric epilepsy. Seizure. 2020;77:15–28.
  • Kreilkamp BAK, Das K, Wieshmann UC, et al. Neuroradiological findings in patients with “non-lesional” focal epilepsy revealed by research protocol. Clin Radiol. 2019;74(1):78.e1-78.e11.
  • Blumcke I, Spreafico R, Haaker G, et al. Histopathological findings in brain tissue obtained during epilepsy surgery. N Engl J Med. 2017;377(17):1648–1656.
  • West S, Nevitt SJ, Cotton J, et al. Surgery for epilepsy. Cochrane Database Syst Rev. 2019;6:CD010541.
  • Blümcke I, Thom M, Aronica E, et al., The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc task force of the ILAE diagnostic methods commission1. Epilepsia. 52(1): 158–174. 2011.
  • Curatolo P, Moavero R, Van Scheppingen J, et al., mTOR dysregulation and tuberous sclerosis-related epilepsy. Expert Rev Neurother. 18(3): 185–201. 2018.
  • Zhong S, Zhao Z, Xie W, et al. GABAergic interneuron and neurotransmission are mTOR-dependently disturbed in experimental focal cortical dysplasia. Mol Neurobiol. 2021;58(1):156–169.
  • Crino PB. mTOR signaling in epilepsy: insights from malformations of cortical development. Cold Spring Harb Perspect Med. 2015;5(4):a022442–a022442.
  • Lim JS, Kim W, Kang H-C, et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat Med. 2015;21(4):395–400.
  • Nakashima M, Saitsu H, Takei N, et al. Somatic mutations in the MTOR gene cause focal cortical dysplasia type IIb. Ann Neurol. 2015;78(3):375–386.
  • Lee JH, Huynh M, Silhavy JL, et al. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet. 2012;44(8):941–945.
  • Leventer RJ, Scerri T, Marsh APL, et al. Hemispheric cortical dysplasia secondary to a mosaic somatic mutation in MTOR. Neurology. 2015;84(20):2029–2032.
  • Garcia CAB, Carvalho SCS, Yang X, et al. mTOR pathway somatic variants and the molecular pathogenesis of hemimegalencephaly. Epilepsia Open. 2020;5(1):97–106.
  • Alcantara D, Timms AE, Gripp K, et al. Mutations of AKT3 are associated with a wide spectrum of developmental disorders including extreme megalencephaly. Brain. 2017;140(10):2610–2622.
  • Jansen LA, Mirzaa GM, Ishak GE, et al. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia. Brain. 2015;138(6):1613–1628.
  • Ogórek B, Hamieh L, Hulshof HM, et al. TSC2 pathogenic variants are predictive of severe clinical manifestations in TSC infants: results of the EPISTOP study. Genet Med. 2020;22(9):1489–1497.
  • Ribierre T, Deleuze C, Bacq A, et al. Second-hit mosaic mutation in mTORC1 repressor DEPDC5 causes focal cortical dysplasia–associated epilepsy. J Clin Invest. 2018;128(6):2452–2458.
  • Baulac S, Ishida S, Marsan E, et al. Familial focal epilepsy with focal cortical dysplasia due to DEPDC 5 mutations. Ann Neurol. 2015;77(4):675–683.
  • Tarkowski B, Kuchcinska K, Blazejczyk M, et al. Pathological mTOR mutations impact cortical development. Hum Mol Genet. 2019;28(13):2107–2119.
  • Baldassari S, Picard F, Verbeek NE, et al., The landscape of epilepsy-related GATOR1 variants. Genet Med. 21(2): 398–408. 2019.
  • Iffland PH, Carson V, Bordey A, et al. GATOR opathies: the role of amino acid regulatory gene mutations in epilepsy and cortical malformations. Epilepsia. 2019;60(11):2163–2173.
  • Dawson RE, Nieto Guil AF, Robertson LJ, et al. Functional screening of GATOR1 complex variants reveals a role for mTORC1 deregulation in FCD and focal epilepsy. Neurobiol Dis. 2020;134:104640.
  • Kodera H, Nakamura K, Osaka H, et al. De novo mutations in SLC35A2 encoding a UDP-Galactose transporter cause early-onset epileptic encephalopathy. Hum Mutat. 2013;34(12):1708–1714.
  • Ng BG, Buckingham KJ, Raymond K, et al. Mosaicism of the UDP-galactose transporter SLC35A2 causes a congenital disorder of glycosylation. Am J Hum Genet. 2013;92(4):632–636.
  • Dörre K, Olczak M, Wada Y, et al. A new case of UDP-galactose transporter deficiency (SLC35A2-CDG): molecular basis, clinical phenotype, and therapeutic approach. J Inherit Metab Dis. 2015;38(5):931–940.
  • Winawer MR, Griffin NG, Samanamud J, et al. Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol. 2018;83(6):1133–1146.
  • Sim NS, Seo Y, Lim JS, et al. Brain somatic mutations in SLC35A2 cause intractable epilepsy with aberrant N-glycosylation. Neurol Genet. 2018;4(6):e294.
  • Baldassari S, Ribierre T, Marsan E, et al., Dissecting the genetic basis of focal cortical dysplasia: a large cohort study. Acta Neuropathol. 138(6): 885–900. 2019.
  • Bonduelle T, Hartlieb T, Baldassari S, et al. Frequent SLC35A2 brain mosaicism in mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE). Acta Neuropathol Commun. 2021;9(1):3.
  • Tinuper P, Bisulli F, Cross JH, et al. Definition and diagnostic criteria of sleep-related hypermotor epilepsy. Neurology. 2016;86(19):1834–1842.
  • Heron SE, Smith KR, Bahlo M, et al. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet. 2012;44(11):1188–1190.
  • Picard F, Makrythanasis P, Navarro V, et al. DEPDC5 mutations in families presenting as autosomal dominant nocturnal frontal lobe epilepsy. Neurology. 2014;82(23):2101–2106.
  • Ricos MG, Hodgson BL, Pippucci T, et al. Mutations in the mammalian target of rapamycin pathway regulators NPRL2 and NPRL3 cause focal epilepsy. Ann Neurol. 2016;79(1):120–131.
  • Korenke G-C, Eggert M, Thiele H, et al. Nocturnal frontal lobe epilepsy caused by a mutation in the GATOR1 complex gene NPRL3. Epilepsia. 2016;57(3):e60–e63.
  • Licchetta L, Pippucci T, Baldassari S, et al. Sleep-related hypermotor epilepsy (SHE): contribution of known genes in 103 patients. Seizure. 2020;74:60–64.
  • Sidhu MK, Duncan JS, Sander JW. Neuroimaging in epilepsy. Curr Opin Neurol. 2018;31(4):371–378.
  • Mellerio C, Labeyrie M-A, Chassoux F, et al. Optimizing MR imaging detection of Type 2 focal cortical dysplasia: best criteria for clinical practice. Am J Neuroradiol. 2012;33(10):1932–1938.
  • Colombo N, Salamon N, Raybaud C, et al. Imaging of malformations of cortical development. Epileptic Disord. 2009;11(3):194–205.
  • Adler S, Lorio S, Jacques TS, et al. Towards in vivo focal cortical dysplasia phenotyping using quantitative MRI. NeuroImage Clin. 2017;15:95–105.
  • Jayalakshmi S, Nanda SK, Vooturi S, et al., Focal cortical dysplasia and refractory epilepsy: role of multimodality imaging and outcome of surgery. AJNR Am J Neuroradiol. 40(5): 892–898. 2019.
  • Guerrini R, Duchowny M, Jayakar P, et al. Diagnostic methods and treatment options for focal cortical dysplasia. Epilepsia. 2015;56(11):1669–1686.
  • Wang DD, Deans AE, Barkovich AJ, et al. Transmantle sign in focal cortical dysplasia: a unique radiological entity with excellent prognosis for seizure control. J Neurosurg. 2013;118(2):337–344.
  • Kim DW, Kim S, Park S-H, et al., Comparison of MRI features and surgical outcome among the subtypes of focal cortical dysplasia. Seizure. 21(10): 789–794. 2012.
  • Kimura Y, Shioya A, Saito Y, et al. Radiologic and pathologic features of the transmantle sign in focal cortical dysplasia: the T1 signal is useful for differentiating subtypes. Am J Neuroradiol. 2019;40(6):1060–1066.
  • Colombo N, Tassi L, Deleo F, et al. Focal cortical dysplasia type IIa and IIb: MRI aspects in 118 cases proven by histopathology. Neuroradiology. 2012;54(10):1065–1077.
  • Janszky J, Ebner A, Kruse B, et al. Functional organization of the brain with malformations of cortical development. Ann Neurol. 2003;53(6):759–767.
  • Lee WS, Stephenson SEM, Pope K, et al. Genetic characterization identifies bottom-of-sulcus dysplasia as an mTORopathy. Neurology. 2020;95(18):e2542–e2551.
  • Halac G, Delil S, Zafer D, et al. Compatibility of MRI and FDG-PET findings with histopathological results in patients with focal cortical dysplasia. Seizure. 2017;45:80–86.
  • Desarnaud S, Mellerio C, Semah F, et al. 18F-FDG PET in drug-resistant epilepsy due to focal cortical dysplasia type 2: additional value of electroclinical data and coregistration with MRI. Eur J Nucl Med Mol Imaging. 2018;45(8):1449–1460.
  • Dickstein LP, Liow J, Austermuehle A, et al. Neuroinflammation in neocortical epilepsy measured by PET imaging of translocator protein. Epilepsia. 2019;60(6):1248–1254.
  • Salamon N, Kung J, Shaw SJ, et al. FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology. 2008;71(20):1594–1601.
  • Kudr M, Krsek P, Maton B, et al. Ictal SPECT is useful in localizing the epileptogenic zone in infants with cortical dysplasia. Epileptic Disord. 2016;18(4):384–390.
  • Kannan L, Vogrin S, Bailey C, et al. Centre of epileptogenic tubers generate and propagate seizures in tuberous sclerosis. Brain. 2016;139(10):2653–2667.
  • Prabowo AS, Anink JJ, Lammens M, et al. Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation. Brain Pathol. 2013;23(1):45–59.
  • Tsai V, Parker WE, Orlova KA, et al. Fetal brain mTOR signaling activation in tuberous sclerosis complex. Cereb Cortex. 2014;24(2):315–327.
  • Caban C, Khan N, Hasbani D, et al. Genetics of tuberous sclerosis complex: implications for clinical practice. Appl Clin Genet. 2016;10:1–8.
  • Curatolo P, Aronica E, Jansen A, et al. Early onset epileptic encephalopathy or genetically determined encephalopathy with early onset epilepsy? Lessons learned from TSC. Eur J Paediatr Neurol. 2016;20(2):203–211.
  • Martin KR, Zhou W, Bowman MJ, et al. The genomic landscape of tuberous sclerosis complex. Nat Commun. 2017;8(1):15816.
  • Liu S, Yu T, Guan Y, et al. Resective epilepsy surgery in tuberous sclerosis complex: a nationwide multicentre retrospective study from China. Brain. 2020;143(2):570–581.
  • Fallah A, Rodgers SD, Weil AG, et al. Resective epilepsy surgery for tuberous sclerosis in children. Neurosurgery. 2015;77(4):517–524.
  • Ellingson BM, Hirata Y, Yogi A, et al. Topographical distribution of epileptogenic tubers in patients with tuberous sclerosis complex. J Child Neurol. 2016;31(5):636–645.
  • Gallagher A, Chu-Shore CJ, Montenegro MA, et al. Associations between electroencephalographic and magnetic resonance imaging findings in tuberous sclerosis complex. Epilepsy Res. 2009;87(2–3):197–202.
  • Borțea CI, David VL, Stoica F, et al. The value of imagistics in early diagnosis of tuberous sclerosis. Case Rep Pediatr. 2020;2020:1–4.
  • Russo C, Nastro A, Cicala D, et al. Neuroimaging in tuberous sclerosis complex. Child’s Nerv Syst. 2020;36(10):2497–2509.
  • Chalifoux JR, Perry N, Katz JS, et al. The ability of high field strength 7-T magnetic resonance imaging to reveal previously uncharacterized brain lesions in patients with tuberous sclerosis complex. J Neurosurg Pediatr. 2013;11(3):268–273.
  • Sun K, Cui J, Wang B, et al. Magnetic resonance imaging of tuberous sclerosis complex with or without epilepsy at 7 T. Neuroradiology. 2018;60(8):785–794.
  • Yogi A, Hirata Y, Karavaeva E, et al. DTI of tuber and perituberal tissue can predict epileptogenicity in tuberous sclerosis complex. Neurology. 2015;85(23):2011–2015.
  • Krsek P, Jahodova A, Kyncl M, et al. Predictors of seizure-free outcome after epilepsy surgery for pediatric tuberous sclerosis complex. Epilepsia. 2013;54(11):1913–1921.
  • Lachhwani DK, Pestana E, Gupta A, et al. Identification of candidates for epilepsy surgery in patients with tuberous sclerosis. Neurology. 2005;64(9):1651–1654.
  • Liang S, Zhang J, Yang Z, et al. Long-term outcomes of epilepsy surgery in tuberous sclerosis complex. J Neurol. 2017;264(6):1146–1154.
  • Fallah A, Guyatt GH, Snead OC, et al. Predictors of seizure outcomes in children with tuberous sclerosis complex and intractable epilepsy undergoing resective epilepsy surgery: an individual participant data meta-analysis. PLoS One. 2013;8(2):e53565. Bonkowsky JL, editor.
  • Zhang K, Hu W, Zhang C, et al. Predictors of seizure freedom after surgical management of tuberous sclerosis complex: a systematic review and meta-analysis. Epilepsy Res. 2013;105(3):377–383.
  • Chandra PS, Salamon N, Huang J, et al. FDG-PET/MRI coregistration and diffusion-tensor imaging distinguish epileptogenic tubers and cortex in patients with tuberous sclerosis complex: a preliminary report. Epilepsia. 2006;47(9):1543–1549.
  • Ryvlin P, Cross JH, Rheims S. Epilepsy surgery in children and adults. Lancet Neurol. 2014;13(11):1114–1126.
  • Wu JY, Salamon N, Kirsch HE, et al. Noninvasive testing, early surgery, and seizure freedom in tuberous sclerosis complex. Neurology. 2010;74(5):392–398.
  • Chugani DC, Chugani HT, Muzik O, et al. Imaging epileptogenic tubers in children with tuberous sclerosis complex using?-[11C]Methyl-L-tryptophan positron emission tomography. Ann Neurol. 1998;44(6):858–866.
  • Asano E, Chugani DC, Muzik O, et al. Multimodality imaging for improved detection of epileptogenic foci in tuberous sclerosis complex. Neurology. 2000;54(10):1976–1984.
  • Kagawa K, Chugani DC, Asano E, et al. Epilepsy surgery outcome in children with tuberous sclerosis complex evaluated with α-[11C]Methyl-L-Tryptophan Positron Emission Tomography (PET). J Child Neurol. 2005;20(5):429–438.
  • Rubí S, Costes N, Heckemann RA, et al. Positron emission tomography with α-[11 C]methyl- l -tryptophan in tuberous sclerosis complex-related epilepsy. Epilepsia. 2013;54(12):2143–2150.
  • Aboian MS, Wong-Kisiel LC, Rank M, et al. SISCOM in children with tuberous sclerosis complex-related epilepsy. Pediatr Neurol. 2011;45(2):83–88.
  • Kargiotis O, Lascano AM, Garibotto V, et al. Localization of the epileptogenic tuber with electric source imaging in patients with tuberous sclerosis. Epilepsy Res. 2014;108(2):267–279.
  • Di Rocco C, Iannelli A. Hemimegalencephaly and intractable epilepsy: complications of hemispherectomy and their correlations with the surgical technique. Pediatr Neurosurg. 2000;33(4):198–207.
  • De Palma L, Pietrafusa N, Gozzo F, et al. Outcome after hemispherotomy in patients with intractable epilepsy: comparison of techniques in the Italian experience. Epilepsy Behav. 2019;93:22–28.
  • Najm IM, Sarnat HB, Blümcke I. Review: the international consensus classification of focal cortical dysplasia - a critical update 2018. Neuropathol Appl Neurobiol. 2018;44(1):18–31.
  • Boer K, Troost D, Spliet WGM, et al. A neuropathological study of two autopsy cases of syndromic hemimegalencephaly. Neuropathol Appl Neurobiol. 2007;33(4):455–470.
  • Dobyns WB, Mirzaa GM. Megalencephaly syndromes associated with mutations of core components of the PI3K-AKT–MTOR pathway: PIK3CA, PIK3R2, AKT3, and MTOR. Am J Med Genet C Semin Med Genet. 2019;181(4):582–590.
  • Rivière J-B, Mirzaa GM, O’Roak BJ, et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet. 2012;44(8):934–940.
  • Santos AC, Escorsi-Rosset S, Simao GN, et al. Hemispheric dysplasia and hemimegalencephaly: imaging definitions. Child’s Nerv Syst. 2014;30(11):1813–1821.
  • Oikawa T, Tatewaki Y, Murata T, et al. Utility of diffusion tensor imaging parameters for diagnosis of hemimegalencephaly. Neuroradiol J. 2015;28(6):628–633.
  • Palmini A, Andermann F, Olivier A, et al. Focal neuronal migration disorders and intractable partial epilepsy: a study of 30 patients. Ann Neurol. 1991;30(6):741–749.
  • Colombo N, Tassi L, Galli C, et al. Focal cortical dysplasias: MR imaging, histopathologic, and clinical correlations in surgically treated patients with epilepsy. AJNR Am J Neuroradiol. 2003;24(4):724–733.
  • Besson P, Andermann F, Dubeau F, et al. Small focal cortical dysplasia lesions are located at the bottom of a deep sulcus. Brain. 2008;131(12):3246–3255.
  • Thesen T, Quinn BT, Carlson C, et al. Detection of epileptogenic cortical malformations with surface-based MRI morphometry. PLoS One. 2011;6(2):e16430. Feany M, editor.
  • McInerney T, Terzopoulos D. Deformable models in medical image analysis: a survey. Med Image Anal. 1996;1(2):91–108.
  • Zeng X, Staib LH, Schultz RT, et al. Segmentation and measurement of the cortex from 3-D MR images using coupled-surfaces propagation. IEEE Trans Med Imaging. 1999;18(10):927–937.
  • MacDonald D, Kabani N, Avis D, et al. Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage. 2000;12(3):340–356.
  • Sepúlveda MM, Rojas GM, Faure E, et al. Visual analysis of automated segmentation in the diagnosis of focal cortical dysplasias with magnetic resonance imaging. Epilepsy Behav. 2020;102:106684.
  • Jin B, Krishnan B, Adler S, et al., Automated detection of focal cortical dysplasia type II with surface-based magnetic resonance imaging postprocessing and machine learning. Epilepsia. 59(5): 982–992. 2018.
  • Wang ZI, Jones SE, Jaisani Z, et al. Voxel-based morphometric magnetic resonance imaging (MRI) postprocessing in MRI-negative epilepsies. Ann Neurol. 2015;77(6):1060–1075.
  • Chen X, Qian T, Maréchal B, et al. Quantitative volume-based morphometry in focal cortical dysplasia: a pilot study for lesion localization at the individual level. Eur J Radiol. 2018;105:240–245.
  • Besson P, Bernasconi N, Colliot O, et al. Surface-based texture and morphological analysis detects subtle cortical dysplasia. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 2008. p. 645–652.
  • Zhang J, Liu W, Chen H, et al. Multimodal neuroimaging in presurgical evaluation of drug-resistant epilepsy. NeuroImage Clin. 2014;4:35–44.
  • Huppertz H-J, Grimm C, Fauser S, et al. Enhanced visualization of blurred gray–white matter junctions in focal cortical dysplasia by voxel-based 3D MRI analysis. Epilepsy Res. 2005;67(1–2):35–50.
  • Wagner J, Weber B, Urbach H, et al. Morphometric MRI analysis improves detection of focal cortical dysplasia type II. Brain. 2011;134(10):2844–2854.
  • Stevelink R, Sanders MWCB, Tuinman MP, et al. Epilepsy surgery for patients with genetic refractory epilepsy: a systematic review. Epileptic Disord. 2018;20(2):99–115.
  • Lamberink HJ, Otte WM, Blümcke I, et al. Seizure outcome and use of antiepileptic drugs after epilepsy surgery according to histopathological diagnosis: a retrospective multicentre cohort study. Lancet Neurol. 2020;19(9):748–757.
  • Duez L, Tankisi H, Hansen PO, et al. Electromagnetic source imaging in presurgical workup of patients with epilepsy: a prospective study. Neurology. 2019;92(6):e576–e586.
  • Zijlmans M, Zweiphenning W, Van Klink N. Changing concepts in presurgical assessment for epilepsy surgery. Nat Rev Neurol. 2019;15(10):594–606.
  • Delev D, Oehl B, Steinhoff BJ, et al. Surgical treatment of extratemporal epilepsy: results and prognostic factors. Neurosurgery. 2019;84(1):242–252.
  • Fauser S, Essang C, Altenmüller D, et al. Long-term seizure outcome in 211 patients with focal cortical dysplasia. Epilepsia. 2015;56(1):66–76.
  • Najm I, Jehi L, Palmini A, et al. Temporal patterns and mechanisms of epilepsy surgery failure. Epilepsia. 2013;54(5):772–782.
  • Hidalgo ET, Frankel HG, Rodriguez C, et al. Invasive monitoring after resection of epileptogenic neocortical lesions in multistaged epilepsy surgery in children. Epilepsy Res. 2018;148:48–54.
  • Neal A, Ostrowsky‐Coste K, Jung J, et al. Epileptogenicity in tuberous sclerosis complex: a stereoelectroencephalographic study. Epilepsia. 2020;61(1):81–95.
  • Griessenauer CJ, Salam S, Hendrix P, et al. Hemispherectomy for treatment of refractory epilepsy in the pediatric age group: a systematic review. J Neurosurg Pediactrics. 2015;15(1):34–44.
  • Kim J, Park E-K, Shim K-W, et al. Hemispherotomy and functional hemispherectomy: indications and outcomes. J Epilepsy Res. 2018;8(1):1–5.
  • Hu W-H, Zhang C, Zhang K, et al. Hemispheric surgery for refractory epilepsy: a systematic review and meta-analysis with emphasis on seizure predictors and outcomes. J Neurosurg. 2016;124(4):952–961.
  • Bartolini E, Cosottini M, Costagli M, et al., Ultra-high-field targeted imaging of focal cortical dysplasia: the intracortical black line sign in type IIb. AJNR Am J Neuroradiol. 40(12): 2137–2142. 2019.
  • Wong-Kisiel LC, Tovar Quiroga DF, Kenney-Jung DL, et al. Morphometric analysis on T1-weighted MRI complements visual MRI review in focal cortical dysplasia. Epilepsy Res. 2018;140:184–191.
  • Ahmed B, Brodley CE, Blackmon KE, et al. Cortical feature analysis and machine learning improves detection of “MRI-negative” focal cortical dysplasia. Epilepsy Behav. 2015;48:21–28.
  • Tan Y-L, Kim H, Lee S, et al. Quantitative surface analysis of combined MRI and PET enhances detection of focal cortical dysplasias. Neuroimage. 2018;166:10–18.
  • Wang W, Lin Y, Wang S, et al. Voxel‐based morphometric magnetic resonance imaging postprocessing in non‐lesional pediatric epilepsy patients using pediatric normal databases. Eur J Neurol. 2019;26(7):969–e71.
  • Delev D, Quesada CM, Grote A, et al., A multimodal concept for invasive diagnostics and surgery based on neuronavigated voxel-based morphometric MRI postprocessing data in previously nonlesional epilepsy. J Neurosurg. 128(4): 1178–1186. 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.