330
Views
5
CrossRef citations to date
0
Altmetric
Review

A review of magnetoencephalography use in pediatric epilepsy: an update on best practice

, , , ORCID Icon, &
Pages 1225-1240 | Received 09 Jan 2021, Accepted 25 Mar 2021, Published online: 04 Apr 2021

References

  • Oishi M, Otsubo H, Kameyama S, et al. Epileptic spikes: magnetoencephalography versus simultaneous electrocorticography. Epilepsia. 2002;43:1390–1395.
  • Barkley GL, Baumgartner C. MEG and EEG in epilepsy. J Clin Neurophysiol. 2003;20:163–178.
  • Wheless JW, Castillo E, Maggio V, et al. Magnetoencephalography (MEG) and magnetic source imaging (MSI). Neurologist. 2004;10:138–153.
  • Mikuni N, Nagamine T, Ikeda A, et al. Simultaneous recording of epileptiform discharges by MEG and subdural electrodes in temporal lobe epilepsy. Neuroimage. 1997;5:298–306.
  • Tao JX, Ray A, Hawes-Ebersole S, et al. Intracranial EEG substrates of scalp EEG interictal spikes. Epilepsia. 2005;46:669–676.
  • Hamalainen MS, Hari R, Ilmoniemi RJ, et al. Magnetoencephalography - theory, instrumentation, and applications to noninvasive studies of the working humans brain. Rev Mod Phys. 1993;65:413–497.
  • Hamalainen MS. Magnetoencephalography: a tool for functional brain imaging. Brain Topogr. 1992;5:95–102.
  • Tamilia E, AlHilani M, Tanaka N, et al. Assessing the localization accuracy and clinical utility of electric and magnetic source imaging in children with epilepsy. Clin Neurophysiol. 2019;130:491–504.
  • Ebersole JS, Ebersole SM. Combining MEG and EEG source modeling in epilepsy evaluations. J Clin Neurophysiol. 2010;27:360–371.
  • Tenney JR, Fujiwara H, Rose DF. The value of source localization for clinical magnetoencephalography: beyond the equivalent current dipole. J Clin Neurophysiol. 2020;37:537–544.
  • Dale AM, Liu AK, Fischl BR, et al. Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron. 2000;26:55–67.
  • Hillebrand A, Barnes GR. Beamformer analysis of MEG data. Int Rev Neurobiol. 2005;68:149–171.
  • Van Veen BD, Van Drongelen W, Yuchtman M, et al. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng. 1997;44:867–880.
  • Robinson SE, Vrba J. Functional neuroimaging by synthetic aperture magnetometry (SAM). In: Yoshimoto T, Kotani M, Kuriki Seditors. Recent Advances in Biomagnetism. Sendai: Tohoku University Press; 1999. p. 302–305.
  • Cheyne D, Bostan AC, Gaetz W, et al. Event-related beamforming: a robust method for presurgical functional mapping using MEG. Clin Neurophysiol. 2007;118:1691–1704.
  • Belardinelli P, Ortiz E, Barnes G, et al. Source reconstruction accuracy of MEG and EEG Bayesian inversion approaches. PLoS One. 2012;7:e51985.
  • Bagic AI, Burgess RC. Clinical magnetoencephalography practice in the United States ten years later: a survey-based reappraisal. J Clin Neurophysiol. 2020;37:592–598.
  • De Tiege X, Lundqvist D, Beniczky S, et al. Current clinical magnetoencephalography practice across Europe: are we closer to use MEG as an established clinical tool? Seizure. 2017;50:53–59.
  • Cloppenborg T, May TW, Blumcke I, et al. Differences in pediatric and adult epilepsy surgery: a comparison at one center from 1990 to 2014. Epilepsia. 2019;60:233–245.
  • Knowlton RC, Laxer KD, Aminoff MJ, et al. Magnetoencephalography in partial epilepsy: clinical yield and localization accuracy. Ann Neurol. 1997;42:622–631.
  • Leijten FS, Huiskamp GJ, Hilgersom I, et al. High-resolution source imaging in mesiotemporal lobe epilepsy: a comparison between MEG and simultaneous EEG. J Clin Neurophysiol. 2003;20:227–238.
  • Akai T, Otsubo H, Pang EW, et al. Complex central cortex in pediatric patients with malformations of cortical development. J Child Neurol. 2002;17:347–352.
  • Liegeois F, Connelly A, Cross JH, et al. Language reorganization in children with early-onset lesions of the left hemisphere: an fMRI study. Brain. 2004;127:1229–1236.
  • Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342:314–319.
  • Sperling MR. The consequences of uncontrolled epilepsy. CNS Spectr. 2004;9(98–101):106–109.
  • Dwivedi R, Ramanujam B, Chandra PS, et al. Surgery for drug-resistant epilepsy in children. N Engl J Med. 2017;377:1639–1647.
  • Okubo Y, Fallah A, Hayakawa I, et al. Trends in hospitalization and readmission for pediatric epilepsy and underutilization of epilepsy surgery in the United States. Seizure. 2020;80:263–269.
  • Cloppenborg T, May TW, Blumcke I, et al. Trends in epilepsy surgery: stable surgical numbers despite increasing presurgical volumes. J Neurol Neurosurg Psychiatry. 2016;87:1322–1329.
  • Knowlton RC, Elgavish RA, Limdi N, et al. Functional imaging: i. Relative predictive value of intracranial electroencephalography. Ann Neurol. 2008;64:25–34.
  • Knowlton RC, Elgavish RA, Bartolucci A, et al. Functional imaging: II. Prediction of epilepsy surgery outcome. Ann Neurol. 2008;64:35–41.
  • Papanicolaou AC, Pataraia E, Billingsley-Marshall R, et al. Toward the substitution of invasive electroencephalography in epilepsy surgery. J Clin Neurophysiol. 2005;22:231–237.
  • Rodin E, Funke M, Berg P, et al. Magnetoencephalographic spikes not detected by conventional electroencephalography. Clin Neurophysiol. 2004;115:2041–2047.
  • Stefan H, Hummel C, Scheler G, et al. Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases. Brain. 2003;126:2396–2405.
  • Sutherling WW, Mamelak AN, Thyerlei D, et al. Influence of magnetic source imaging for planning intracranial EEG in epilepsy. Neurology. 2008;71:990–996.
  • RamachandranNair R, Otsubo H, Shroff MM, et al. MEG predicts outcome following surgery for intractable epilepsy in children with normal or nonfocal MRI findings. Epilepsia. 2007;48:149–157.
  • Murakami H, Wang ZI, Marashly A, et al. Correlating magnetoencephalography to stereo-electroencephalography in patients undergoing epilepsy surgery. Brain. 2016;139:2935–2947.
  • Bagic A, Funke ME, Ebersole J; Bagic A, Funke ME, Ebersole J, Committee APS. American Clinical MEG Society (ACMEGS) position statement: the value of magnetoencephalography (MEG)/magnetic source imaging (MSI) in noninvasive presurgical evaluation of patients with medically intractable localization-related epilepsy. J Clin Neurophysiol. 2009;26:290–293.
  • Tellez-Zenteno JF, Hernandez Ronquillo L, Moien-Afshari F, et al. Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res. 2010;89:310–318.
  • Jayakar P, Gaillard WD, Tripathi M, et al. Diagnostic test utilization in evaluation for resective epilepsy surgery in children. Epilepsia. 2014;55:507–518.
  • Bagic AI, Funke ME, Kirsch HE, et al. The 10 common evidence-supported indications for MEG in epilepsy surgery: an illustrated compendium. J Clin Neurophysiol. 2020;37:483–497.
  • Gao R, Yu T, Xu C, et al. The value of magnetoencephalography for stereo-EEG-guided radiofrequency thermocoagulation in MRI-negative epilepsy. Epilepsy Res. 2020;163:106322.
  • Yu T, Ni D, Zhang X, et al. The role of magnetoencephalography in the presurgical evaluation of patients with MRI-negative operculo-insular epilepsy. Seizure. 2018;61:104–110.
  • Iida K, Otsubo H, Matsumoto Y, et al. Characterizing magnetic spike sources by using magnetoencephalography-guided neuronavigation in epilepsy surgery in pediatric patients. J Neurosurg. 2005;102:187–196.
  • Mohamed IS, Toffa DH, Robert M, et al. Utility of magnetic source imaging in nonlesional focal epilepsy: a prospective study. Neurosurg Focus. 2020;48:E16.
  • Widjaja E, Shammas A, Vali R, et al. FDG-PET and magnetoencephalography in presurgical workup of children with localization-related nonlesional epilepsy. Epilepsia. 2013;54:691–699.
  • Rossi Sebastiano D, Tassi L, Duran D, et al. Identifying the epileptogenic zone by four non-invasive imaging techniques versus stereo-EEG in MRI-negative pre-surgery epilepsy patients. Clin Neurophysiol. 2020;131:1815–1823.
  • Widjaja E, Li B, Medina LS. Diagnostic evaluation in patients with intractable epilepsy and normal findings on MRI: a decision analysis and cost-effectiveness study. AJNR Am J Neuroradiol. 2013;34(1004–1009):S1001–1002.
  • Blumcke I, Thom M, Aronica E, et al. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc task force of the ILAE diagnostic methods commission. Epilepsia. 2011;52:158–174.
  • Agarwal N, Krishnan B, Burgess RC, et al. Magnetoencephalographic characteristics of cortical dysplasia in children. Pediatr Neurol. 2018;78:13–19.
  • Shirozu H, Hashizume A, Masuda H, et al. Surgical strategy for focal cortical dysplasia based on the analysis of the spike onset and peak zones on magnetoencephalography. J Neurosurg. 2019;1–13. doi: https://doi.org/10.3171/2019.6.JNS191058
  • Tanaka N, Papadelis C, Tamilia E, et al. Magnetoencephalographic spike analysis in patients with focal cortical dysplasia: what defines a “Dipole Cluster”? Pediatr Neurol. 2018;83:25–31.
  • Kim DW, Lee SK, Chu K, et al. Predictors of surgical outcome and pathologic considerations in focal cortical dysplasia. Neurology. 2009;72:211–216.
  • Krsek P, Pieper T, Karlmeier A, et al. Different presurgical characteristics and seizure outcomes in children with focal cortical dysplasia type I or II. Epilepsia. 2009;50:125–137.
  • Widjaja E, Otsubo H, Raybaud C, et al. Characteristics of MEG and MRI between Taylor’s focal cortical dysplasia (type II) and other cortical dysplasia: surgical outcome after complete resection of MEG spike source and MR lesion in pediatric cortical dysplasia. Epilepsy Res. 2008;82:147–155.
  • Nakajima M, Widjaja E, Baba S, et al. Remote MEG dipoles in focal cortical dysplasia at bottom of sulcus. Epilepsia. 2016;57:1169–1178.
  • Harvey AS, Mandelstam SA, Maixner WJ, et al. The surgically remediable syndrome of epilepsy associated with bottom-of-sulcus dysplasia. Neurology. 2015;84:2021–2028.
  • Nakajima M, Wong S, Widjaja E, et al. Advanced dynamic statistical parametric mapping with MEG in localizing epileptogenicity of the bottom of sulcus dysplasia. Clin Neurophysiol. 2018;129:1182–1191.
  • Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med. 2006;355:1345–1356.
  • Mohamed AR, Bailey CA, Freeman JL, et al. Intrinsic epileptogenicity of cortical tubers revealed by intracranial EEG monitoring. Neurology. 2012;79:2249–2257.
  • Wu JY, Sutherling WW, Koh S, et al. Magnetic source imaging localizes epileptogenic zone in children with tuberous sclerosis complex. Neurology. 2006;66:1270–1272.
  • Jansen FE, Huiskamp G, Van Huffelen AC, et al. Identification of the epileptogenic tuber in patients with tuberous sclerosis: a comparison of high-resolution EEG and MEG. Epilepsia. 2006;47:108–114.
  • Kamimura T, Tohyama J, Oishi M, et al. Magnetoencephalography in patients with tuberous sclerosis and localization-related epilepsy. Epilepsia. 2006;47:991–997.
  • Okanishi T, Akiyama T, Mayo E, et al. Magnetoencephalography spike sources interrelate the extensive epileptogenic zone of tuberous sclerosis complex. Epilepsy Res. 2016;127:302–310.
  • Iida K, Otsubo H, Mohamed IS, et al. Characterizing magnetoencephalographic spike sources in children with tuberous sclerosis complex. Epilepsia. 2005;46:1510–1517.
  • Nguyen DK, Nguyen DB, Malak R, et al. Revisiting the role of the insula in refractory partial epilepsy. Epilepsia. 2009;50:510–520.
  • Dimova P. The insula: semiology. In: Arzimanoglou A, Cross JH, Gaillard WD, editors. Pediatric Epilepsy Surgery. Montrouge, France: John Libbey Eurotext; 2016. p. 121–129.
  • Montavont A, Mauguiere F, Mazzola L, et al. On the origin of painful somatosensory seizures. Neurology. 2015;84:594–601.
  • Proserpio P, Cossu M, Francione S, et al. Insular-opercular seizures manifesting with sleep-related paroxysmal motor behaviors: a stereo-EEG study. Epilepsia. 2011;52:1781–1791.
  • Ryvlin P, Minotti L, Demarquay G, et al. Nocturnal hypermotor seizures, suggesting frontal lobe epilepsy, can originate in the insula. Epilepsia. 2006;47:755–765.
  • Davis KA, Cantor C, Maus D, et al. A neurological cause of recurrent choking during sleep. J Clin Sleep Med. 2008;4:586–587.
  • Dobesberger J, Ortler M, Unterberger I, et al. Successful surgical treatment of insular epilepsy with nocturnal hypermotor seizures. Epilepsia. 2008;49:159–162.
  • Obaid S, Zerouali Y, Nguyen DK. Insular epilepsy: semiology and noninvasive investigations. J Clin Neurophysiol. 2017;34:315–323.
  • Kakisaka Y, Iwasaki M, Alexopoulos AV, et al. Magnetoencephalography in fronto-parietal opercular epilepsy. Epilepsy Res. 2012;102:71–77.
  • Park HM, Nakasato N, Tominaga T. Localization of abnormal discharges causing insular epilepsy by magnetoencephalography. Tohoku J Exp Med. 2012;226:207–211.
  • Heers M, Rampp S, Stefan H, et al. MEG-based identification of the epileptogenic zone in occult peri-insular epilepsy. Seizure. 2012;21:128–133.
  • Mohamed IS, Gibbs SA, Robert M, et al. The utility of magnetoencephalography in the presurgical evaluation of refractory insular epilepsy. Epilepsia. 2013;54:1950–1959.
  • Ahmed R, Otsubo H, Snead C 3rd, et al. Diagnostic evaluation and surgical management of pediatric insular epilepsy utilizing magnetoencephalography and invasive EEG monitoring. Epilepsy Res. 2018;140:72–81.
  • Alarcon G, Guy CN, Binnie CD, et al. Intracerebral propagation of interictal activity in partial epilepsy: implications for source localisation. J Neurol Neurosurg Psychiatry. 1994;57:435–449.
  • Zerouali Y, Pouliot P, Robert M, et al. Magnetoencephalographic signatures of insular epileptic spikes based on functional connectivity. Hum Brain Mapp. 2016;37:3250–3261.
  • Deen B, Pitskel NB, Pelphrey KA. Three systems of insular functional connectivity identified with cluster analysis. Cereb Cortex. 2011;21:1498–1506.
  • Ghaziri J, Tucholka A, Girard G, et al. The corticocortical structural connectivity of the human insula. Cereb Cortex. 2017;27:1216–1228.
  • Yin C, Zhang X, Chen Z, et al. Detection and localization of interictal ripples with magnetoencephalography in the presurgical evaluation of drug-resistant insular epilepsy. Brain Res. 2019;1706:147–156.
  • Lesser RP. Holes in the head. Clin Neurophysiol. 2009;120:2000–2001.
  • Lee JW, Tanaka N, Shiraishi H, et al. Evaluation of postoperative sharp waveforms through EEG and magnetoencephalography. J Clin Neurophysiol. 2010;27:7–11.
  • Kirchberger K, Hummel C, Stefan H. Postoperative multichannel magnetoencephalography in patients with recurrent seizures after epilepsy surgery. Acta Neurol Scand. 1998;98:1–7.
  • Muthaffar O, Puka K, Rubinger L, et al. Reoperation after failed resective epilepsy surgery in children. J Neurosurg Pediatr. 2017;20:134–140.
  • Mohamed IS, Otsubo H, Ochi A, et al. Utility of magnetoencephalography in the evaluation of recurrent seizures after epilepsy surgery. Epilepsia. 2007;48:2150–2159.
  • El Tahry R, Wang ZI, Thandar A, et al. Magnetoencephalography and ictal SPECT in patients with failed epilepsy surgery. Clin Neurophysiol. 2018;129:1651–1657.
  • Pang EW. Practical aspects of running developmental studies in the MEG. Brain Topogr. 2011;24:253–260.
  • Bagic AI, Bowyer SM, Kirsch HE, et al. American Clinical MEG Society (ACMEGS) position statement #2: the value of Magnetoencephalography (MEG)/Magnetic Source Imaging (MSI) in noninvasive presurgical mapping of eloquent cortices of patients preparing for surgical interventions. J Clin Neurophysiol. 2017;34:189–195.
  • Bowyer SM, Pang EW, Huang M, et al. Presurgical functional mapping with magnetoencephalography. Neuroimaging Clin N Am. 2020;30:159–174.
  • Burgess RC, Funke ME, Bowyer SM, et al. American clinical magnetoencephalography society clinical practice guideline 2: presurgical functional brain mapping using magnetic evoked fields. J Clin Neurophysiol. 2011;28:355–361.
  • De Tiege X, Bourguignon M, Piitulainen H, et al. Sensorimotor mapping with MEG: an update on the current state of clinical research and practice with considerations for clinical practice guidelines. J Clin Neurophysiol. 2020;37:564–573.
  • Shvarts V, Makela JP. Auditory mapping with MEG: an update on the current state of clinical research and practice with considerations for clinical practice guidelines. J Clin Neurophysiol. 2020;37:574–584.
  • Zillgitt A, Barkley GL, Bowyer SM. Visual mapping with magnetoencephalography: an update on the current state of clinical research and practice with considerations for clinical practice guidelines. J Clin Neurophysiol. 2020;37:585–591.
  • Bowyer SM, Zillgitt A, Greenwald M, et al. Language mapping with magnetoencephalography: an update on the current state of clinical research and practice with considerations for clinical practice guidelines. J Clin Neurophysiol. 2020;37:554–563.
  • Willemse RB, Hillebrand A, Ronner HE, et al. Magnetoencephalographic study of hand and foot sensorimotor organization in 325 consecutive patients evaluated for tumor or epilepsy surgery. Neuroimage Clin. 2016;10:46–53.
  • Romstock J, Fahlbusch R, Ganslandt O, et al. Localisation of the sensorimotor cortex during surgery for brain tumours: feasibility and waveform patterns of somatosensory evoked potentials. J Neurol Neurosurg Psychiatry. 2002;72:221–229.
  • Schiffbauer H, Berger MS, Ferrari P, et al. Preoperative magnetic source imaging for brain tumor surgery: a quantitative comparison with intraoperative sensory and motor mapping. J Neurosurg. 2002;97:1333–1342.
  • Ganslandt O, Fahlbusch R, Nimsky C, et al. Functional neuronavigation with magnetoencephalography: outcome in 50 patients with lesions around the motor cortex. J Neurosurg. 1999;91:73–79.
  • Korvenoja A, Kirveskari E, Aronen HJ, et al. Sensorimotor cortex localization: comparison of magnetoencephalography, functional MR imaging, and intraoperative cortical mapping. Radiology. 2006;241:213–222.
  • Solomon J, Boe S, Bardouille T. Reliability for non-invasive somatosensory cortex localization: implications for pre-surgical mapping. Clin Neurol Neurosurg. 2015;139:224–229.
  • Sharma R, Pang EW, Mohamed I et al. Magnetoencephalography in children: routine clinical protocol for intractable epilepsy at the Hospital for Sick Children. International Congress Series 2007; 1300:685–688
  • Pihko E, Nevalainen P, Stephen J, et al. Maturation of somatosensory cortical processing from birth to adulthood revealed by magnetoencephalography. Clin Neurophysiol. 2009;120:1552–1561.
  • Bercovici E, Pang EW, Sharma R, et al. Somatosensory-evoked fields on magnetoencephalography for epilepsy infants younger than 4 years with total intravenous anesthesia. Clin Neurophysiol. 2008;119:1328–1334.
  • Cheyne D, Bakhtazad L, Gaetz W. Spatiotemporal mapping of cortical activity accompanying voluntary movements using an event-related beamforming approach. Hum Brain Mapp. 2006;27:213–229.
  • Hoshiyama M, Kakigi R, Berg P, et al. Identification of motor and sensory brain activities during unilateral finger movement: spatiotemporal source analysis of movement-associated magnetic fields. Exp Brain Res. 1997;115:6–14.
  • Cheyne D, Kristeva R, Deecke L. Homuncular organization of human motor cortex as indicated by neuromagnetic recordings. Neurosci Lett. 1991;122:17–20.
  • Cheyne D, Jobst C, Tesan G, et al. Movement-related neuromagnetic fields in preschool age children. Hum Brain Mapp. 2014;35:4858–4875.
  • Gaetz W, Cheyne D, Rutka JT, et al. Presurgical localization of primary motor cortex in pediatric patients with brain lesions by the use of spatially filtered magnetoencephalography. Neurosurgery. 2009;64:ons177-85; discussion ons186. ons177-185; discussion ons186.
  • Nakasato N, Fujita S, Seki K, et al. Functional localization of bilateral auditory cortices using an MRI-linked whole head magnetoencephalography (MEG) system. Electroencephalogr Clin Neurophysiol. 1995;94:183–190.
  • Pantev C, Bertrand O, Eulitz C, et al. Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. Electroencephalogr Clin Neurophysiol. 1995;94:26–40.
  • Verkindt C, Bertrand O, Perrin F, et al. Tonotopic organization of the human auditory cortex: N100 topography and multiple dipole model analysis. Electroencephalogr Clin Neurophysiol. 1995;96:143–156.
  • Jacobson GP. Magnetoencephalographic studies of auditory system function. J Clin Neurophysiol. 1994;11:343–364.
  • Parkkonen L, Fujiki N, Makela JP. Sources of auditory brainstem responses revisited: contribution by magnetoencephalography. Hum Brain Mapp. 2009;30:1772–1782.
  • Takeshita K, Nagamine T, Thuy DH, et al. Maturational change of parallel auditory processing in school-aged children revealed by simultaneous recording of magnetic and electric cortical responses. Clin Neurophysiol. 2002;113:1470–1484.
  • Holst M, Eswaran H, Lowery C, et al. Development of auditory evoked fields in human fetuses and newborns: a longitudinal MEG study. Clin Neurophysiol. 2005;116:1949–1955.
  • Pang EW, Gaetz W, Otsubo H, et al. Localization of auditory N1 in children using MEG: source modeling issues. Int J Psychophysiol. 2003;51:27–35.
  • Nakasato N, Kumabe T, Kanno A, et al. Neuromagnetic evaluation of cortical auditory function in patients with temporal lobe tumors. J Neurosurg. 1997;86:610–618.
  • Mohamed IS, Otsubo H, Pang E, et al. Magnetoencephalographic spike sources associated with auditory auras in paediatric localisation-related epilepsy. J Neurol Neurosurg Psychiatry. 2006;77:1256–1261.
  • Harding GF, Armstrong RA, Janday B. Visual evoked electrical and magnetic response to half-field stimulation using pattern reversal stimulation. Ophthalmic Physiol Opt. 1992;12:171–174.
  • Chen WT, Ko YC, Liao KK, et al. Optimal check size and reversal rate to elicit pattern-reversal MEG responses. Can J Neurol Sci. 2005;32:218–224.
  • Nakamura M, Kakigi R, Okusa T, et al. Effects of check size on pattern reversal visual evoked magnetic field and potential. Brain Res. 2000;872:77–86.
  • Hashimoto T, Kashii S, Kikuchi M, et al. Temporal profile of visual evoked responses to pattern-reversal stimulation analyzed with a whole-head magnetometer. Exp Brain Res. 1999;125:375–382.
  • Chen Y, Xiang J, Kirtman EG, et al. Neuromagnetic biomarkers of visuocortical development in healthy children. Clin Neurophysiol. 2010;121:1555–1562.
  • Stefan H. Cases with parietal and occipital lobe epilepsies. Acta Epileptologica. 2019;1.
  • Grover KM, Bowyer SM, Rock J, et al. Retrospective review of MEG visual evoked hemifield responses prior to resection of temporo-parieto-occipital lesions. J Neurooncol. 2006;77:161–166.
  • Bowyer SM, Moran JE, Weiland BJ, et al. Language laterality determined by MEG mapping with MR-FOCUSS. Epilepsy Behav. 2005;6:235–241.
  • Breier JI, Simos PG, Zouridakis G, et al. Lateralization of activity associated with language function using magnetoencephalography: a reliability study. J Clin Neurophysiol. 2000;17:503–510.
  • Rezaie R, Narayana S, Schiller K, et al. Assessment of hemispheric dominance for receptive language in pediatric patients under sedation using magnetoencephalography. Front Hum Neurosci. 2014;8:657.
  • Bowyer SM, Moran JE, Mason KM, et al. MEG localization of language-specific cortex utilizing MR-FOCUSS. Neurology. 2004;62:2247–2255.
  • Castillo EM, Simos PG, Venkataraman V, et al. Mapping of expressive language cortex using magnetic source imaging. Neurocase. 2001;7:419–422.
  • Kober H, Moller M, Nimsky C, et al. New approach to localize speech relevant brain areas and hemispheric dominance using spatially filtered magnetoencephalography. Hum Brain Mapp. 2001;14:236–250.
  • Papanicolaou AC, Simos PG, Breier JI, et al. Magnetoencephalographic mapping of the language-specific cortex. J Neurosurg. 1999;90:85–93.
  • Simos PG, Breier JI, Zouridakis G, et al. Identification of language-specific brain activity using magnetoencephalography. J Clin Exp Neuropsychol. 1998;20:706–722.
  • Hirata M, Goto T, Barnes G, et al. Language dominance and mapping based on neuromagnetic oscillatory changes: comparison with invasive procedures. J Neurosurg. 2010;112:528–538.
  • Hirata M, Kato A, Taniguchi M, et al. Determination of language dominance with synthetic aperture magnetometry: comparison with the Wada test. Neuroimage. 2004;23:46–53.
  • Papanicolaou AC, Simos PG, Castillo EM, et al. Magnetocephalography: a noninvasive alternative to the Wada procedure. J Neurosurg. 2004;100:867–876.
  • Kamada K, Sawamura Y, Takeuchi F, et al. Expressive and receptive language areas determined by a non-invasive reliable method using functional magnetic resonance imaging and magnetoencephalography. Neurosurgery. 2007;60: 296–305. discussion 305-296.
  • Pirmoradi M, Beland R, Nguyen DK, et al. Language tasks used for the presurgical assessment of epileptic patients with MEG. Epileptic Disord. 2010;12:97–108.
  • Foley E, Cross JH, Thai NJ, et al. MEG assessment of expressive language in children evaluated for epilepsy surgery. Brain Topogr. 2019;32:492–503.
  • Huang CW, Huang MX, Ji Z, et al. High-resolution MEG source imaging approach to accurately localize Broca’s area in patients with brain tumor or epilepsy. Clin Neurophysiol. 2016;127:2308–2316.
  • Kadis DS, Iida K, Kerr EN, et al. Intrahemispheric reorganization of language in children with medically intractable epilepsy of the left hemisphere. J Int Neuropsychol Soc. 2007;13:505–516.
  • Hamberger MJ, Cole J. Language organization and reorganization in epilepsy. Neuropsychol Rev. 2011;21:240–251.
  • Rosenberger LR, Zeck J, Berl MM, et al. Interhemispheric and intrahemispheric language reorganization in complex partial epilepsy. Neurology. 2009;72:1830–1836.
  • Pelletier I, Sauerwein HC, Lepore F, et al. Non-invasive alternatives to the Wada test in the presurgical evaluation of language and memory functions in epilepsy patients. Epileptic Disord. 2007;9:111–126.
  • Moses SN, Hanlon FM, Ryan JD. Dynamic imaging of deep brain structures with MEG: contributions to understanding human memory. Pang EW editor. Magnetoencephalography. 2011. London: IntechOpen Limited. 10.5772/29133
  • Pizzo F, Roehri N, Medina Villalon S, et al. Deep brain activities can be detected with magnetoencephalography. Nat Commun. 2019;10:971.
  • Mandal PK, Banerjee A, Tripathi M, et al. A comprehensive review of magnetoencephalography (MEG) studies for brain functionality in healthy aging and Alzheimer’s Disease (AD). Front Comput Neurosci. 2018;12:60.
  • Pu Y, Cheyne DO, Cornwell BR, et al. Non-invasive investigation of human hippocampal rhythms using magnetoencephalography: a review. Front Neurosci. 2018;12:273.
  • D’Esposito M, Deouell LY, Gazzaley A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci. 2003;4:863–872.
  • Inoue T, Shimizu H, Nakasato N, et al. Accuracy and limitation of functional magnetic resonance imaging for identification of the central sulcus: comparison with magnetoencephalography in patients with brain tumors. Neuroimage. 1999;10:738–748.
  • Rossini PM, Altamura C, Ferretti A, et al. Does cerebrovascular disease affect the coupling between neuronal activity and local haemodynamics? Brain. 2004;127:99–110.
  • Byars AW, Holland SK, Strawsburg RH; Byars AW, Holland SK, Strawsburg RH et al. Practical aspects of conducting large-scale functional magnetic resonance imaging studies in children. J Child Neurol. 2002;17:885–890.
  • Billingsley-Marshall RL, Clear T, Mencl WE, et al. A comparison of functional MRI and magnetoencephalography for receptive language mapping. J Neurosci Methods. 2007;161:306–313.
  • Pang EW, Wang F, Malone M, et al. Localization of Broca’s area using verb generation tasks in the MEG: validation against fMRI. Neurosci Lett. 2011;490:215–219.
  • Eickhoff SB, Müller VI. Functional Connectivity. In Brain Mapping: An Encyclopedic Reference. Vol 2. Massachusetts: Academic Press, Elsevier Inc. 2015; 187-201.
  • De Pasquale F, Della Penna S, Snyder AZ, et al. Temporal dynamics of spontaneous MEG activity in brain networks. Proc Natl Acad Sci U S A. 2010;107:6040–6045.
  • Nolte G, Bai O, Wheaton L, et al. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol. 2004;115:2292–2307.
  • Stam CJ, Nolte G, Daffertshofer A. Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp. 2007;28:1178–1193.
  • Lachaux JP, Rodriguez E, Martinerie J, et al. Measuring phase synchrony in brain signals. Hum Brain Mapp. 1999;8:194–208.
  • Vinck M, Oostenveld R, Van Wingerden M, et al. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage. 2011;55:1548–1565.
  • Breakspear M, Williams LM, Stam CJ. A novel method for the topographic analysis of neural activity reveals formation and dissolution of ‘Dynamic Cell Assemblies’. J Comput Neurosci. 2004;16:49–68.
  • Baccala LA, Sameshima K. Partial directed coherence: a new concept in neural structure determination. Biol Cybern. 2001;84:463–474.
  • Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52:1059–1069.
  • Nissen IA, Stam CJ, Reijneveld JC, et al. Identifying the epileptogenic zone in interictal resting-state MEG source-space networks. Epilepsia. 2017;58:137–148.
  • Ramaraju S, Wang Y, Sinha N, et al. Removal of interictal MEG-derived network hubs is associated with postoperative seizure freedom. Front Neurol. 2020;11:563847.
  • Bear JJ, Kirsch HE, Berman BD, et al. Spike-associated networks and intracranial electrographic findings. Epileptic Disord. 2020;22:291–299.
  • Jmail N, Gavaret M, Bartolomei F, et al. Comparison of brain networks during interictal oscillations and spikes on magnetoencephalography and intracerebral EEG. Brain Topogr. 2016;29:752–765.
  • Pourmotabbed H, Wheless JW, Babajani-Feremi A. Lateralization of epilepsy using intra-hemispheric brain networks based on resting-state MEG data. Hum Brain Mapp. 2020;41:2964–2979.
  • Hsiao FJ, Yu HY, Chen WT, et al. Increased intrinsic connectivity of the default mode network in temporal lobe epilepsy: evidence from resting-state MEG recordings. PLoS One. 2015;10:e0128787.
  • Martire DJ, Wong S, Workewych A, et al. Temporal-plus epilepsy in children: a connectomic analysis in magnetoencephalography. Epilepsia. 2020;61:1691–1700.
  • Van Dellen E, Douw L, Hillebrand A, et al. Epilepsy surgery outcome and functional network alterations in longitudinal MEG: a minimum spanning tree analysis. Neuroimage. 2014;86:354–363.
  • Babajani-Feremi A, Noorizadeh N, Mudigoudar B, et al. Predicting seizure outcome of vagus nerve stimulation using MEG-based network topology. Neuroimage Clin. 2018;19:990–999.
  • Mithani K, Mikhail M, Morgan BR, et al. Connectomic profiling identifies responders to vagus nerve stimulation. Ann Neurol. 2019;86:743–753.
  • Mithani K, Wong SM, Mikhail M, et al. Somatosensory evoked fields predict response to vagus nerve stimulation. Neuroimage Clin. 2020;26:102205.
  • Bagic AI, Burgess RC. Utilization of MEG among the US epilepsy centers: a survey-based appraisal. J Clin Neurophysiol. 2020;37:599–605.
  • Rubinger L, Chan C, D’Arco F, et al. Change in presurgical diagnostic imaging evaluation affects subsequent pediatric epilepsy surgery outcome. Epilepsia. 2016;57:32–40.
  • Rampp S, Stefan H, Wu X, et al. Magnetoencephalography for epileptic focus localization in a series of 1000 cases. Brain. 2019;142:3059–3071.
  • Bagic A. Look back to leap forward: the emerging new role of magnetoencephalography (MEG) in nonlesional epilepsy. Clin Neurophysiol. 2016;127:60–66.
  • Heers M, Rampp S, Kaltenhauser M, et al. Detection of epileptic spikes by magnetoencephalography and electroencephalography after sleep deprivation. Seizure. 2010;19:397–403.
  • Duez L, Tankisi H, Hansen PO, et al. Electromagnetic source imaging in presurgical workup of patients with epilepsy: a prospective study. Neurology. 2019;92:e576–e586.
  • Kim D, Joo EY, Seo DW, et al. Accuracy of MEG in localizing irritative zone and seizure onset zone: quantitative comparison between MEG and intracranial EEG. Epilepsy Res. 2016;127:291–301.
  • Birot G, Spinelli L, Vulliemoz S, et al. Head model and electrical source imaging: a study of 38 epileptic patients. Neuroimage Clin. 2014;5:77–83.
  • Megevand P, Spinelli L, Genetti M, et al. Electric source imaging of interictal activity accurately localises the seizure onset zone. J Neurol Neurosurg Psychiatry. 2014;85:38–43.
  • Vrba J, Robinson SE, McCubbin J. How many channels are needed for MEG? Neurol Clin Neurophysiol. 2004;2004:99.
  • Szmuk P, Kee S, Pivalizza EG, et al. Anaesthesia for magnetoencephalography in children with intractable seizures. Paediatr Anaesth. 2003;13:811–817.
  • Hanaya R, Okamoto H, Fujimoto A, et al. Total intravenous anesthesia affecting spike sources of magnetoencephalography in pediatric epilepsy patients: focal seizures vs. non-focal seizures. Epilepsy Res. 2013;105:326–336.
  • Fujimoto A, Ochi A, Imai K, et al. Magnetoencephalography using total intravenous anesthesia in pediatric patients with intractable epilepsy: lesional vs nonlesional epilepsy. Brain Dev. 2009;31:34–41.
  • Konig MW, Mahmoud MA, Fujiwara H, et al. Influence of anesthetic management on quality of magnetoencephalography scan data in pediatric patients: a case series. Paediatr Anaesth. 2009;19:507–512.
  • Tenney JR, Miller JW, Rose DF. Intranasal dexmedetomidine for sedation during magnetoencephalography. J Clin Neurophysiol. 2019;36:371–374.
  • Tewari A, Mahmoud M, Rose D, et al. Intravenous dexmedetomidine sedation for magnetoencephalography: a retrospective study. Paediatr Anaesth. 2020;30:799–805.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.