556
Views
7
CrossRef citations to date
0
Altmetric
Review

Updated review of therapeutic strategies for Charcot-Marie-Tooth disease and related neuropathies

, &
Pages 701-713 | Received 03 Apr 2021, Accepted 24 May 2021, Published online: 07 Jun 2021

References

  • Pareyson D, Saveri P, Pisciotta C. New developments in Charcot-Marie-Tooth neuropathy and related diseases. Curr Opin Neurol. 2017;30:471–480.
  • Pisciotta C, Shy ME. Neuropathy. Handb Clin Neurol. 2018;148:653–665.
  • Nobbio L, Visigalli D, Radice D, et al. PMP22 messenger RNA levels in skin biopsies: testing the effectiveness of a Charcot-Marie-Tooth 1A biomarker. Brain. 2014;137:1614–1620.
  • Passage E, Norreel JC, Noack-Fraissignes P, et al. Ascorbic acid treatment corrects the phenotype of a mouse model of Charcot-Marie-Tooth disease. Nat Med. 2004;10:396–401.
  • Gess B, Baets J, De Jonghe P, et al. Ascorbic acid for the treatment of Charcot-Marie-Tooth disease. Cochrane Database Syst Rev. 2015;12:CD011952.
  • Pareyson D, Reilly MM, Schenone A, et al. Ascorbic acid in Charcot-Marie-Tooth disease type 1A (CMT-TRIAAL and CMT-TRAUK): a double-blind randomised trial. Lancet Neurol. 2011;10:320–328.
  • Meyer Zu Horste G, Prukop T, Liebetanz D, et al. Antiprogesterone therapy uncouples axonal loss from demyelination in a transgenic rat model of CMT1A neuropathy. Ann Neurol. 2007;61:61–72.
  • Corell M, Wicher G, Radomska KJ, et al. GABA and its B-receptor are present at the node of Ranvier in a small population of sensory fibers, implicating a role in myelination. J Neurosci Res. 2015;93:285–295.
  • Chumakov I, Milet A, Cholet N, et al. Polytherapy with a combination of three repurposed drugs (PXT3003) down-regulates Pmp22 over-expression and improves myelination, axonal and functional parameters in models of CMT1A neuropathy. Orphanet J Rare Dis. 2014;9:201.
  • Prukop T, Stenzel J, Wernick S, et al. Early short-term PXT3003 combinational therapy delays disease onset in a transgenic rat model of Charcot-Marie-Tooth disease 1A (CMT1A). PLoS One. 2019;14:e0209752.
  • Attarian S, Vallat JM, Magy L, et al. An exploratory randomised double-blind and placebo-controlled phase 2 study of a combination of baclofen, naltrexone and sorbitol (PXT3003) in patients with Charcot-Marie-Tooth disease type 1A. Orphanet J Rare Dis. 2014;9:199.
  • Piscosquito G, Reilly MM, Schenone A, et al. Responsiveness of clinical outcome measures in Charcot-Marie-Tooth disease. Eur J Neurol. 2015;22:1556–1563.
  • Zhao HT, Damle S, Ikeda-Lee K, et al. PMP22 antisense oligonucleotides reverse Charcot-Marie-Tooth disease type 1A features in rodent models. J Clin Invest. 2018;128:359–368.
  • Boutary S, Caillaud M, El Madani M, et al. Squalenoyl siRNA PMP22 nanoparticles are effective in treating mouse models of Charcot-Marie-Tooth disease type 1A. Commun Biol. 2021;4:317.
  • Lee JS, Lee JY, Song DW, et al. Targeted PMP22 TATA-box editing by CRISPR/Cas9 reduces demyelinating neuropathy of Charcot-Marie-Tooth disease type 1A in mice. Nucleic Acids Res. 2020;48:130–140.
  • Gautier B, Hajjar H, Soares S, et al. AAV2/9-mediated silencing of PMP22 prevents the development of pathological features in a rat model of Charcot-Marie-Tooth disease 1 A. Nat Commun. 2021;12:2356.
  • Lee JS, Chang EH, Koo OJ, et al. Pmp22 mutant allele-specific siRNA alleviates demyelinating neuropathic phenotype in vivo. Neurobiol Dis. 2017;100:99–107.
  • Sahenk Z, Nagaraja HN, McCracken BS, et al. NT-3 promotes nerve regeneration and sensory improvement in CMT1A mouse models and in patients. Neurology. 2005;65:681–689.
  • Sahenk Z, Galloway G, Clark KR, et al. AAV1.NT-3 gene therapy for charcot-marie-tooth neuropathy. Mol Ther. 2014;22:511–521.
  • Yalvac ME, Amornvit J, Chen L, et al. AAV1.NT-3 gene therapy increases muscle fiber diameter through activation of mTOR pathway and metabolic remodeling in a CMT mouse model. Gene Ther. 2018;25:129–138.
  • Ozes B, Myers M, Moss K, et al. AAV1.NT-3 gene therapy for X-linked Charcot-Marie-Tooth neuropathy type 1. Gene Ther. 2021 Feb 4.
  • Sargiannidou I, Kagiava A, Bashiardes S, et al. Intraneural GJB1 gene delivery improves nerve pathology in a model of X-linked Charcot-Marie-Tooth disease. Ann Neurol. 2015;78:303–316.
  • Kagiava A, Karaiskos C, Richter J, et al. Intrathecal gene therapy in mouse models expressing CMT1X mutations. Hum Mol Genet. 2018;27:1460–1473.
  • Kagiava A, Karaiskos C, Richter J, et al. AAV9-mediated Schwann cell-targeted gene therapy rescues a model of demyelinating neuropathy. Gene Ther. 2021 Mar;10.
  • Schiza N, Georgiou E, Kagiava A, et al. Gene replacement therapy in a model of Charcot-Marie-Tooth 4C neuropathy. Brain. 2019;142:1227–1241.
  • Zhou Y, Carmona S, Muhammad AKMG, et al. Restoring mitofusin balance prevents axonal degeneration in a Charcot-Marie-Tooth type 2A model. J Clin Invest. 2019;129:1756–1771.
  • Rocha AG, Franco A, Krezel AM, et al. MFN2 agonists reverse mitochondrial defects in preclinical models of Charcot-Marie-Tooth disease type 2A. Science. 2018;360:336–341.
  • Fledrich R, Abdelaal T, Rasch L, et al. Targeting myelin lipid metabolism as a potential therapeutic strategy in a model of CMT1A neuropathy. Nat Commun. 2018;9:3025.
  • Nobbio L, Sturla L, Fiorese F, et al. P2X7-mediated increased intracellular calcium causes functional derangement in Schwann cells from rats with CMT1A neuropathy. J Biol Chem. 2009;284:23146–23158.
  • Sociali G, Visigalli D, Prukop T, et al. Tolerability and efficacy study of P2X7 inhibition in experimental Charcot-Marie-Tooth type 1A (CMT1A) neuropathy. Neurobiol Dis. 2016;95:145–157.
  • Keystone EC, Wang MM, Layton M, et al. Clinical evaluation of the efficacy of the P2X7 purinergic receptor antagonist AZD9056 on the signs and symptoms of rheumatoid arthritis in patients with active disease despite treatment with methotrexate or sulphasalazine. Ann Rheum Dis. 2012;71:1630–1635.
  • Bai Y, Wu X, Brennan KM, et al. Myelin protein zero mutations and the unfolded protein response in Charcot Marie Tooth disease type 1B. Ann Clin Transl Neurol. 2018;5:445–455.
  • Khajavi M, Inoue K, Wiszniewski W, et al. Curcumin treatment abrogates endoplasmic reticulum retention and aggregation-induced apoptosis associated with neuropathy-causing myelin protein zero-truncating mutants. Am J Hum Genet. 2005;77:841–850.
  • Patzkó A, Bai Y, Saporta MA, et al. Curcumin derivatives promote Schwann cell differentiation and improve neuropathy in R98C CMT1B mice. Brain. 2012;135:3551–3566.
  • Das I, Krzyzosiak A, Schneider K, et al. Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science. 2015;348:239–242.
  • Bai Y, LaMarche M, Wang D, et al. Treatment of Arg98Cys MPZ Mice In Vitro and In Vivo with IFB088. Presented at the PNS 2019 Annual Meeting. Genoa, Italy. 22-25 June.
  • Khajavi M, Shiga K, Wiszniewski W, et al. Oral curcumin mitigates the clinical and neuropathologic phenotype of the Trembler-J mouse: a potential therapy for inherited neuropathy. Am J Hum Genet. 2007;81:438–453.
  • Okamoto Y, Pehlivan D, Wiszniewski W, et al. Curcumin facilitates a transitory cellular stress response in Trembler-J mice. Hum Mol Genet. 2013;22:4698–4705.
  • Fortun J, Go JC, Li J, et al. Alterations in degradative pathways and protein aggregation in a neuropathy model based on PMP22 overexpression. Neurobiol Dis. 2006;22:153–164.
  • Lee S, Bazick H, Chittoor-Vinod V, et al. Elevated peripheral myelin protein 22, reduced mitotic potential, and proteasome impairment in dermal fibroblasts from Charcot-Marie-Tooth Disease Type 1A Patients. Am J Pathol. 2018;188:728–738.
  • D’Antonio M, Treins C, Scapin C, et al. IFB-088 treatment improves Charcot-Marie-Tooth type 1A disease phenotype of C3-PMP22 mice. Presented at the PNS 2019 Annual Meeting. Genoa, Italy. 22-25 June.
  • Rosberg MR, Alvarez S, Krarup C, et al. An oral NaV1.8 blocker improves motor function in mice completely deficient of myelin protein P0. Neurosci Lett. 2016;632:33–38.
  • Moldovan M, Pisciotta C, Pareyson D, et al. Myelin protein zero gene dose dependent axonal ion-channel dysfunction in a family with Charcot-Marie-Tooth disease. Clin Neurophysiol. 2020;131:2440–2451.
  • Taveggia C, Zanazzi G, Petrylak A, et al. Neuregulin-1 type III determines the ensheathment fate of axons. Neuron. 2005;47:681–694.
  • Bolino A, Piguet F, Alberizzi V, et al. Niacin-mediated Tace activation ameliorates CMT neuropathies with focal hypermyelination. EMBO Mol Med. 2016;8:1438–1454.
  • Scapin C, Ferri C, Pettinato E, et al. Enhanced axonal neuregulin-1 type-III signaling ameliorates neurophysiology and hypomyelination in a Charcot-Marie-Tooth type 1B mouse model. Hum Mol Genet. 2019;28:992–1006.
  • Fledrich R, Stassart RM, Klink A, et al. Soluble neuregulin-1 modulates disease pathogenesis in rodent models of Charcot-Marie-Tooth disease 1A. Nat Med. 2014;20:1055–1061.
  • Pareyson D, Stojkovic T, Reilly MM, et al. A multicenter retrospective study of Charcot-Marie-Tooth disease type 4B (CMT4B) associated with mutations in myotubularin-related proteins (MTMRs). Ann Neurol. 2019;86:55–67.
  • Guerrero-Valero M, Grandi F, Cipriani S, et al. Dysregulation of myelin synthesis and actomyosin function underlies aberrant myelin in CMT4B1 neuropathy. Proc Natl Acad Sci U S A. 2021;118:e2009469118.
  • Geisler S, Huang SX, Strickland A, et al. Gene therapy targeting SARM1 blocks pathological axon degeneration in mice. J Exp Med. 2019;216:294–303.
  • d’Ydewalle C, Krishnan J, Chiheb DM, et al. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat Med. 2011;17:968–974.
  • Benoy V, Van Helleputte L, Prior R, et al. HDAC6 is a therapeutic target in mutant GARS-induced Charcot-Marie-Tooth disease. Brain. 2018;141:673–687.
  • Picci C, Wong VSC, Costa CJ, et al. HDAC6 inhibition promotes α-tubulin acetylation and ameliorates CMT2A peripheral neuropathy in mice. Exp Neurol. 2020;328:113281.
  • Glasser CE, Gartner MR, Wilson D, et al. Locally acting ACE-083 increases muscle volume in healthy volunteers. Muscle Nerve. 2018;57:921–926.
  • Klein D, Patzkó Á, Schreiber D, et al. Targeting the colony stimulating factor 1 receptor alleviates two forms of Charcot-Marie-Tooth disease in mice. Brain. 2015;138:3193–3205.
  • Cortese A, Zhu Y, Rebelo AP, et al. Biallelic mutations in SORD cause a common and potentially treatable hereditary neuropathy with implications for diabetes. Nat Genet. 2020;52:473–481.
  • Fridman V, Suriyanarayanan S, Novak P, et al. Randomized trial of l-serine in patients with hereditary sensory and autonomic neuropathy type 1. Neurology. 2019;92:e359–e370.
  • Kugathasan U, Evans MRB, Morrow JM, et al. Development of MRC Centre MRI calf muscle fat fraction protocol as a sensitive outcome measure in hereditary sensory neuropathy Type 1. J Neurol Neurosurg Psychiatry. 2019;90:895–906.
  • de Brouwer AP, van Bokhoven H, Nabuurs SB, et al. PRPS1 mutations: four distinct syndromes and potential treatment. Am J Hum Genet. 2010;86:506–518.
  • Perez-Siles G, Cutrupi A, Ellis M, et al. Energy metabolism and mitochondrial defects in X-linked Charcot-Marie-Tooth (CMTX6) iPSC-derived motor neurons with the p.R158H PDK3 mutation. Sci Rep. 2020;10:9262.
  • Juneja M, Burns J, Saporta MA, et al. Challenges in modelling the Charcot-Marie-Tooth neuropathies for therapy development. J Neurol Neurosurg Psychiatry. 2019;90:58–67.
  • Svaren J, Moran JJ, Wu X, et al. Schwann cell transcript biomarkers for hereditary neuropathy skin biopsies. Ann Neurol. 2019;85:887–898.
  • Tucker-Bartley A, Lemme J, Gomez-Morad A, et al. Pain phenotypes in rare musculoskeletal and neuromuscular diseases. Neurosci Biobehav Rev. 2021;124:267–290.
  • Sman AD, Hackett D, Fiatarone Singh M, et al. Systematic review of exercise for Charcot-Marie-Tooth disease. J Peripher Nerv Syst. 2015;20:347–362.
  • Corrado B, Ciardi G, Bargigli C. Rehabilitation Management of the Charcot-Marie-Tooth syndrome: a systematic review of the literature. Medicine (Baltimore). 2016;95:e3278.
  • Reilly MM, Pareyson D, Burns J, et al. 221st ENMC International Workshop: Foot Surgery in Charcot-Marie-Tooth disease. 10-12 June 2016, Naarden, The Netherlands. Neuromuscul Disord 2017; 27:1138–1142.
  • Rossor AM, Shy ME, Reilly MM. Are we prepared for clinical trials in Charcot-Marie-Tooth disease? Brain Res. 2020;1729:146625.
  • Pipis M, Feely SME, Polke JM, et al. Natural history of Charcot- Marie-Tooth disease type 2A: a large international multicentre study. Brain. 2020;143:3589–3602.
  • Fridman V, Sillau S, Acsadi G, et al. A longitudinal study of CMT1A using Rasch analysis based CMT neuropathy and examination scores. Neurology. 2020;94:e884–e896.
  • Cornett KMD, Menezes MP, Shy RR, et al. Natural history of Charcot-Marie-Tooth disease during childhood. Ann Neurol. 2017;82:353–359.
  • Murphy SM, Herrmann DN, McDermott MP, et al. Reliability of the CMT neuropathy score (second version) in Charcot-Marie-Tooth disease. J Peripher Nerv Syst. 2011;16:191–198.
  • Sadjadi R, Reilly MM, Shy ME, et al. Psychometrics evaluation of Charcot-Marie-Tooth Neuropathy Score (CMTNSv2) second version, using Rasch analysis. J Peripher Nerv Syst. 2014;19:192–196.
  • Burns J, Ouvrier R, Estilow T, et al. Validation of the Charcot-Marie-Tooth disease pediatric scale as an outcome measure of disability. Ann Neurol. 2012;71:642–652.
  • Eichinger K, Burns J, Cornett K, et al. The Charcot-Marie-Tooth Functional Outcome Measure (CMT-FOM). Neurology. 2018;91:e1381–e1384.
  • Bray P, Cornett KMD, Estilow T, et al. Reliability of the Charcot-Marie-Tooth functional outcome measure. J Peripher Nerv Syst. 2020;25:288–291.
  • Johnson NE, Heatwole C, Creigh P, et al. The Charcot-Marie-Tooth health index: evaluation of a patient-reported outcome. Ann Neurol. 2018;84:225–233.
  • Pisciotta C, Ciafaloni E, Zuccarino R, et al. Validation of the Italian version of the Charcot-Marie-Tooth health index. J Peripher Nerv Syst. 2020;25:292–296.
  • Ramchandren S, Wu TT, Finkel RS, et al. Development and validation of the pediatric Charcot-Marie-Tooth disease quality of life outcome measure. Ann Neurol. 2021;89:369–379.
  • Morrow JM, Evans MRB, Grider T, et al. Validation of MRC Centre MRI calf muscle fat fraction protocol as an outcome measure in CMT1A. Neurology. 2018;91:e1125–e1129.
  • Sandelius Å, Zetterberg H, Blennow K, et al. Plasma neurofilament light chain concentration in the inherited peripheral neuropathies. Neurology. 2018;90:e518–e524.
  • Schorling E, Thiele S, Gumbert L, et al. Cost of illness in Charcot-Marie-Tooth neuropathy: results from Germany. Neurology. 2019;92:e2027–e2037.
  • Adams D, Gonzalez-Duarte A, O’Riordan WD, et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N Engl J Med. 2018;379:11–21.
  • Benson MD, Waddington-Cruz M, Berk JL, et al. Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis. N Engl J Med. 2018;379:22–31.
  • Finkel RS, Mercuri E, Darras BT, et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N Engl J Med. 2017;377:1723–1732.
  • Hoy SM. Onasemnogene Abeparvovec: first global approval. Drugs. 2019;79:1255–1262.
  • Van Hameren G, Gonzalez S, Fernando RN, et al. In Vivo Introduction of transgenes into mouse sciatic nerve cells using viral vectors. Methods Mol Biol. 2018;1791:263–276.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.