358
Views
6
CrossRef citations to date
0
Altmetric
Review

Updated review on the link between cortical spreading depression and headache disorders

, , &
Pages 1069-1084 | Received 25 Feb 2021, Accepted 22 Jun 2021, Published online: 17 Sep 2021

References

  • Headache Classification Committee of the International Headache Society (IHS). The international classification of headache disorders, 3rd edition. Cephalalgia. 2018 Jan;38(1):1–211.
  • Steiner T, Stovner L, Vos T, et al. Migraine is the first cause of disability under 50s: will health politicians now take notice? J Headache Pain. 2018;19(1):17.
  • Bolay H, Ozge A, Saginc P, et al. Gender influences headache characteristics with increasing age in migraine patients. Cephalalgia. 2015 Aug;35(9):792–800.
  • Pavlovic JM, Akcali D, Bolay H, et al. Sex-related influences in migraine. J Neurosci Res. 2017 Jan;95(1–2):587–593.
  • Boran HE, Cengiz B, Bolay H. Somatosensory temporal discrimination is prolonged during migraine attacks. Headache. 2016;56(1):104–112.
  • Vuralli D, Boran HE, Cengiz B, et al. Chronic migraine is associated with sustained elevation of somatosensory temporal discrimination thresholds. Headache. 2016;56(9):1439–1447.
  • Vuralli D, Boran HE, Cengiz B, et al. Somatosensory temporal discrimination remains intact in tension type headache whereas it is disrupted in migraine attacks. Cephalagia. 2017;37(13): 1241–1247.
  • Vuralli D, Ayata C, Bolay H. Cognitive dysfunction and migraine. J Headache Pain. 2018;19(1):109.
  • Bolay H, Bayazit YA, Gündüz B, et al. Subclinical dysfunction of cochlea and cochlear efferents in migraine: an otoacoustic emission study. Cephalalgia. 2008;28(4):309–317.
  • Bolay H, Vuralli D, Goadsby P. Aura and head pain: relationship and gaps in the translational models. J Headache Pain. 2019;20(1):1–15.
  • Bolay H, Reuter U, Dunn AK, et al. Intrinsic brain activity triggers trigeminal meningeal afferents in migraine model. Nat Med. 8(2): 136–142. 2002.
  • Hansen JM, Baca SM, VanValkenburgh P, et al. Distinctive anatomical and physiological features of migraine aura revealed by 18 years of recording. Brain. 2013;136(12): 3589–3595.
  • Gelmers HJ. Common migraine attacks preceded by focal hyperemia and parietal Oligemia in the rCBF pattern. Cephalalgia. 1982;2(1):29–32.
  • Woods RP, Iacoboni M, Mazziotta JC. Brief report: bilateral spreading cerebral hypoperfusion during spontaneous migraine headache. N Engl J Med. 1994;331(25):1689–1692.
  • Ayata C, Jin H, Kudo C, et al. Suppression of cortical spreading depression in migraine prophylaxis. Ann Neurol. 2006;59(4):652–661.
  • Unekawa M, Tomita Y, Toriumi H, et al. Suppressive effect of chronic peroral topiramate on potassium-induced cortical spreading depression in rats. Cephalalgia. 2012;32(7):518–527.
  • Read SJ, Hirst WD, Upton N, et al. Cortical spreading depression produces increased cGMP levels in cortex and brain stem that is inhibited by tonabersat (SB-220453) but not sumatriptan. Brain Res. 2001;891(1–2):69–77.
  • Kaube H, Goadsby PJ. Anti-migraine compounds fail to modulate the propagation of cortical spreading depression in the cat. Eur Neurol. 1994;34(1):30–35.
  • Hadjikhani N, Sanchez del Rio M, Wu O, et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. PNAS. 2001;98(8): 4687–4692.
  • Olesen J, Larsen B, Lauritzen M. Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine. Ann Neurol. 1981;9(4):344–352.
  • Kurth T, Rist PM, Ridler PM, et al. Association of migraine with aura and other risk factors with incident cardiovascular disease in women. JAMA. 2020;323(22):2281–2289.
  • Mahmoud AN, Mentias A, Elgendy AY, et al. Migraine and the risk of cardiovascular and cerebrovascular events: a meta-analysis of 16 cohort studies including 1152407 subjects. BMJ Open. 2018;8(3):e020498.
  • Schytz HW, Schoonman GG, Ashina M. What have we learnt from triggering migraine? Curr Opin Neurol. 2010;23(3):259–265.
  • Afridi SK, Kaube H, Goadsby PJ. Glyceryl trinitrate triggers premonitory symptoms in migraineurs. Pain. 2004;110(3):675–680.
  • Bolay H, Moskowitz MA. The emerging importance of cortical spreading depression in migraine headache. Rev Neurol (Paris). 2005;161(6–7):655–657.
  • Goadsby PJ, Kaube H, Hoskin K. Nitric oxide synthesis couples cerebral blood flow and metabolism. Brain Res. 1992;595(1):167–170.
  • Herreras O, Large C, Ibarz JM, et al. Role of neuronal synchronizing mechanisms in the propagation of spreading depression in the in vivo hippocampus. J Neurosci. 1994;14(11):7087–7098.
  • Hasegawa Y, Latour LL, Formato JE, et al. Spreading waves of a reduced diffusion coefficient of water in normal and ischemic rat brain. J Cereb Blood Flow Metab. 1995;15(2):179–187.
  • Leao AAP, Morison RS. Propagation of spreading cortical depression. J Neurophysiol. 1945;8(1):33–45.
  • Kaufmann D, Theriot JJ, Zyuzin J, et al. Heterogeneous incidence and propagation of spreading depolarizations. J Cereb Blood Flow Metab. 2017;37(5):1748–1762.
  • Yokota C, Kuge Y, Hasegawa Y, et al. Unique profile of spreading depression in a primate model. J Cereb Blood Flow Metab. 2002;22(7): 835–842.
  • James MF, Smith MI, Bockhorst KH, et al. Cortical spreading depression in the gyrencephalic feline brain studied by magnetic resonance imaging. J Physiol. 1999;519(2):415–425.
  • Milakara D, Grozea C, Dahlem M, et al. Simulation of spreading depolarization trajectories in cerebral cortex: correlation of velocity and susceptibility in patients with aneurysmal subarachnoid hemorrhage. NeuroImage: Clinical. 2017;16:524–538.
  • Woitzik J, Hecht N, Pinczolits A, et al. Propagation of cortical spreading depolarization in the human cortex after malignant stroke. Neurology. 2013;80(12):1095–1102.
  • Dreier JP, Reiffurth C. The stroke-migraine depolarization continuum. Neuron. 2015;86(4):902–922.
  • Karatas H, Erdener SE, Gursoy-Ozdemir Y, et al. Spreading depression triggers headache by activating neuronal panx1 channels. Science. 2013;339(6123): 1092–1095.
  • Arngrim N, Hougaard A, Ahmadi K, et al. Heterogenous migraine Aura symptoms correlate with visual cortex functional magnetic resonance imaging responses. Ann Neurol. 2017;82(6):925–939.
  • Viana M, Sances G, Linde M, et al. Clinical features of migraine aura: results from a prospective diary-aided study. Cephalalgia. 2017;37(10): 979–989.
  • Moskowitz MA, Nozaki K, Kraig RP. Neocortical spreading depression provokes the expression of c-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J Neurosci. 1993;13(3):1167–1177.
  • Zhang X, Levy D, Noseda R, et al. Activation of meningeal nociceptors by cortical spreading depression: implications for migraine with aura. J Neurosci. 2010;30(26):8807–8814.
  • Lambert GA, Truong L, Zagami AS. Effect of cortical spreading depression on basal and evoked traffic in the trigeminovascular sensory system. Cephalalgia. 2011;31(14):1439–1451.
  • Fioravanti B, Kasasbeh A, Edelmayer R, et al. Evaluation of cutaneous allodynia following induction of cortical spreading depression in freely moving rats. Cephalalgia. 2011;31(10):1090–1100.
  • Manzoni GC, Farina S, Lanfranchi M, et al. Classic migraine-clinical findings in 164 patients. Eur Neurol. 1985;24:163–169.
  • Peatfield RC, Gawel MJ, Rose FC. Asymmetry of the aura and pain in migraine. J Neurol Neurosurg Psychiatry. 1981;44(9):846–848.
  • Guiloff RJ, Fruns M. Limb pain in migraine and cluster headache. J Neurol Neurosurg Psychiatry. 1988;51(8):1022–1031.
  • Bradshaw P, Parsons M. Hemiplegic migraine, a clinical study. Q J Med. 1965;34:65–85.
  • Bruyn GW, Weenink HR. Migraine accompagnee, a critical evaluation. Headache. 1966;6(1):1–22.
  • Queiroz LP, Friedman DI, Rapoport AM, et al. Characteristics of migraine visual aura in southern Brazil and northern USA. Cephalalgia. 2011;31(16):1652–1658.
  • Sawant-Pokam PM, Suryavanshi P, Mendez JM, et al. Mechanisms of neuronal silencing after cortical spreading depression. Cereb Cortex. 2017;27(2):1311–1325.
  • Kuge Y, Hasegawa Y, Yokota C, et al. Effects of single and repetitive spreading depression on cerebral blood flow and glucose metabolism in cats: a PET study. J Neurol Sci. 2000;176(2):114–123.
  • Lauritzen M, Olsen TS, Lassen NA, et al. Changes in blood flow of classic regional cerebral during the course migraine attacks. Ann Neurol. 1983;13(6): 633–641.
  • Gursoy‐Ozdemir Y, Qiu J, Matsuoka N, et al. Cortical spreading depression activates and upregulates MMP‐9. J Clin Invest. 2004;113(10):1447‐55.
  • Chen SP, Qin T, Seidel JL, et al. Inhibition of the P2X7–PANX1 complex suppresses spreading depolarization and neuroinflammation. Brain. 2017;140(6):1643–1656.
  • Dendrou CA, McVean G, Fugger L. Neuroinflammation-using big data to inform clinical practice. Nat Rev Neurol. 2016;12(12):685–698.
  • Gilhus NE, Deuschl G. Neuroinflammation-a common thread in neurological disorders. Nat Rev Neurol. 2019;15(8):429–430.
  • Xanthos DN, Sandkuhler J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci. 2014;15(1):43–53.
  • Lauritzen M. Pathophysiology of the migraine aura. The spreading depression theory. Brain. 1994;117(1):199–210.
  • Ayata C, Lauritzen M. Spreading depression, spreading depolarizations, and the cerebral vasculature. Physiol Rev. 2015;95(3):953–993.
  • Nedergaard M, Hansen AJ. Spreading depression is not associated with neuronal injury in the normal brain. Brain Res. 1988;449(1–2):395–398.
  • Sadeghian H, Jafarian M, Karimzadeh F, et al. Neuronal death by repetitive cortical spreading depression in juvenile rat brain. Exp Neurol. 2011;233(1):438–446.
  • Wendt S, Wogram E, Korvers L, et al. Experimental cortical spreading depression induces NMDA receptor dependent potassium currents in microglia. J Neurosci. 2016;36(23):6165–6174.
  • Gehrmann J, Mies G, Bonnekoh P, et al. Microglial reaction in the rat cerebral cortex induced by cortical spreading depression. Brain Pathol. 1993;3(1):11–17.
  • Jander S, Schroeter M, Peters O, et al. Cortical spreading depression induces proinflammatory cytokine gene expression in the rat brain. J Cereb Blood Flow Metab. 2001;21(3):218–225.
  • Grinberg YY, Dibbern ME, Levasseur VA, et al. Insulin-like growth factor-1 abrogates microglial oxidative stress and TNF-α responses to spreading depression. J Neurochem. 2013;126(5):662–672.
  • Magni G, Boccazzi M, Bodini A, et al. Basal astrocyte and microglia activation in the central nervous system of Familial Hemiplegic Migraine Type I mice. Cephalalgia. 2019;39(14):1809–1817.
  • Albrecht DS, Mainero C, Ichijo E, et al. Imaging of neuroinflammation in migraine with aura: a [11C] PBR28 PET/MRI study. Neurology. 2019;92(17):e2038–e50.
  • Loggia ML, Chonde DB, Akeju O, et al. Evidence for brain glial activation in chronic pain patients. Brain. 2015;138(3):604–615.
  • Takizawa T, Qin T, Lopes de Morais A, et al. Non-invasively triggered spreading depolarizations induce a rapid pro-inflammatory response in cerebral cortex. J Cereb Blood Flow Metab. 2020;40(5):1117–1131.
  • Dehghani A, Phisonkunkasem T, Ozcan SY, et al. Parenchymal neuroinflammation in familial hemiplegic migraine type 1 transgenic mice after cortical spreading depolarization. Cephalalgia. 2019;39:147.
  • Tepe N, Filiz A, Akcali D, et al. The thalamic reticular nucleus is activated by cortical spreading depression in freely moving rats: prevention by acute valproate administration. Eur J Neurosci. 2015;41(1): 120–128.
  • Sherman SM. Thalamus plays a central role in ongoing cortical functioning. Nat Neurosci. 2016;19(4):533–541.
  • Sherman SM. Functioning of circuits connecting thalamus and cortex. Compr Physiol. 2017;7:713–739.
  • Buzsaki G, Bickford RG, Ponomareff G, et al. Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci. 1988;8(11):4007–4026.
  • Steriade M, Deschenes M, Domich L, et al. Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. J Neurophysiol. 1985;54(6):1473–1497.
  • Villablanca J, Salinas-Zeballos ME. Sleep-wakefulness, EEG and behavioral studies of chronic cats without the thalamus: the ‘athalamic’ cat. Arch Ital Biol. 1972;110(3):383–411.
  • Filiz A, Tepe N, Eftekhari S, et al. CGRP receptor antagonist MK-8825 attenuates cortical spreading depression induced pain behavior. Cephalalgia. 2019;39(3): 354–365.
  • Hwang K, Bertolero MA, Liu WB, et al. The human thalamus is an integrative hub for functional brain networks. J Neurosci. 2017;37(23): 5594–5607.
  • Roux FE, Djidjeli I, Durand JP. Functional architecture of the somatosensory homunculus detected by electrostimulation. J Physiol. 2018;596(5):941–956.
  • Chen WH. Cheiro-oral syndrome: a clinical analysis and review of literature. Yonsei Med J. 2009;50(6):777–783.
  • Combarros O, Polo JM, Pascual J, et al. Evidence of somatotopic organization of the sensory thalamus based on infarction in the nucleus ventralis posterior. Stroke. 1991;22(11):1445–1447.
  • Power JD, Cohen AL, Nelson SM, et al. Functional network organization of the human brain. Neuron. 2011;72(4):665–678.
  • Sepulcre, Sabuncu MR, Yeo TB, et al. Stepwise Connectivity of the Modal Cortex Reveals the Multimodal Organization of the Human Brain. J Neurosci. 2012;32(31):10649–10661.
  • van den Heuvel MP, Sporns O. Network Hubs in the Human Brain. Trends Cogn Sci. 2013;17(12):683–696.
  • Bolay H. Thalamocortical network interruption: a fresh view for migraine symptoms. Turk J Med Sci. 2020;50(7):1651–1654.
  • Kelman L, Rains JC. Headache and sleep: examination of sleep patterns and complaints in a large clinical sample of migraineurs. Headache. 2005;45(7):904–910.
  • Supornsilpchai W, Sanguanrangsirikul S, Maneesri S, et al. Serotonin depletion, cortical spreading depression, and trigeminal nociception. Headache. 2006;46(1):34–39.
  • Ong JC, Taylor HL, Park M, et al. Can circadian dysregulation exacerbate migraines? Headache. 2018;58(7):1040–1051.
  • Nitz D, Siegel J. GABA release in the dorsal raphe nucleus: role in the control of REM sleep. Am J Physiol. 1997;273(1 Pt 2):R451–5.
  • Nayak C, Sinha S, Nagappa M, et al. Study of sleep microstructure in patients of migraine without aura. Sleep Breath. 2016;20(1):263–269.
  • Negro A, Seidel JL, Houben T, et al. Acute sleep deprivation enhances susceptibility to the migraine substrate cortical spreading depolarization. J Headache Pain. 2020;21(1):86.
  • Kilic K, Karatas H, Donmez-Demir B, et al. Inadequate brain glycogen or sleep increases spreading depression susceptibility. Ann Neurol. 2018;83(1):61–73.
  • Schain AJ, Melo-Carrillo A, Strassman AM, et al. Cortical spreading depression closes paravascular space and impairs glymphatic flow: implications for migraine headache. J Neurosci. 2017;37(11):2904–2915.
  • Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373–377.
  • Hauge AW, Kirchmann M, Olesen J. Trigger factors in migraine with aura. Cephalalgia. 2010;30(3):346–353.
  • Bunse T, Wobrock T, Strube W, et al. Motor cortical excitability assessed by transcranial magnetic stimulation in psychiatric disorders: a systematic review. Brain Stimul. 2014;7(2):158–169.
  • Dube CM, Molet J, Singh-Taylor A, et al. Hyper-excitability and epilepsy generated by chronic early-life stress. Neurobiol Stress. 2015;2:10–19.
  • Peroutka SJ. What turns on a migraine? A systematic review of migraine precipitating factors. Curr Pain Headache Rep. 2014;18(10):454.
  • Popoli M, Yan Z, McEwen BS, et al. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci. 2011;13(1):22–37.
  • Ward N, Whitney C, Avery D. The analgesic effects of caffeine in headache. Pain. 1991;44(2):151–155.
  • Diener HC, Pfaffenrath V, Pageler L. The fixed combination of acetylsalicylic acid, paracetamol and caffeine is more effective than single substances and dual combination for the treatment of headache: a multicentre, randomized, double-blind, single-dose, placebo-controlled parallel group study. Cephalalgia. 2005;25(10):776–787.
  • Scher AI, Stewart WF, Lipton RB. Caffeine as a risk factor for chronic daily headache: a population-based study. Neurology. 2004;63(11):2022–2027.
  • Frary CD, Johnson RK, Wang MQ. Food sources and intakes of caffeine in the diets of persons in the United States. J Am Diet Assoc. 2005;105(1):110–113.
  • Hagen K, Thoresen K, Stovner LJ. High dietary caffeine consumption is associated with a modest increase in headache prevalence: results from the Head-HUNT Study. J Headache Pain. 2009;10(3):153–159.
  • Silverman K, Evans SM, Strain EC. Withdrawal syndrome after the double-blind cessation of caffeine consumption. N Engl J Med. 1992;327(16):1109–1114.
  • Yalcin N, Chen SP, Yu ES, et al. Caffeine does not affect susceptibility to cortical spreading depolarization in mice. J Cereb Blood Flow Metab. 2018;39(4):740–750.
  • Dehghani A, Karatas H. Mouse Models of Familial Hemiplegic Migraine for Studying Migraine Pathophysiology. Curr Neuropharmacol. 2019;17(10):961–973.
  • Ashina M, Hansen J, á Dunga B, et al. Human models of migraine — short-term pain for long-term gain. Nat Rev Neurol. 2017;13(12):713–724.
  • Hansen JM, Thomsen LL, Olesen J, et al. Calcitonin gene-related peptide does not cause migraine attacks in patients with familial hemiplegic migraine. Headache. 2011;51(4):544–553.
  • Jansen NA, Dehghani A, Linssen MML, et al. First FHM3 mouse model shows spontaneous cortical spreading depolarizations. Ann Clin Transl Neurol. 2020;7(1):132–138.
  • Ogiwara I, Miyamoto H, Morita N, et al. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J Neurosci. 2007;27(22):5903–5914.
  • Aiba I, Shuttleworth CW, Barnes S. Characterization of inhibitory GABA-A receptor activation during spreading depolarization in brain slice. PLoS One. 2014;9(10):e110849.
  • Desroches M, Faugeras O, Krupa M, et al. Modeling cortical spreading depression induced by the hyperactivity of interneurons. J Comput Neurosci. 2019;47(2–3):125–140.
  • Eftekhari S, Salvatore CA, Johansson S, et al. Localization of CGRP, CGRP receptor, PACAP and glutamate in trigeminal ganglion. Relation to the blood-brain barrier. Brain Research. 2015;1600:93–109.
  • Warfvinge K, Edvinsson L. Distribution of CGRP and CGRP receptor components in the rat brain. Cephalalgia. 2019;39(3):342–353.
  • Walker CS, Eftekhari S, Bower RL, et al. A second trigeminal CGRP receptor: function and expression of the AMY1 receptor. Ann Clin Transl Neurol. 2015;2(6):595–608.
  • Hay DL, Walker CS. CGRP and its receptors. Headache. 2017;57(4):625–636.
  • Tozzi A, de Iure A, Di Filippo M, et al. Critical role of calcitonin gene-related peptide receptors in cortical spreading depression. Proc Natl Acad Sci U S A. 2012;109(46):18985–18990.
  • Brain SD, Grant AD. Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol Rev. 2004;84(3):903–934.
  • Reuter U, Weber JR, Gold L, et al. Perivascular nerves contribute to cortical spreading depression-associated hyperemia in rats. Am J Physiol. 1998;274(6):H1979–87.
  • Hoffmann J, Baca SM, Akerman S. Neurovascular mechanisms of migraine and cluster headache. J Cereb Blood Flow Metab. 2019;39(4):573–594.
  • Wahl M, Schilling L, Parsons AA, et al. Involvement of calcitonin gene-related peptide (CGRP) and nitric oxide (NO) in the pial artery dilatation elicited by cortical spreading depression. Brain Res. 1994;637(1–2):204–210.
  • Urbach A, Bruehl C, Witte OW. Microarray-based long-term detection of genes differentially expressed after cortical spreading depression. Eur J Neurosci. 2006;24(3):841–856.
  • Wang Y, Tye AE, Zhao J, et al. Induction of calcitonin gene-related peptide expression in rats by cortical spreading depression. Cephalalgia. 2019;39(3):333–341.
  • Bolay H, Messlinger K, Duox M, et al. Anatomy of Headaches. In: Ashina M, Geppetti P, editors. Pathophysiology of Headaches. Switzerland: Springer; 2015. p. 1–31.
  • Colonna DM, Meng W, Deal DD, et al. Calcitonin gene-related peptide promotes cerebrovascular dilation during cortical spreading depression in rabbits. Am J Physiol. 1994;266(3 Pt 2):H1095–102.
  • Schain AJ, Melo-Carrillo A, Stratton J, et al. CSD-induced arterial dilatation and plasma protein extravasation are unaffected by fremanezumab: implications for CGRP’s role in migraine with aura. J.Neurosci 2019;39(30):6001–6011.
  • Moreno-Ajona D, Pérez-Rodríguez A, Goadsby PJ. Gepants, calcitonin-gene-related peptide receptor antagonists: what could be their role in migraine treatment? Curr Opin Neurol. 2020;33(3):309–315.
  • Chiang CC, Schwedt TJ. Calcitonin gene-related peptide (CGRP)-targeted therapies as preventive and acute treatments for migraine—The monoclonal antibodies and gepants. Prog Brain Res. 2020;225:143–170.
  • Diener HC, Förderreuther S, Gaul C, et al. Prevention of migraine with monoclonal antibodies against CGRP or the CGRP receptor. Neurol Res Pract. 2020;2(1):11.
  • Melo-Carrillo A, Noseda R, Nir R, et al. Selective inhibition of trigeminovascular neurons by fremanezumab: a humanized monoclonal anti-CGRP antibody. J Neurosci. 2017;37(30):7149–7163.
  • Russo AF. Calcitonin gene-related peptide (CGRP): a new target for migraine. Annu Rev Pharmacol Toxicol. 2015;55(1):533–552.
  • Vaudry D, Gonzalez BJ, Basille M, et al. Pituitary adenylate cyclase- activating polypeptide and its receptors: from structure to functions. Pharmacol Rev. 2000;52(2):269–324.
  • Waschek JA, Baca SM, Akerman S. PACAP and migraine headache: immunomodulation of neural circuits in autonomic ganglia and brain parenchyma. J Headache Pain. 2018;19(1):23.
  • Birk S, Sitarz JT, Petersen KA, et al. The effect of intravenous PACAP38 on cerebral hemodynamics in healthy volunteers. Regul Peptides. 2007;140(3):185–191.
  • Schytz HW, Birk S, Wienecke T, et al. PACAP38 induces migraine-like attacks in patients with migraine without aura. Brain. 2009;132(1):16–25.
  • Amin FM, Asghar MS, Guo S, et al. Headache and prolonged dilatation of the middle meningeal artery by PACAP38 in healthy volunteers. Cephalalgia. 2012;32(2):140–149.
  • Guo S, Vollesen AL, Hansen YB, et al. Part II: biochemical changes after pituitary adenylate cyclase-activating polypeptide-38 infusion in migraine patients. Cephalalgia. 2017;37(2):136–147.
  • Ashina M, Doležil D, Bonner JH, et al. A phase 2, randomized, double-blind, placebo-controlled trial of AMG 301, a pituitary adenylate cyclase-activating polypeptide PAC1 receptor monoclonal antibody for migraine prevention. Cephalalgia. 2021 Jan;41(1):33–44.
  • Moldovan Loomis C, Dutzar B, Ojala EW, et al. Pharmacologic characterization of ALD1910, a potent humanized monoclonal antibody against the pituitary adenylate cyclase-activating peptide. J Pharmacol Exp Ther. 2019;369(1):26–36.
  • Bogdanov VB, Multon S, Chauvel V, et al. Migraine preventive drugs differentially affect cortical spreading depression in rat. Neurobiol Dis. 2011;41(2):430–435.
  • D’Andrea G, Granella F, Cadaldini M, et al. Effectiveness of lamotrigine in the prophylaxis of migraine with aura: an open pilot study. Cephalalgia. 1999;19(1):64–66.
  • Lampl C, Buzath A, Klinger D, et al. Lamotrigine in the prophylactic treatment of migraine aura–a pilot study. Cephalalgia. 1999;19(1):58–63.
  • Lampl C, Katsarava Z, Diener HC, et al. Lamotrigine reduces migraine aura and migraine attacks in patients with migraine with aura. J Neurol Neurosurg Psychiatry. 2005;76(12):1730–1732.
  • Steiner TJ, Findley LJ, Yuen AW. Lamotrigine versus placebo in the prophylaxis of migraine with and without aura. Cephalalgia. 1997;17(2):109–112.
  • Gupta P, Singh S, Goyal V, et al. Low-dose topiramate versus lamotrigine in migraine prophylaxis (the Lotolamp study). Headache. 2007;47(3):402–412.
  • Smith MI, Read SJ, Chan WN, et al. Repetitive cortical spreading depression in a gyrencephalic feline brain: inhibition by the novel benzoylaminobenzopyran SB-220453. Cephalalgia. 2000;20(6):546–553.
  • Bradley DP, Smith MI, Netsiri C, et al. Diffusion-weighted MRI used to detect in vivo modulation of cortical spreading depression: comparison of sumatriptan and tonabersat. Exp Neurol. 2001;172(2):342–353.
  • Hauge AW, Asghar MS, Schytz HW, et al. Effects of tonabersat on migraine with aura: a randomised, double-blind, placebo controlled crossover study. Lancet Neurol. 2009;8(8):718–723.
  • Goadsby PJ, Ferrari MD, Csanyi A, et al. Randomized, double-blind, placebo controlled, proof-of-concept study of the cortical spreading depression inhibiting agent tonabersat in migraine prophylaxis. Cephalalgia. 2009;29(7):742–750.
  • Carlson AP, Abbas M, Alunday RL, et al. Spreading depolarization in acute brain injury inhibited by ketamine: a prospective, randomized, multiple crossover trial. J Neurosurg. 2018;1–7. DOI:https://doi.org/10.3171/2017.12.JNS171665.
  • Kudo C, Toyama M, Boku A, et al. Anesthetic effects on susceptibility to cortical spreading depression. Neuropharmacol. 2013;67:32–36.
  • Afridi S, Giffin NJ, Kaube H, et al. A randomized controlled trial of intranasal ketamine in migraine with prolonged aura. Neurology. 2013;80(7):642–647.
  • Costa Monteiro HM, Lima Barreto-Silva N, Elizabete Dos Santos G, et al. Physical exercise versus fluoxetine: antagonistic effects on cortical spreading depression in Wistar rats. Eur J Pharmacol. 2015;762:49–54.
  • dos Santos AA, Pinheiro PC, De Lima DS, et al. Fluoxetine inhibits cortical spreading depression in weaned and adult rats suckled under favorable and unfavorable lactation conditions. Exp Neurol. 2006;200(2):275–282.
  • Guedes RC, Amancio-Dos-Santos A, ManhaesDe-Castro R, et al. Citalopram has an antagonistic action on cortical spreading depression in well-nourished and early-malnourished adult rats. Nutr Neurosci. 2002;5(2):115–123.
  • Amemori T, Bures J. Ketamine blockade of spreading depression: rapid development of tolerance. Brain Res. 1990;519(1–2):351–354.
  • Marrannes R, Willems R, De Prins E, et al. Evidence for a role of the N-methyl-D-aspartate (NMDA) receptor in cortical spreading depression in the rat. Brain Res. 1988;457(2):226–240.
  • Peeters M, Gunthorpe MJ, Strijbos PJ, et al. Effects of pan- and subtype-selective N-Methyl-d-aspartate receptor antagonists on cortical spreading depression in the rat: therapeutic potential for migraine. J Pharmacol Exp Ther. 2007;321(2):564–572.
  • Ola´h G, Heredi J, Menyhart A, et al. Unexpected effects of peripherally administered kynurenic acid on cortical spreading depression and related blood-brain barrier permeability. Drug Des Devel Ther. 2013;7:981–987.
  • Shatillo A, Salo RA, Giniatullin R, et al. Involvement of NMDA receptor subtypes in cortical spreading depression in rats assessed by fMRI. Neuropharmacology. 2015;93:164–170.
  • Bu F, Du R, Li Y, et al. NR2A contributes to genesis and propagation of cortical spreading depression in rats. Sci Rep. 2016;6(1):23576.
  • Hoffmann U, Dilekoz E, Kudo C, et al. Gabapentin suppresses cortical spreading depression susceptibility. J Cereb Blood Flow Metab. 2010;30(9):1588–1592.
  • Alaydin HC, Vuralli D, Keceli Y, et al. Reduced short-latency afferent inhibition indicates impaired sensorimotor integrity during migraine attacks. Headache. 2019;59(6): 906–914.
  • Cappe C, Morel A, Barone P, et al. The thalamocortical projection systems in primate: an anatomical support for multisensory and sensorimotor interplay. Cereb Cortex. 2009;19(9):2025–2037.
  • Nardone R, Bergmann J, Kronbichler M, et al. Abnormal short latency afferent inhibition in early Alzheimer’s disease: a transcranial magnetic demonstration. J Neural Transm. 2008;115(11):1557–1562.
  • Nardone R, Bergmann J, Christova M, et al. Short latency afferent inhibition differs among the subtypes of mild cognitive impairment. J Neural Transm. 2012;119(4):463–471.
  • Bowyer SM, Aurora KS, Moran JE, et al. Magnetoencephalographic fields from patients with spontaneous and induced migraine aura. Ann Neurol. 2001;50(5):582–587.
  • Barkley GL, Tepley N, Nagel-Leiby S, et al. Magnetoencephalographic studies of migraine. Headache. 1990;30(7):428.
  • Mackert BM, Wübbeler G, Burghoff M, et al. Non-invasive long-term recordings of cortical ‘direct current’ (DC-) activity in humans using magnetoencephalography. Neurosci Lett. 1999;273(3):159–162.
  • Voipio J, Tallgren P, Heinonen E, et al. Millivolt-scale DC shifts in the human scalp EEG: evidence for a nonneuronal generator. J Neurophysiol. 2003;89(4):2208–2214.
  • Mackert BM. The discovery of slowness-recent progress in DC-MEG research. Neurol Clin Neurophysiol. 2004;41:84.
  • Vanhatalo S, Tallgren P, Becker C, et al. Scalp-recorded slow EEG responses generated in response to hemodynamic changes in the human brain. Clin Neurophysiol. 2003;114(9):1744–1754.
  • Mackert BM, Wübbeler G, Leistner S, et al. Non-invasive single-trial monitoring of human movement-related brain activation based on DC-magnetoencephalography. Neuroreport. 2001;12(8):1689–1692.
  • Rodin EA, Taulu SJ, Funke ME, et al. Magnetoencephalographic Infraslow activity: a feasibility study. J Clin Neurophysiol. 2016;33(4):350–358.
  • Rodin E, Modur P. Ictal intracranial infraslow EEG activity. Clin Neurophysiol. 2008;119(10):2188–2200.
  • Leistner S, Sander T, Burghoff M, et al. Combined MEG and EEG methodology for non-invasive recording of infraslow activity in the human cortex. Clin Neurophysiol. 2007;118(12):2774–2780.
  • Lipton RB, Dodick DW, Silberstein SD, et al. Single-pulse transcranial magnetic stimulation for acute treatment of migraine with aura: a randomised, double-blind, parallel-group, sham-controlled trial. Lancet Neurol. 2010;9(4):373–380.
  • Lloyd JO, Chisholm KI, Oehle B, et al. Cortical mechanisms of single-pulse transcranial magnetic stimulation in migraine. Neurotherapeutics. 2020;17(4):1973–1987.
  • Andreou AP, Holland PR, Akerman S, et al. Transcranial magnetic stimulation and potential cortical and trigeminothalamic mechanisms in migraine. Brain. 2016;139(7):2002–2014.
  • Boroojerdi B, Prager A, Muellbacher W, et al. Reduction of human visual cortex excitability using 1-Hz transcranial magnetic stimulation. Neurology. 2000;54(7):1529–1531.
  • Khodaie B, Saba V. The neuroprotective effects of long-term repetitive transcranial magnetic stimulation on the cortical spreading depression-induced damages in rat’s brain. Basic Clin Neurosci. 2018;9(2):87–100.
  • Tassorelli C, Grazzi L, de Tommaso M, et al. Noninvasive vagus nerve stimulation as acute therapy for migraine the randomized PRESTO study. Neurology. 2018;91(4):e364–73.
  • Diener HC, Goadsby PJ, Ashina M, et al. Noninvasive vagus nerve stimulation (nVNS) for the preventive treatment of episodic migraine: the multicentre, double-blind, randomised, shamcontrolled PREMIUM trial. Cephalalgia. 2019;39(12):1475–1487.
  • Chen SP, Ay I, Morais A, et al. Vagus nerve stimulation inhibits cortical spreading depression. Pain. 2016;157(4):797–805.
  • Bohotin C, Scholsem M, Multon S, et al. Vagus nerve stimulation in awake rats reduces formalin-induced nociceptive behaviour and fos-immunoreactivity in trigeminal nucleus caudalis. Pain. 2003;101(1):3–12.
  • Lyubashina OA, Sokolov AY, Panteleev SS. Vagal afferent modulation of spinal trigeminal neuronal responses to dural electrical stimulation in rats. Neuroscience. 2012;222:29–37.
  • Oshinsky ML, Murphy AL, Hekierski H Jr, et al. Noninvasive vagus nerve stimulation as treatment for trigeminal allodynia. Pain. 2014;155(5):1037–1042.
  • Morais A, Liu TT, Qin T, et al. Vagus nerve stimulation inhibits cortical spreading depression exclusively via central mechanisms. Pain. 2020;161(7):1661–1669.
  • Zerimecha S, Chevera O, Scalmani P, et al. Cholinergic modulation inhibits cortical spreading depression in mouse neocortex through activation of muscarinic receptors and decreased excitatory/inhibitory drive. Neuropharmacology. 2020;166:107951.
  • De Coo IF, Wilbrink LA, Ie GD, et al. Aura in cluster headache: a cross-sectional study. Headache. 2018;58(8):1203–1210.
  • Schurks M, Kurth T, De Jesus J, et al. Cluster headache: clinical presentation, lifestyle features, and medical treatment. Headache. 2006;46(8):1246‐54.
  • Supornsilpchai W, Le Grand SM, Srikiatkhachorn A. Cortical hyperexcitability and mechanism of medication-overuse headache. Cephalalgia. 2010;30(9):1101–1109.
  • Green AL, Gu P, De Felice M, et al. Increased susceptibility to cortical spreading depression in an animal model of medication-overuse headache. Cephalalgia. 2013;34(8):594–604.
  • Becerra L, Bishop J, Barmettler G, et al. Triptans disrupt brain networks and promote stress-induced CSD-like responses in cortical and subcortical areas. J Neurophysiol. 2016;115(1):208–217.
  • Jones AL, Rubin GL, Coughtrie MWH. Reduced platelet phenolsulphotransferase activity towards dopamine and 5-hydroxytryptamine in migraine. Eur J Clin Pharmacol. 1995;49(1–2):109–114.
  • Alam Z, Coombes N, Waring RH, et al. Platelet sulphotransferase activity, plasma sulphate levels and sulphation capacity in patients with migraine and tension headache. Cephalalgia. 1997;17(7):761–764.
  • Vuralli D, Topa E, Morais A, et al. Sulfotransferase inhibitors in the pathophysiology of migraine. Cephalalgia Rep. 2020;3:1–21.
  • Mulder IA, Li M, De Vries T, et al. Anti-migraine calcitonin gene–related peptide receptor antagonists worsen cerebral ischemic outcome in mice. Ann Neurol. 2020;88(4):771–784.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.