323
Views
1
CrossRef citations to date
0
Altmetric
Review

Emerging role of artificial intelligence in stroke imaging

, , ORCID Icon, ORCID Icon, , & show all
Pages 745-754 | Received 28 Jan 2021, Accepted 30 Jun 2021, Published online: 20 Jul 2021

References

  • Goyal M, Menon BK, van Zwam WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387(10029):1723–1731.
  • Potter CA, Vagal AS, Goyal M, et al. CT for treatment selection in acute ischemic stroke: a code stroke primer. RadioGraphics. 2019;39(6):1717–1738.
  • Vagal A, Wintermark M, Nael K, et al. Automated CT perfusion imaging for acute ischemic stroke: pearls and pitfalls for real-world use. Neurology. 2019;10. 1212/WNL.0000000000008481. doi:10.1212/WNL.0000000000008481
  • Sanelli PC, Sykes JB, Ford AL, et al. Imaging and treatment of patients with acute stroke: an evidence-based review. American Journal of Neuroradiology. 2014;35(6):1045–1051.
  • Adeoye O, Nyström KV, Yavagal DR, et al. Recommendations for the establishment of stroke systems of care: a 2019 Update: a policy statement from the American Stroke Association. Stroke. 2019;50(7). DOI:10.1161/STR.0000000000000173.
  • Suri JS. State-of-the-art review on deep learning in medical imaging. Frontiers in Bioscience. 2019;24(3):392–426.
  • Gu J, Wang Z, Kuen J, et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018;77:354–377.
  • Avanzo M, Stancanello J, El Naqa I. Beyond imaging: the promise of radiomics. Physica Medica. 2017;38:122–139.
  • Goff DC, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the american college of cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129:S49–S73.
  • Hira RS, Kennedy K, Nambi V, et al. Frequency and practice-level variation in inappropriate aspirin use for the primary prevention of cardiovascular disease. J Am Coll Cardiol. 2015;65:111–121.
  • Poplin R, Varadarajan AV, Blumer K, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2:158–164.
  • Han L, Askari M, Altman RB, et al. Atrial Fibrillation Burden Signature and Near-Term Prediction of Stroke: a Machine Learning Analysis. Circulation: Cardiovascular Quality and Outcomes. 2019;12(10). DOI:10.1161/CIRCOUTCOMES.118.005595.
  • Saba L, Banchhor SK, Suri HS, et al. Accurate cloud-based smart IMT measurement, its validation and stroke risk stratification in carotid ultrasound: a web-based point-of-care tool for multicenter clinical trial. Comput. Biol. Med. 2016;75:217–234.
  • Sharma AM, Gupta A, Kumar PK, et al. A review on carotid ultrasound atherosclerotic tissue characterization and stroke risk stratification in machine learning framework. Current Atherosclerosis Reports. 2015;17(9):55.
  • Saba L, Jain PK, Suri HS, et al. Plaque tissue morphology-based stroke risk stratification using carotid ultrasound: a polling-based PCA Learning Paradigm. J. Med. Syst. 2017;41:98.
  • Lekadir K, Galimzianova A, Betriu A, et al. A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound. IEEE Journal of Biomedical and Health Informatics. 2017;21(1):48–55.
  • Chen L, Carlton Jones AL, Mair G, et al. Rapid Automated Quantification of Cerebral Leukoaraiosis on CT Images: a Multicenter Validation Study. Radiology. 2018;288(2):573–581.
  • Charidimou A, Pasi M, Fiorelli M, et al. Leukoaraiosis, cerebral hemorrhage, and outcome after intravenous thrombolysis for acute ischemic stroke: a meta-analysis. Stroke. 2016;47(9):2364–2372.
  • Willer L, Havsteen I, Ovesen C, et al. Computed Tomography–Verified Leukoaraiosis Is a Risk Factor for Post-thrombolytic Hemorrhage. Journal of Stroke and Cerebrovascular Diseases. 2015;24(6):1126–1130.
  • Association between brain imaging signs, early and late outcomes, and response to intravenous alteplase after acute ischaemic stroke in the third International Stroke Trial (IST-3): secondary analysis of a randomised controlled trial. Lancet Neurol. 2015;14(5):485–496.
  • Ryu W-S, Woo S-H, Schellingerhout D, et al. Stroke outcomes are worse with larger leukoaraiosis volumes. Brain. 2017;140(1):158–170.
  • Jamthikar AD, Puvvula A, Gupta D, et al. Cardiovascular disease and stroke risk assessment in patients with chronic kidney disease using integration of estimated glomerular filtration rate, ultrasonic image phenotypes, and artificial intelligence: a narrative review. Int. Angiol. J. Int. Union Angiol. 2020; DOI:10.23736/S0392-9590.20.04538-1.
  • Nogueira RG, Jadhav AP, Haussen DC, et al Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct |NEJM. Available from:https://www.nejm.org/doi/full/10.1056/nejmoa1706442.
  • Albers GW, Marks MP, Kemp S, et al. Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. New England Journal of Medicine. 2018;378(8):708–718.
  • Thomalla G, Simonsen CZ, Boutitie F, et al. MRI-Guided Thrombolysis for Stroke with Unknown Time of Onset. New England Journal of Medicine. 2018;379(7):611–622.
  • Ma H, Campbell BCV, Parsons MW, et al. Thrombolysis Guided by Perfusion Imaging up to 9 Hours after Onset of Stroke. New England Journal of Medicine. 2019;380(19):1795–1803.
  • Ringleb P, Bendszus M, Bluhmki E, et al. Extending the time window for intravenous thrombolysis in acute ischemic stroke using magnetic resonance imaging-based patient selection. International Journal of Stroke. 2019;14(5):483–490.
  • Davis SM, Donnan GA, Parsons MW, et al. Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol. 2008;7(4):299–309.
  • Hussein HM, Saleem MA, Qureshi AI. Rates and predictors of futile recanalization in patients undergoing endovascular treatment in a multicenter clinical trial. Neuroradiology. 2018;60(5):557–563.
  • Bivard A, Churilov L, Parsons M. Artificial intelligence for decision support in acute stroke — current roles and potential. Nature Reviews Neurology. 2020;16(10):575–585.
  • Pesapane F, Volonté C, Codari M, et al. Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United States. Insights into Imaging. 2018;9(5):745–753.
  • Oren O, Gersh BJ, Bhatt DL. Artificial intelligence in medical imaging: switching from radiographic pathological data to clinically meaningful endpoints. The Lancet Digital Health. 2020;2(9):e486–e488.
  • Saba L, Biswas M, Kuppili V, et al. The present and future of deep learning in radiology. European Journal of Radiology. 2019;114:14–24.
  • Tan JC, Dillon WP, Liu S, et al. Systematic comparison of perfusion-CT and CT-angiography in acute stroke patients: comparison of CT Modalities for Stroke Imaging. Annals of Neurology. 2007;61(6):533–543.
  • von Kummer R. Ischemic Stroke and Tissue Hypodensity on Computed Tomography. Stroke. 1999;30(9):1974–1981.
  • Oliveira MS, Fernandes PT, Avelar WM, et al. Texture analysis of computed tomography images of acute ischemic stroke patients. Brazilian Journal of Medical and Biological Research. 2009;42(11):1076–1079.
  • Peter R, Korfiatis P, Blezek D, et al. A quantitative symmetry-based analysis of hyperacute ischemic stroke lesions in noncontrast computed tomography. Medical Physics. 2017;44(1):192–199.
  • Tang F-H, Ng DKS, Chow DHK. An image feature approach for computer-aided detection of ischemic stroke. Computers in Biology and Medicine. 2011;41(7):529–536.
  • Abedi V, Goyal N, Tsivgoulis G, et al. Novel screening tool for stroke using artificial neural network. Stroke. 2017;48(6):1678–1681.
  • Guerrero R, Qin C, Oktay O, et al. White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks. NeuroImage Clin. 2018;17:918–934.
  • Öman O, Mäkelä T, Salli E, et al. 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke. European Radiology Experimental. 2019;3(1):8.
  • Kasasbeh AS, Christensen S, Parsons MW, et al. Artificial Neural Network Computer Tomography Perfusion Prediction of Ischemic Core. Stroke. 2019;50(6):1578–1581.
  • Chen Z, Zhang R, Xu F, et al. Novel Prehospital Prediction Model of Large Vessel Occlusion Using Artificial Neural Network. Frontiers in Aging Neuroscience. 2018;10:181.
  • Barreira C, Bouslama M, Haussen DC, et al. E-108 Aladin study: automated large artery occlusion detection in stroke imaging study – a multicenter analysis. J NeuroInterv Surg. 2018;10:A101–A102.
  • Arindam C, Somayaji Nayana R, Kabakis Ismail M. Abstract WMP16: artificial Intelligence Detection of Cerebrovascular Large Vessel Occlusion - Nine Month, 650 Patient Evaluation of the Diagnostic Accuracy and Performance of the Viz.ai LVO Algorithm. Stroke. 50: AWMP16–AWMP16.
  • Desai V, Flanders AE, Lakhani P. Application of Deep Learning in Neuroradiology: automated Detection of Basal Ganglia Hemorrhage using 2D-Convolutional Neural Networks. ArXiv171003823 Cs. 2017.
  • Chang PD, Kuoy E, Grinband J, et al. Hybrid 3D/2D Convolutional Neural Network for Hemorrhage Evaluation on Head CT. American Journal of Neuroradiology. 2018;39(9):1609–1616.
  • Liu J, Xu H, Chen Q, et al. Prediction of hematoma expansion in spontaneous intracerebral hemorrhage using support vector machine. EBioMedicine. 2019;43:454–459.
  • Chen L, Bentley P, Rueckert D. Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks. NeuroImage Clin. 2017;15:633–643.
  • Maier O, Schröder C, Forkert ND, et al. Classifiers for Ischemic Stroke Lesion Segmentation: a Comparison Study. PLOS ONE. 2015;10(12):e0145118.
  • Wilke M, de Haan B, Juenger H, et al. Manual, semi-automated, and automated delineation of chronic brain lesions: a comparison of methods. NeuroImage. 2011;56(4):2038–2046.
  • Sales Barros R, Tolhuisen ML, Boers AM, et al. Automatic segmentation of cerebral infarcts in follow-up computed tomography images with convolutional neural networks. Journal of NeuroInterventional Surgery. 2020;12(9):848–852.
  • Mokli Y, Pfaff J, dos Santos DP, et al. Computer-aided imaging analysis in acute ischemic stroke – background and clinical applications. Neurological Research and Practice. 2019;1(1):23.
  • Barber PA, Demchuk AM, Zhang J, et al. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. Lancet. 2000;355(9216):1670–1674.
  • Kobkitsuksakul C, Tritanon O, Suraratdecha V, et al Interobserver agreement between senior radiology resident, neuroradiology fellow, and experienced neuroradiologist in the rating of Alberta Stroke Program Early Computed Tomography Score (ASPECTS). 2018 Diagnostic and Interventional Radiology, 24(2), 104.
  • Takahashi N, Lee Y, Tsai D-Y, et al. An automated detection method for the MCA dot sign of acute stroke in unenhanced CT. Radiological Physics and Technology. 2014;7(1):79–88.
  • Nagel S, Sinha D, Day D, et al. e-ASPECTS software is non-inferior to neuroradiologists in applying the ASPECT score to computed tomography scans of acute ischemic stroke patients. International Journal of Stroke. 2017;12(6):615–622.
  • Austein F, Wodarg F, Jürgensen N, et al. Automated versus manual imaging assessment of early ischemic changes in acute stroke: comparison of two software packages and expert consensus. European Radiology. 2019;29(11):6285–6292.
  • Mokli Y, Pfaff J, dos Santos DP. dos Santos, D. P., Herweh, C. & Nagel, S. Computer-aided imaging analysis in acute ischemic stroke – background and clinical applications. Neurological Research and Practice. 2019;1(1):23.
  • Chung CY, Rodrigues GM, Haussen DC, et al. Abstract WP76: automated Detection of Hyperdense MCA Sign and Automated Notification of Large Vessel Occlusion Using Artificial Intelligence. Stroke. 2019;50(Suppl_1). DOI:10.1161/str.50.suppl_1.WP76.
  • Berkhemer OA, Fransen PSS, Beumer D, et al. A Randomized Trial of Intraarterial Treatment for Acute Ischemic Stroke. New England Journal of Medicine. 2015;372(1):11–20.
  • Boers AMM, Sales Barros R, Jansen IGH, et al. Value of Quantitative Collateral Scoring on CT Angiography in Patients with Acute Ischemic Stroke. American Journal of Neuroradiology. 2018;39(6):1074–1082.
  • Caroli A, Perico N, Perna A, et al. Effect of longacting somatostatin analogue on kidney and cyst growth in autosomal dominant polycystic kidney disease (ALADIN): a randomised, placebo-controlled, multicentre trial. Lancet. 2013;382(9903):1485–1495.
  • Barreira CM, Bouslama M, Haussen DC, et al. Abstract WP61: automated Large Artery Occlusion Detection IN Stroke Imaging - ALADIN Study. Stroke. 2018;49(Suppl_1). DOI:10.1161/str.49.suppl_1.WP61.
  • Sheth SA, Lopez-Rivera V, Barman A, et al. Machine Learning–Enabled Automated Determination of Acute Ischemic Core From Computed Tomography Angiography. Stroke. 2019;50(11):3093–3100.
  • Park A, Chute C, Rajpurkar P, et al. Deep Learning–Assisted Diagnosis of Cerebral Aneurysms Using the HeadXNet Model. JAMA Network Open. 2019;2(6):e195600.
  • Boutelier T, Kudo K, Pautot F, et al. Bayesian Hemodynamic Parameter Estimation by Bolus Tracking Perfusion Weighted Imaging. IEEE Transactions on Medical Imaging. 2012;31(7):1381–1395.
  • Powers WJ, Rabinstein AA, Ackerson T, et al. 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: a Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2018;49(3):2018.
  • Kamalian S, Kamalian S, Maas MB, et al. CT Cerebral Blood Flow Maps Optimally Correlate With Admission Diffusion-Weighted Imaging in Acute Stroke but Thresholds Vary by Postprocessing Platform. Stroke. 2011;42(7):1923–1928.
  • Copelan AZ, Smith ER, Drocton GT, et al. Recent Administration of Iodinated Contrast Renders Core Infarct Estimation Inaccurate Using RAPID Software. American Journal of Neuroradiology. 2020;41(12):2235–2242.
  • Nogueira RG, Jadhav AP, Haussen DC, et al. Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct. New England Journal of Medicine. 2018;378(1):11–21.
  • Broocks G, Leischner H, Hanning U, et al. Lesion Age Imaging in Acute Stroke: water Uptake in CT Versus <sc>DWI-FLAIR Mismatch. Annals of Neurology. 2020;88(6):1144–1152.
  • Dehkharghani S, Bammer R, Straka M, et al. Performance and Predictive Value of a User-Independent Platform for CT Perfusion Analysis: threshold-Derived Automated Systems Outperform Examiner-Driven Approaches in Outcome Prediction of Acute Ischemic Stroke. American Journal of Neuroradiology. 2015;36(8):1419–1425.
  • Kamal H, Lopez V, Sheth SA. Machine Learning in Acute Ischemic Stroke Neuroimaging. Frontiers in Neurology. 2018;9:945.
  • Bouts MJ, Tiebosch IA, van der Toorn A, et al. Early Identification of Potentially Salvageable Tissue with MRI-Based Predictive Algorithms after Experimental Ischemic Stroke. Journal of Cerebral Blood Flow & Metabolism. 2013;33(7):1075–1082.
  • Huang S, Shen Q, Duong TQ. Quantitative prediction of acute ischemic tissue fate using support vector machine. Brain Res. 2011;1405:77–84.
  • Chilamkurthy S, Ghosh R, Tanamala S, et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. The Lancet. 2018;392(10162):2388–2396.
  • Arbabshirani MR, Fornwalt BK, Mongelluzzo GJ, et al. Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. Npj Digital Medicine. 2018;1(1):9.
  • Lee H, Yune S, Mansouri M, et al. An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nature Biomedical Engineering. 2019;3(3):173–182.
  • Thomalla G, Cheng B, Ebinger M, et al. DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4·5 h of symptom onset (PRE-FLAIR): a multicentre observational study. Lancet Neurol. 2011;10(11):978–986.
  • Wu O, Koroshetz WJ, Østergaard L, et al. Predicting Tissue Outcome in Acute Human Cerebral Ischemia Using Combined Diffusion- and Perfusion-Weighted MR Imaging. Stroke. 2001;32(4):933–942.
  • McKinley R, Häni L, Gralla J, et al. Fully automated stroke tissue estimation using random forest classifiers (FASTER). Journal of Cerebral Blood Flow & Metabolism. 2017;37(8):2728–2741.
  • Livne M, Boldsen JK, Mikkelsen IK, et al. Boosted Tree Model Reforms Multimodal Magnetic Resonance Imaging Infarct Prediction in Acute Stroke. Stroke. 2018;49(4):912–918.
  • Winder AJ, Siemonsen S, Flottmann F, et al. Technical considerations of multi-parametric tissue outcome prediction methods in acute ischemic stroke patients. Scientific Reports. 2019;9(1):13208.
  • Bagher-Ebadian H, Jafari-Khouzani K, Mitsias PD, et al. Predicting Final Extent of Ischemic Infarction Using Artificial Neural Network Analysis of Multi-Parametric MRI in Patients with Stroke. PLoS ONE. 2011;6(8):e22626.
  • Nielsen A, Hansen MB, Tietze A, et al. Prediction of Tissue Outcome and Assessment of Treatment Effect in Acute Ischemic Stroke Using Deep Learning. Stroke. 2018;49(6):1394–1401.
  • Yu Y, Guo D, Lou M, et al. Prediction of Hemorrhagic Transformation Severity in Acute Stroke From Source Perfusion MRI. IEEE Transactions on Biomedical Engineering. 2018;65(9):2058–2065.
  • Kemmling A, Flottmann F, Forkert ND, et al. Multivariate Dynamic Prediction of Ischemic Infarction and Tissue Salvage as a Function of Time and Degree of Recanalization. Journal of Cerebral Blood Flow & Metabolism. 2015;35(9):1397–1405.
  • Van Os HJA, Ramos LA, Hilbert A, et al. Predicting Outcome of Endovascular Treatment for Acute Ischemic Stroke: potential Value of Machine Learning Algorithms. Frontiers in Neurology. 2018;9:784.
  • Bacchi S, Zerner T, Oakden-Rayner L, et al. Deep Learning in the Prediction of Ischaemic Stroke Thrombolysis Functional Outcomes. Academic Radiology. 2020;27(2):e19–e23.
  • Bentley P, Ganesalingam J, Carlton Jones AL, et al. Prediction of stroke thrombolysis outcome using CT brain machine learning. NeuroImage Clin. 2014;4:635–640.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.