311
Views
4
CrossRef citations to date
0
Altmetric
Review

Beyond McDonald: updated perspectives on MRI diagnosis of multiple sclerosis

ORCID Icon &
Pages 895-911 | Received 11 May 2021, Accepted 15 Jul 2021, Published online: 27 Jul 2021

References

  • Filippi M, Brück W, Chard D, et al. Attendees of the Correlation between Pathological and MRI findings in MS workshop. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol. 2019;18:198–210.
  • Thompson AJ, Baranzini SE, Geurts J, et al. Multiple sclerosis. Lancet. 2018;391(10130):1622–1636.
  • Reich DS, Lucchinetti CF, Calabresi PA. Multiple sclerosis. N Engl J Med. 2018;378(2):169–180.
  • Klotz L, Havla J, Schwab N, et al. Risks and risk management in modern multiple sclerosis immunotherapeutic treatment. Ther Adv Neurol Disord. 2019 Apr;1(12):1756286419836571.
  • Rollot F, Casey R, Leray E, et al. Cumulative effects of therapies on disability in relapsing multiple sclerosis. Mult Scler. 2021 Jan 6. 1352458520980366. doi:https://doi.org/10.1177/1352458520980366. Online ahead of print
  • He A, Merkel B, Brown JWL, et al. Timing of high-efficacy therapy for multiple sclerosis: a retrospective observational cohort study. Lancet Neurol. 2020;19:307–316.
  • Cerqueira JJ, Compston DAS, Geraldes R, et al. Time matters in multiple sclerosis: can early treatment and long-term follow-up ensure everyone benefits from the latest advances in multiple sclerosis? J Neurol Neurosurg Psychiatry. 2018;89(8):844–850.
  • Wijburg MT, Warnke C, McGuigan C, et al. Pharmacovigilance during treatment of multiple sclerosis: early recognition of CNS complications. J Neurol Neurosurg Psychiatry. 2021;92(2):177–188.
  • Thompson AJ, Banwell BL, Barkhof F, et al., Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17(2): 162–173. 2018.
  • McDonald WI, Compston DA, Edan G, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the Diagnosis of Multiple Sclerosis. Ann Neurol. 2001;50(1):121–127.
  • Polman CH, Reingold SC, Edan G, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria.” Ann Neurol. 2005;58(6):840–846.
  • Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald Criteria. Ann Neurol. 2011;69(2):292–302.
  • Tintore M, Rovira A, Rio J, et al., Defining high, medium, and low impact prognostic factors for developing multiple sclerosis. Brain. 138(7): 1863–1874. 2015.
  • Poser CM, Paty DW, Scheinberg L, et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol. 1983;13(3):227–231.
  • Fisniku LK, Brex PA, Altmann DR, et al. Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain. 2008;131(3):808–817.
  • McNicholas N, Hutchinson M, McGuigan C, et al. McDonald diagnostic criteria: a review of the evidence. Mult Scler Relat Disord. 2017;2018(24):48–54.
  • Lee DH, Peschke M, Utz KS, et al. Diagnostic value of the 2017 McDonald criteria in patients with a first demyelinating event suggestive of relapsing remitting multiple sclerosis. Eur J Neurol. 2019;26(3):540–545.
  • Tintore M, Otero-Romero S, Rio J, et al. Contribution of the symptomatic lesion in establishing MS diagnosis and prognosis. Neurology. 2016;87(13):1368–1374.
  • Brownlee WJ, Swanton JK, Miszkiel KA, et al. Should the symptomatic region be included in dissemination in space in MRI criteria for MS? Neurology. 2016;87(7):680–683.
  • Hagens MHJ, Burggraaff J, Kilsdonk ID, et al. Three Tesla MRI does not improve the diagnosis of multiple sclerosis: a multicenter study. Neurology. 2018;91(3):e249–57.
  • Geurts JJ, Roosendaal SD, Calabrese M, et al. Consensus recommendations for MS cortical lesion scoring using double inversion recovery MRI.; MAGNIMS Study Group. Neurology. 2011;76:418–424.
  • Arrambide G, Tintore M, Montalban X. Oligoclonal bands do not represent dissemination in time in the 2017 revisions to the McDonald criteria. Mult Scler. 2019;25(12):1690–1691.
  • Arrambide G, Tintore M, Espejo C, et al., The value of oligoclonal bands in the multiple sclerosis diagnostic criteria. Brain. 14(4): 1075–1084. 2018.
  • Gobbin F, Zanoni M, Marangi A, et al. McDonald criteria for multiple sclerosis: earlier diagnosis with reduced specificity? Mult Scler Relat Disord. 2017;2019(29):23–25.
  • McNicholas N, Lockhart A, Yap SM, et al. New versus old: implications of evolving diagnostic criteria for relapsing-remitting multiple sclerosis. Mult Scler. 2019;25(6):867–870.
  • Rovira A, Swanton J, Tintoré M, et al. A single, early magnetic resonance imaging study in the diagnosis of multiple sclerosis. Arch Neurol. 2009;66(5):587–592.
  • Kuhle J, Kropshofer H, Haering DA, et al. Blood neurofilament light chain as a biomarker of MS disease activity and treatment response. Neurology. 2019;92(10):e1007–15.
  • Novakova L, Zetterberg H, Sundström P, et al. Monitoring disease activity in multiple sclerosis using serum neurofilament light protein. Neurology. 2017;89(22):2230–2237.
  • van der Vuurst de Vries RM, Mescheriakova JY, Wong YYM, et al.Application of the. 2017 revised McDonald criteria for multiple sclerosis to patients with a typical clinically isolated syndrome. JAMA Neurol. 2018;75(11):1392–1398.
  • Solomon AJ, Naismith RT, Cross AH. Misdiagnosis of multiple sclerosis: impact of the 2017 McDonald criteria on clinical practice. Neurology. 2019;92(1):26–33.
  • Tintore M, Arrambide G, Otero-Romero S, et al. Long-term outcomes changes in MS prognosis through the CIS Barcelona cohort: a 25-year tale. In: ECTRIMS Online Library. 2019. p. 279421.
  • Sormani MP, Tintoré M, Rovaris M, et al. Will Rogers phenomenon in multiple sclerosis. Ann Neurol. 2008;64(4):428–433.
  • Okuda DT, Mowry EM, Beheshtian A, et al. Incidental MRI anomalies suggestive of multiple sclerosis: the radiologically isolated syndrome. Neurology. 2009;72:800–805.
  • Lebrun‐Frenay C, Kantarci O, Siva A, et al. Radiologically Isolated Syndrome: 10-Year Risk Estimate of a Clinical Event. Ann Neurol. 2020;88(2):407–417.
  • Toosy AT, Mason DF, Miller DH. Optic neuritis. Lancet Neurol. 2014;13(1):83–99.
  • Miller DH, Mac Manus DG, Bartlett PA, et al. Detection of optic nerve lesions in optic neuritis using frequency-selective fat saturation sequences. Neuroradiology. 1993;35(2):156–158.
  • Kupersmith MJ, Alban T, Zeiffer B, et al. Contrast enhanced MRI in acute optic neuritis: relationship to visual performance. Brain. 2002;125(4):812–822.
  • Sisto D, Trojano M, Vetrugno M, et al. Subclinical visual involvement in multiple sclerosis: a study by MRI, VEPs, frequency-doubling perimetry, standard perimetry, and contrast sensitivity. Invest Ophthalmol Vis Sci. 2005;46(4):1264–1268.
  • Hodel J, Outteryck O, Bocher AL, et al., Comparison of 3D double inversion recovery and 2D STIR FLAIR MR sequences for the imaging of optic neuritis: a pilot study. Eur Radiol. 24(12): 3069–3075. 2014.
  • London F, Zéphir H, Hadhoum N, et al. Optic nerve double inversion recovery hypersignal in patients with clinically isolated syndrome is associated with asymptomatic gadolinium-enhanced lesion. Mult Scler. 2019;25(14):1888–1895.
  • Davion JB, Lopes R, Drumez E, et al. Asymptomatic optic nerve lesions: an underestimated cause of silent retinal atrophy in MS. Neurology. 2020;94(23):e2468–78.
  • Sartoretti T, Sartoretti E, Rauch S, et al. How common is signal-intensity increase in optic nerve segments on 3D double inversion recovery sequences in visually asymptomatic patients with multiple sclerosis? AJNR Am J Neuroradiol. 1748-53;2017:38.
  • Zéphir H, Drumez E, Drumez E, et al. Optical coherence tomography: a window to the optic nerve in clinically isolated syndrome. Brain. 2019;142(4):903–915.
  • Toussaint D, Périer O, Verstappen A, et al. Clinicopathological study of the visual pathways, eyes, and cerebral hemispheres in 32 cases of disseminated sclerosis. J Clin Neuroophthalmol. 1983;3:211–220.
  • Sombekke MH, Wattjes MP, Balk LJ, et al. Spinal cord lesions in patients with clinically isolated syndrome: a powerful tool in diagnosis and prognosis. Neurology. 2013;80(1):69–75.
  • Riederer I, Muhlau M, Hoshi MM, et al. Detecting optic nerve lesions in clinically isolated syndrome and multiple sclerosis: double-inversion recovery magnetic resonance imaging in comparison with visually evoked potentials. J Neurol. 2018;266(1):148–156.
  • Brownlee WJ, Miszkiel KA, Tur C, et al. Inclusion of optic nerve involvement in dissemination in space criteria for multiple sclerosis. Neurology. 2018;9(12):e1130–4.
  • Di Maggio G, Santangelo R, Guerrieri S, et al. Optical coherence tomography and visual evoked potentials: which is more sensitive in multiple sclerosis? Mult Scler. 2014;20(10):1342–1347.
  • Naismith RT, Tutlam NT, Xu J, et al. Optical coherence tomography is less sensitive than evoked potentials in optic neuritis. Neurology. 2009;73(1):46–52.
  • Outteryck O, Lopes R, É D, et al. Optical coherence tomography for detection of asymptomatic optic nerve lesions in clinically isolated syndrome. Neurology. 2020;95(6):e733–44.
  • Filippi M, Rocca MA, Ciccarelli O, et al. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 2016;15(3):292–303.
  • Filippi M, Preziosa P, Meani A, et al. Prediction of a multiple sclerosis diagnosis in patients with clinically isolated syndrome using the 2016 MAGNIMS and 2010 McDonald criteria: a retrospective study. Lancet Neurol. 2018;17(2):133–142.
  • Sastre-Garriga J, Tintoré M, Rovira A, et al. Specificity of Barkhof criteria in predicting conversion to multiple sclerosis when applied to clinically isolated brainstem syndromes. Arch Neurol. 2004;61(2):222–224.
  • Vidal-Jordana A, Rovira A, Arrambide G, et al. Optic Nerve Topography in Multiple Sclerosis Diagnosis: the Utility of Visual Evoked Potentials. Neurology. 2021;96(4):e482–90.
  • Solomon AJ, Bourdette DN, Cross AH, et al. The contemporary spectrum of multiple sclerosis misdiagnosis: a multicenter study. Neurology. 2016;87(13):1393–1399.
  • Solomon AJ, Corboy JR. The tension between early diagnosis and misdiagnosis in multiple sclerosis. Nat Rev Neurol. 2017;13(9):567–572.
  • Gaitán MI, Correale J. Multiple Sclerosis Misdiagnosis: a Persistent Problem to Solve. Front Neurol. 2019;10:466.
  • Kaisey M, Solomon AJ, Luu M, et al. Incidence of multiple sclerosis misdiagnosis in referrals to two academic centers. Mult Scler Relat Disord. 2019;30:51–56.
  • Yamout BI, Khoury SJ, Ayyoubi N, et al. Alternative diagnoses in patients referred to specialized centers for suspected MS. Mult Scler Relat Disord. 2017;18:85–89.
  • Carmosino MJ, Brousseau KM, Arciniegas DB, et al. Initial evaluations for multiple sclerosis in a university multiple sclerosis center: outcomes and role of magnetic resonance imaging in referral. Arch Neurol. 2005;62(4):585–590.
  • À R, Wattjes MP, Tintoré M, et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis-clinical implementation in the diagnostic process. Nat Rev Neurol. 2015;11(8):471–482.
  • Traboulsee A, Simon JH, Stone L, et al. Revised Recommendations of the Consortium of MS Centers Task Force for a Standardized MRI Protocol and Clinical Guidelines for the Diagnosis and Follow-Up of Multiple Sclerosis. AJNR Am J Neuroradiol. 2016;37(3):394–401.
  • Vågberg M, Axelsson M, Birgander R, et al. Guidelines for the use of magnetic resonance imaging in diagnosing and monitoring the treatment of multiple sclerosis: recommendations of the Swedish Multiple Sclerosis Association and the Swedish Neuroradiological Society. Acta Neurol Scand. 2017;135(1):17–24.
  • Wattjes MP, Ciccarelli O, Reich DS, et al. MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol. 2021;2021:S1474-4422(21)00095–8.
  • Cotton F, Weiner HL, Jolesz FA, et al. MRI contrast uptake in new lesions in relapsing-remitting MS followed at weekly intervals. Neurology. 2003;60(4):640–646.
  • Ciccarelli O, Cohen JA, Reingold SC, et al. Spinal cord involvement in multiple sclerosis and neuromyelitis optica spectrum disorders. Lancet Neurol. 2019;18(2):185–197.
  • Stankiewicz JM, Neema M, Alsop DC, et al. Spinal cord lesions and clinical status in multiple sclerosis: a 1.5 T and 3 T MRI study. J Neurol Sci. 2009;279(1–2):99–105.
  • Philpott C, Brotchie P. Comparison of MRI sequences for evaluation of multiple sclerosis of the cervical spinal cord at 3 T. Eur J Radiol. 2011;80(03):780–785.
  • Bot JC, Barkhof F, GJ LÀN, et al. Comparison of a conventional cardiac-triggered dual spin-echo and a fast STIR sequence in detection of spinal cord lesions in multiple sclerosis. Eur Radiol. 2000;10:753–758.
  • Nayak NB, Salah R, Huang JC, et al. A comparison of sagittal short T1 inversion recovery and T2-weighted FSE sequences for detection of multiple sclerosis spinal cord lesions. Acta Neurol Scand. 2014;129(3):198–203.
  • Chong AL, Chandra RV, Chuah KC, et al. Proton Density MRI Increases Detection of Cervical Spinal Cord Multiple Sclerosis Lesions Compared with T2-Weighted Fast Spin-Echo. AJNR Am J Neuroradiol. 2016;37(1):180–184.
  • Weier K, Mazraeh J, Naegelin Y, et al. Biplanar MRI for the assessment of the spinal cord in multiple sclerosis. Mult Scler. 2012;18(11):1560–1569.
  • Breckwoldt MO, Gradl J, Hahnel S, et al. Increasing the sensitivity of MRI for the detection of multiple sclerosis lesions by long axial coverage of the spinal cord: a prospective study in 119 patients. J Neurol. 2017;264(2):341–349.
  • Nair G, Absinta M, Reich D. Optimized T1-MPRAGE Sequence for Better Visualization of Spinal Cord Multiple Sclerosis Lesions at 3T. AJNR Am J Neuroradiol. 2013;34(11):2215–2222.
  • Mirafzal S, Goujon A, Deschamps R, et al. 3D PSIR MRI at 3 Tesla improves detection of spinal cord lesions in multiple sclerosis. J Neurol. 2020;267(2):406–414.
  • Alcaide-Leon P, Pauranik A, Alshafai L, et al. Comparison of Sagittal FSE T2, STIR, and T1-Weighted Phase-Sensitive Inversion Recovery in the Detection of Spinal Cord Lesions in MS at 3T. AJNR Am J Neuroradiol. 2016;37(5):970–975.
  • Dekker I, Wattjes MP. Brain and Spinal Cord MR Imaging Features in Multiple Sclerosis and Variants. Neuroimaging Clin N Am. 2017;27(2):205–227.
  • Bouëtté A, Karoussou-Schreiner A, Ducou Le Pointe H, et al. National audit on the appropriateness of CT and MRI examinations in Luxembourg. Insights Imaging. 2019;10:54.
  • Leslie A, Jones AJ, Goddard PR. The influence of clinical information on the reporting of CT by radiologists. Br J Radiol. 2000;73(874):1052–1055.
  • European Society of Radiology (ESR). Good practice for radiological reporting. Guidelines from the European Society of Radiology (ESR). Insights into Imaging 2011;2:93–96
  • Geraldes R, Ciccarelli O, Barkhof F, et al. The current role of MRI in differentiating multiple sclerosis from its imaging mimics. Nat Rev Neurol. 2018;14(4):199–213.
  • Aliaga ES, Barkhof F. MRI mimics of multiple sclerosis. Handb Clin Neurol. 2014;122:291–316.
  • Haacke EM, Xu Y, Cheng YC, et al. Susceptibility weighted imaging (SWI). Magn Reson Med. 2004;52(3):612–618.
  • Absinta M, Nair G, Monaco MCG, et al. The “central vein sign” in inflammatory demyelination: the role of fibrillar collagen type I. Ann Neurol. 2019;85(6):934–942.
  • Absinta M, Sati P, Masuzzo F, et al., Association of Chronic Active Multiple Sclerosis Lesions with Disability In Vivo. JAMA Neurol. 76(12): 1474–1483. 2019.
  • Maggi P, Absinta M, Grammatico M, et al., Central vein sign differentiates Multiple Sclerosis from central nervous system inflammatory vasculopathies. Ann Neurol. 83(2): 283–294. 2018.
  • Clarke MA, Pareto D, Pessini-Ferreira L, et al., Value of 3T Susceptibility-Weighted Imaging in the Diagnosis of Multiple Sclerosis. AJNR Am J Neuroradiol. 41(6): 1001–1008. 2020.
  • Sati P, Oh J, Constable RT, et al., The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Nat Rev Neurol. 12(12): 714–722. 2016.
  • George IC, Sati P, Absinta M, et al. Clinical 3-tesla FLAIR* MRI improves diagnostic accuracy in multiple sclerosis. Mult Scler. 2016;22(12):1578–1586.
  • Castellaro M, Tamanti A, Pisani AI, et al., The Use of the Central Vein Sign in the Diagnosis of Multiple Sclerosis: a Systematic Review and Meta-analysis. Diagnostics. 10(12): 1025. 2020.
  • Cortese R, Magnollay L, Tur C, et al. Value of the central vein sign at 3T to differentiate MS from seropositive NMOSD. Neurology. 2018;90(14):e1183–90.
  • Sinnecker T, Clarke MA, Meier D, et al., Evaluation of the Central Vein Sign as a Diagnostic Imaging Biomarker in Multiple Sclerosis; MAGNIMS Study Group. JAMA Neurol. 76(12): 1446–1456. 2019.
  • Clarke MA, Samaraweera AP, Falah Y, et al. Single Test to ARrive at Multiple Sclerosis (STAR-MS) diagnosis: a prospective pilot study assessing the accuracy of the central vein sign in predicting multiple sclerosis in cases of diagnostic uncertainty. Mult Scler. 2020;26(4):433–441.
  • Maggi P, Absinta M, Sati P, et al. The “central vein sign” in patients with diagnostic “red flags” for multiple sclerosis: a prospective multicenter 3T study. Mult Scler. 2020;26(1):421–432.
  • Tallantyre EC, Dixon JE, Donaldson I, et al. Ultra-high-field imaging distinguishes MS lesions from asymptomatic white matter lesions. Neurology. 2011;76(6):534–539.
  • Mistry N, Abdel-Fahim R, Samaraweera A, et al. Imaging central veins in brain lesions with 3-T T2*-weighted magnetic resonance imaging differentiates multiple sclerosis from microangiopathic brain lesions. Mult Scler. 2016;22(10):1289–1296.
  • Absinta M, Sati P, Schindler M, et al. Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions. J Clin Invest. 2016;126(7):2597–2609.
  • Kaunzner UW, Kang Y, Zhang S, et al. Quantitative susceptibility mapping identifies inflammation in a subset of chronic multiple sclerosis lesions. Brain. 2019;142(1):133–145.
  • Popescu BF, Frischer JM, Webb SM, et al. Pathogenic implications of distinct patterns of iron and zinc in chronic MS lesions. Acta Neuropathol. 2017;134(1):45–64.
  • Zhang S, Nguyen TD, Hurtado Rua SM, et al. Quantitative susceptibility mapping of time-dependent susceptibility changes in multiple sclerosis lesions. AJNR Am J Neuroradiol. 2019;40:987–993.
  • Absinta M, Sati P, Fechner A, et al. Identification of Chronic Active Multiple Sclerosis Lesions on 3T MRI. AJNR Am J Neuroradiol. 2018;39(7):1233–1238.
  • Maggi P, Sati P, Nair G, et al., Paramagnetic Rim Lesions are Specific to Multiple Sclerosis: an International Multicenter 3T MRI Study. Ann Neurol. 88(5): 1034–1042. 2020.
  • Chawla S, Kister I, Wuerfel J, et al. Iron and Non-Iron-Related Characteristics of Multiple Sclerosis and Neuromyelitis Optica Lesions at 7T MRI. AJNR Am J Neuroradiol. 2016;37(7):1223–1230.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.